STRING ALGORITHMS

(Cormen, Leiserson, Riveset, and Stein, 2001, ISBN: 0-07-013151-1 (McGraw Hill), Chapter 32, p906)

String processing problem

Input: Two strings T and P.

Problem: Find if P is a substring of T.

Example (1):

Input: T = gtgatcagatcact, P = tca

Output: Yes. gtgatcagatcact, shift=4, 9

Example (2):

Input: T = 189342670893, P = 1673

Output: No.

Naïve Algorithm (T, P)

suppose n = length(T), m = length(P);

for shift s=0 through n-m do

if (P[1..m] = = T[s+1 .. s+m]) then // actually a for-loop runs here

print shift s;

End algorithm.

Complexity: O((n-m+1)m), or O(max{nm, m2})

A special note: we allow O(k+1) type notation in order to avoid O(0) term, rather, we want to have O(1) (constant time) in such a boundary situation.

Note: Too many repetition of matching of characters.

Rabin-Karp scheme

Consider a character as a number in a radix system, e.g., English alphabet as in radix-26.

Pick up each m-length "number" starting from shift=0 through (n-m).

So, T = gtgatcagatcact, in radix-4 (a/0, t/1, g/2, c/3) becomes

gtg = '212' in base-4 = 32+4+2 in decimal,

tga = '120' in base-4 = 16+8+0 in decimal,

….

Then do the comparison with P - number-wise.

Advantage: Calculating strings can reuse old results.

Consider decimals: 4359 and 3592

3592 = (4359 - 4*1000)*10 + 2

General formula: ts+1 = d (ts - dm-1 T[s+1]) + T[s+m+1], in radix-d, where ts is the corresponding number for the substring T[s..(s+m)]. Note, m is the size of P.

The first-pass scheme: (1) preprocess for (n-m) numbers on T and 1 for P, (2) compare the number for P with those computed on T.

Problem: in case each number is too large for comparison

Solution: Hash, use modular arithmetic, with respect to a prime q.

New recurrence formula:

ts+1 = (d (ts - h T[s+1]) + T[s+m+1]) mod q,

where h = dm-1 mod q.

q is a prime number so that we do not get a 0 in the mod operation.

Now, the comparison is not perfect, may have spurious hit (see example below).

So, we need a naïve string matching when the comparison succeeds in modulo math.

[image: image1.png]=4 Lhe Knuth-Morris-Fratt atgoritiom

i [1]2]3]a[s]e]7]8]9]10
Pl [a|bla|bla|p|a|b|c]|a
il | oo 1|2]3]4]s[elo]1

(a)
r, [a[plalb]a]b]a]b]c a
Pe a|bla[b[a[b]a b
2 albla a b
P albla b
2o tia b

(b)

a b c a

a b abca

18] =6
6] =4
4] =2
21=0

e

Rabin-Karp Algorithm:

Input: Text string T, Pattern string to search for P, radix to be used d (= |(|, for alphabet (), a prime q

Output: Each index over T where P is found
Rabin-Karp-Matcher (T, P, d, q)

n = length(T); m = length(P);

h = dm-1 mod q;

p = 0; t0 = 0;

for i = 1 through m do

// Preprocessing

p = (d*p + P[i]) mod q;

t0 = (d* t0 + T[i]) mod q;

end for;

for s = 0 through (n-m) do
// Matching

if (p = = ts) then

if (P[1..m] = = T[s+1 .. s+m]) then

print the shift value as s;

if (s < n-m) then

ts+1 = (d (ts - h*T[s+1]) + T[s+m+1]) mod q;

end for;

End algorithm.

Complexity:

Preprocessing: O(m)

Matching:

O(n-m+1)+ O(m) = O(n), considering each number matching is constant time.

However, if the translated numbers are large (i.e., m is large), then even the number matching could be O(m). In that case, the complexity for the worst case scenario is when every shift is successful ("valid shift"), e.g., T=an and P=am. For that case, the complexity is O(nm) as before.

But actually, for c hits, O((n-m+1) + cm) = O(n+m), for a small c, as is expected in the real life.

THIRD ALGORITHM USING AUTOMATON

(Efficient with less alphabet |(|)
Finite Automaton: (Q, q0, A, (, d), where

Q is a finite set of states, q0 is one of them - the start state, some states in Q are 'accept' states (A) for accepting the input, input is formed out of the alphabet (, and d is a binary function mapping a state and a character to a state (same or different).

Matcher scheme: (1) Pre-processing: Build an automaton for the pattern P, (2) Matching: run the text on the automaton for finding any match (transition to accept state).

Example automaton for 'ababaca' :

[image: image2.png]@)““"'\

sate

0 [;;n

n()‘
.0

2

inpie
a b

1
i

ol

o

i
i
state ¢(7,)

1

-4 b

(8

i

2

w o

o oa

oo

(Y]
b oa
23

Algorithm FA-Matcher (T, d, m)

n = length(T); q = 0;
// '0' is the start state here

// m is the length(P), and

// also the 'accept' state's number

for i = 1 through n do

q = d (q, T[i]);

if (q = = m) then

print (i-m) as the shift;

end for;

End algorithm.

