The Disjoint Set Abstract Data Type

Equivalence Relations:

Reflexive (a R a), Symmetric (aRb ( bRa), Transitive (aRb & bRc => aRc)

Elements equivalent to each other form equivalent classes within a set.

Equivalent elements form partition over a set: No element belongs to two equivalence classes, and every element belongs to some class

Dynamic Equivalence Problem / Union-Find Algorithm

Given a set, equivalence between the elements are gradually declared: 

{a, b, c, d, e, f, g}

Steps: 

a Eq b:  {{a, b}, c, d, e, f, g}

e Eq c:
 {{a, b}, {c, e}, d, f, g}

b Eq e:  {{a, b, c, e}, d, f, g}

f Eq g:  {{a, b, c, e}, d, {f, g}}

We have now 3 Equivalence classes in the set.

Needs the set Union operation.

Find where does e belong. Answer: First set, or set of ‘a,’ or …

Typically needed for answering: does ‘a’ and ‘e’ are equivalent to each other?

Doing Union also needs the Find algorithm: 

b Eq e:  where does b and e belongs, then Union those two sets, if they are currently not equivalent.

Union-Find algorithms are important in many situations: graph problems, compilers, databases, etc. So, efficiency is important.

A First Pass Algorithm

Order the elements, with indices from i =0 through N-1

Name of the set could be an integer, stored in an array over the elements as ordered,

e.g., the j-th set, or the index for one of its elements. So, after

Steps: 

a Eq b:  {{a, b}, c, d, e, f, g}

e Eq c:
 {{a, b}, {c, e}, d, f, g}

The array for
{a, b, c, d, e, f, g} is (a:1  b:1  c:2 d:3 e:2  f:4  g:5) or (a:1 b:1 c:3 d:4 e:3 f:6 g:7)   

Find is constant time O(1) here, just an array look up. Find (d) returns 3 for the first scheme above.

Union: scan the array and change set names for each element for one set to that of the other set. So, after:

b Eq e:  {{a, b, c, e}, d, f, g}

in the above two scheme becomes,

The array for
{a, b, c, d, e, f, g} is (a:1  b:1  c:1 d:2 e:1  f:3  g:4) or (a:1 b:1 c:1 d:4 e:1 f:6 g:7)   

Complexity O(N) in each union, note each find within a union is, constant time operation O(1)

But now we are interested in the complexity of repeated operations.

Maximum number of times the union could be done is (N-1)  [WHY?]
Total complexity for N-1 Union operations: O(N^2)

If the aggregate number of Find operations is also of the order O(N^2), the average per Union-Find is O(1). This is ok.

If the aggregate number of Find operations is much less than O(N^2), then a O(N) complexity Union is NOT ACCEPTABLE. 

Second Pass Arrangement

Union’s complexity could be easily reduced if the equivalent elements are kept in link lists. Then, Union is same as changing the roots, constant time. But, complexity for Find may increase.

Does not change complexity by itself, still O(N^2) updates are possible for aggregate of all unions, in the worst case: e.g., a linear growth of the link-list.

Typical data structure for such linked-list: a tree for each equivalence-class (not necessarily binary tree). An array for the whole set, each entry indicates the parent of that element, root of each tree is –1. [p 272]

Union should link smaller tree to the larger one and not reverse. Then, the linear growth never happens. 

Now, each Find is logN, because the depth of the tree in the worst case is logN. [WHY?] 

So, for (N-1) worst case unions, complexity is O(NlogN)  [because each union can happen only after a find checks/finds the equivalent classes to be merged].

One has to keep track of the size of a tree now. The root holds that value with a negation, instead of –1 as before: Union-by-size [p 276]

An easier variation: Union-by-height, keep track of height. The root will hold (-height-1), so that, single element has –1 in its array element. [p 276]

Height either remains the same (for merging two different sized-trees), 

or increases by 1 when the two trees are of same height: new root is created one level above. [Algorithm on p 277]


