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Factor Analysis (FA) 

1. Introduction 

Factor analysis is used to determine the variability among the data. It is a technique that can be 

used to reduce the dimensionality of the data. The idea behind factor analysis is to identify the 

variance in the observed data, and determine the unobserved data that is smaller than the actual 

data, but represents the same thing.  

It becomes easier to analyze the data, after it has been reduced, allowing us to focus more on 

key distinguishing factors, rather than wasting time on too many variables.  

In order to perform factor analysis, we have to operate under the assumption that there exists a 

linear relationship between the variables of the data set. We identify factors by determining the 

correlations between the variables in the data set.  

Factor loading is the measure of how much correlation does the variable have with the factor. 

Thus, a higher factor loading means that the variables are closely related to the identified factor. 

2. Explanatory Factor Analysis 

There are two types of Factor Analysis. Explanatory Factor Analysis(EFA) and Confirmatory Factor 

Analysis(CFA). CFA is a more complex approach. EFA can be termed as an advanced version of 

Principal Component Analysis(PCA). EFA splits the dataset in to different categories making it 

easier to analyze. EFA usually works better with larger sample sizes, but if the factor loading 

among the variables is high then smaller sample sizes can also be used. The correlation needs to 

be higher than 0.30, otherwise it would mean that the relationship is very weak between the 

variable and the factor.  

Problems arise when a variable falls into more than one factor. Such a situation is called split 

loadings. The variable has low correlation with multiple factors, and it becomes difficult to put 

such a variable into a specific factor group. 

3. Theoretical Background 

The theory behind the working of EFA can be explained using the mathematical and geometrical 

approaches. 

3.1. Mathematical Approach 

In this approach p denotes the number of variables in the dataset(X1,X2,...,Xp) and m denotes the 

number of factors(F1,F2,…,Fm).  Each variable in the dataset is represented mathematically as 

below: 

 



𝑋𝑗 = 𝑎𝑗1𝐹1 +  𝑎𝑗2𝐹2 + ⋯ +  𝑎𝑗𝑚𝐹𝑚 +  𝑒𝑗  

where j = 1,2,3,…,p. 

In the above equation aj1,aj2,….,ajm are the factor loadings. This specifies how much effect the 

variable has on a particular factor. The specific or unique factor is denoted by ej. It can be said 

that the Factor Analysis is similar to weights. A higher factor loading represents that there is a 

high correlation between the factor and the variable. So, factor loading determines the strength 

of correlation between the variable and the factor. 

We need to calculate the correlation coefficient, and in order to do that, we need to identify the 

common features in the variables and based on that either create a correlation matrix or a 

covariance matrix. The correlation coefficient is used to determine the relationship between two 

variables. 

Let us say that we have p variables and m factors. For every two pairs of variables we have to try 

to extract factors such that there are no intercorrelations left between those variables, as the 

factor itself will behave as the intercorrelations. Factor analysis can be represented by the below 

equation: 

𝑅 = 𝑃 𝐶 𝑃′ + 𝑈2 

where R = correlation coefficients matrix 
            P = Factor loading matrix 
            C = correlation matrix 
            U = diagonal matrix of unique variances of each variable 
 
Communality can be produced in factor analysis by using variances. It is the square of the 
summation of factor loadings for a particular variable.  
The formula is ℎ𝑗

2 =  𝑎𝑗1
2 + 𝑎𝑗2

2 + ⋯ +  𝑎𝑗𝑚
2 . 

 
3.2 Geometrical Approach 
 
We can represent factor analysis using geometry to for better understanding. In this 
representation each axis represents a factor and the vectors or lines on the graph represents the 
variable. So if a variable is highly correlated to a factor than, it will be very close to that axis. 
The axis will range from -1 to 1 which represents the factor loading.  
 



 
 
The above figure is an example of factor analysis in geometrical representation. In this figure the 
two axis are the two factors. Factor 1 and Factor 2 and the triangles are the variables. The Blue 
triangles have higher correlation with Factor 1 and the Green triangles have a higher correlation 
with Factor 2. 
 

4. Factor Extraction 
 
There are several techniques available that can be used to determine the factors from the 
variables. We can select a technique based on the requirements and the research that we are 
trying to perform. Maximum Likelihood, Principal Axis Factor, are some of these techniques. 
Principal Component Analysis(PCA) can also be used, as it a used for data reduction. An issue has 
been raised that weather PCA is actually a factor analysis technique on its own.  
 
After factors are identified, rotation is performed on the factors. The objective of performing 
rotation on the factors is to reduce ambiguity. This allows us to fit more variables into less 
number of factors.  
 
Next we need to determine the strength of the factors by examining the factor loadings. We need 
to examine the factors with high factor loading, and factors with low factor loading, and ensure 
that they are consistent with the data. Like there should not be cases where a factor that should 
have low correlation with a variable has high factor loading. Also there should be very low split 
loadings, meaning variables that load into more than one factor should be less. 
 