Complexity: O(n)

However, we need to build the finite-state automaton for P first:

Input: (, and P

Output: The transition table for the automaton
Algorithm Compute-Transition-Function(P, ()

m = length(P);

for q = 0 through m do

for each character x in (

k = min(m+1, q+2); // +1 for x, +2 for subsequent repeat loop to decrement

repeat k = k-1
// work backwards from q+1

until Pk 'is-suffix-of' Pqx;

d(q, x) = k;
// assign transition table

end for; end for;

return d;

End algorithm.

Examples (from the above figure P = 'ababaca'):

Suppose, q=5, x=c

Pq = ababa, Pqx = ababac,

Pk (that is suffix of Pqx) = ababac, for k=6 (note transition in the above figure)

Say, q=5, x=b

Pq = ababa, Pqx = ababab,

P6 = ababac (suffix of Pqx

P5 = ababa (suffix of Pqx , but

Pk (that is suffix of Pqx) = abab, for k=4

Say, q=5, x=a

Pq = ababa, Pqx = ababaa,

Pk (that is suffix of Pqx) = a, for k=1

Complexity of the above automaton-building (preprocessing):

Outer loops: m|(|

Repeat loop (worst case): m

Suffix checking (worst case): m

Total: O(m3|(|)

Good, when you build automaton once, search many times.

Bad, when you have build automata for different P many times, or #searches/#keys ratio is low.

Knuth-Morris-Pratt Algorithm

We do not need the whole transition table as in an automaton.

An array can keep track of: for each prefix-sub-string S of P, what is its largest prefix-sub-string K of S (or of P), such that K is also a suffix of S (kind of a symmetry within P).
Symmetry: prefix = suffix

Thus, P=ababababca, when S=P6=ababab, largest K is abab, or Pi(6)=4.

An array Pi[1..m] is first developed for the whole set for S, Pi[1] through Pi[10] above.

[image: image3.png]322 The Rabin-Karp algorithm 913

O EENENEEEEE]

mod 13

7 "

(a)

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19
[2]3]5[9[o]2[3]1]a1]s]>Te[7[3]oT9]2]1]

—
s[o]3[nfof1[7]8]a]s5Tio[n]7 o
valid spurious
match hit
(b
old new old new
high-order low-order high-order low-order
digit digit shift digit

|
A v
3:10000)-10 + 2 (mod 13)
= (7-3-3)10+2 (mod 13)
8 (mod 13)

14152

Figure 32.5 The Rabin-Karp algorithm. Each character is a decimal digit. and we compute values
modulo 13. (a) A text string. A window of length 5 is shown shaded. The numerical value of
the shaded number is computed modulo 13, yielding the value 7. (b) The same text string with
values computed modulo 13 for cach possible position of a length-5 window. Assuming the pattern
P = 31415, we look for windows whose value modulo 13 is 7, since 31415 = 7 (mod 13). Two
such windows are found, shown shaded in the figure. The first, beginning at text position 7. is
indeed an occurrence of the pattern. while the second, beginning at text position 13, is a spurious hit.
(c) Computing the value for a window in constant time, given the value for the previous window. The
first window has value 31415. Dropping the high-order digit 3. shifting left (multiplying by 10). and
then adding in the low-order digit 2 gives us the new value 14152. All computations are performed
modulo 13, however. so the value for the first window is 7, and the value computed for the new
window is 8.

The array Pi actually holds a chain for transitions, e.g., Pi[8] = 6, Pi[6]=4, …,

always ending with 0.

Algorithm KMP-Matcher(T, P)

n = length[T]; m = length[P];

Pi = Compute-Prefix-Function(P);

q = 0;

// how much of P has matched so far, or could match possibly

for i=1 through n do

while (q>0 && P[q+1] (T[i]) do

q = Pi[q];
// follow the Pi-chain, to find next smaller available symmetry, until 0

if (P[q+1] = = T[i]) then

q = q+1;

if (q = = m) then

print valid shift as (i-m);

q = Pi[q]; // old matched part is preserved, & reused in the next iteration

end if;

end for;

End algorithm.

Algorithm Compute-Prefix-Function (P)

m = length[P];

Pi[1] = 0;

k = 0;

for q=2 through m do

while (k>0 && P[k+1] =/= P[q]) do // loop breaks with k=0 or next if succeeding

k = Pi[k];

if (P[k+1] = = P[q]) then // check if the next pointed character extends previously identified symmetry

k = k+1;

Pi[q] = k; // k=0 or the next character matched

return Pi;

End algorithm.

Complexity of second algorithm Compute-Prefix-Function: O(m), by amortized analysis (on an average).

Complexity of the first, KMP-Matcher: O(n), by amortized analysis.

In reality the inner while loop runs only a few times as the symmetry may not be so prevalent. Without any symmetry the transition quickly jumps to q=0, e.g., P=acgt, every Pi value is 0!

Exercise:

For P= ababababca, run the Compute-prefix-function to develop the Pi array.

For T= cabacababababcababababcac, run the KMP algorithm for searching P within T.

Show the traces of your work, not just the final results.

_1066555574.bin