The next step is to determine the number of factors to retain. This is very important, because if 
we keep too many factors than it may result in a high error variance, on the other end keeping 



very few factors may result in loss of important data. We can use eigenvalues and scree test to 
determine the number of factors to retain. It is recommended to use both the techniques 
together, as using only eigenvalues may result in overestimation. 
 

5. Data Set Description 
 
We will use the data from AEIS(Academic Excellence Indicator System) which is provided by Texas 
Education Agency. This dataset has records of thousands of schools in Texas. We will use factor 
analysis to reduce the dimensionality of the data, making it easier to analyze this huge dataset. 
 

6. Difference between FA and NMF 
 

FA NMF 

Can work with negative data Cannot work with negative data 

It reduces data dimensionality by identifying 
factors and can be used to represent the 
variables 

It reduces the data, by splitting the data into 
smaller subsets 

It identifies the factors between the variables 
with high correlation, and then the we can use 
to factors to analyze our data set 

It splits the data, such that the 
distance(Euclidean or Frobenius) between the 
original matrix and the subset matrices is 
minimum 
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Non-negative matrix factorization (NMF) 

1. Introduction 

NMF is a group of algorithms where a matrix V can be decomposed into two matrices W and 

H, each of which are easier to work with and when multiplied together, yield the original 

matrix. 

 

 

Fig. V (4 X 6) is approximated as W (4 X 2) multiplied by H (2 X 6) 

(Source: https://en.wikipedia.org/wiki/Non-negative_matrix_factorization) 

 

Given, a matrix V of dimension m x n and vij >= 0, NMF decomposes it into 2 matrices W and 

H of dimension m x r and r x n where  

Wij >=0 

Hij >=0 

r < min (m, n) 

Thus, V is decomposed into a tall, skinny matrix W and a short, wide matrix H. The user can 

specify r as the inner dimension of W and H as long as r < min (m, n). 

Each column of V, vi can be calculated as: 

vi = W * hi 

Thus, each column of W is weighted by its corresponding row in hi, which are then added 

together to form columns of V. 

2. Purpose 

Suppose V is a large dataset where each column is an observation and each row is a feature. 

For example, in a database of images, a column might represent some image and a row can 

represent a pixel. In machine learning, it is necessary to reduce the feature space for easy 

computation. In the above example, it is difficult to consider each pixel value every time an 

image is handled, so it is worthwhile to break it down into fewer components. Thus, NMF is 

used as a new way of reducing the dimensionality of data. 

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization


Since NMF has a non-negative constraint, it is used to represent data with positive features. 

This advantage can be used in image processing since each image has a positive pixel value. 

NMF is similar to PCA where each base is assigned a weight. But in NMF, the weights are 

constrained to be positive. 

2. Applications 

2.1. Computer vision 

NMF is beginning to be used in many fields. It is used in computer vision to reduce the feature 

space in images. This can be useful in identifying and classifying images. 

2.2. Text mining 

NMF is also used in text mining. For example, you might organize a series of documents into 

a matrix where each column may represent the frequency a particular word and a row might 

represent the document. Then you would extract sematic features about the data. 

2.3. Speech denoising 

NMF is used to break audio recordings of speech into speech parts and noise parts so that the 

speech parts alone can be isolated. 

3. The problem 

A fundamental model in NMF utilizes the least squares cost function to measure the closeness 

of matrices, resulting in the following standard NMF problem:  

Minimize ‖𝑉 − 𝑊𝐻‖2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑊, 𝐻 ≥ 0 

where ‖∙‖ is Frobenius norm, and the inequalities are component-wise [1]. 

4. Algorithm 

The method used for solving the above problem seems to be the alternating least squares 

(ALS) algorithm utilized by Paatero and Tapper in 1994 [2]. It minimizes the least squares cost 

function with respect to either W or H, one at a time, while fixing the other and disregarding 

non-negativity, and then sets any negative entries to zero after each least squares step. 

The conventional approach to find W and H is by minimizing the difference between V and W 

H: 

𝑓(𝑊, 𝐻) ≡
1

2
∑ ∑(𝑣𝑖𝑗 − (𝑊𝐻)𝑖𝑗)

2
 

𝑚

𝑗=1

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑎 ≥ 0, 𝐻𝑏𝑗 ≥ 0,    ∀ 𝑖, 𝑎, 𝑏, 𝑗 



 

Lee and Seung (2001) have shown that the function value is non-increasing after every update 

[3]:  

𝑓(𝑊𝑘+1, 𝐻𝑘) ≤ 𝑓(𝑊𝑘 , 𝐻𝑘) 𝑎𝑛𝑑  

𝑓(𝑊𝑘+1, 𝐻𝑘+1) ≤ 𝑓(𝑊𝑘+1, 𝐻𝑘) 

 

From the non-increasing property, the multiplicative update algorithm is a special case of a 

general framework, which alternatively fixes one matrix and improves the other:  

 

𝐹𝑖𝑛𝑑 𝑊𝑘+1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑊𝑘+1, 𝐻𝑘) ≤  𝑓(𝑊𝑘, 𝐻𝑘) 𝑎𝑛𝑑  

𝐹𝑖𝑛𝑑 𝐻𝑘+1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑊𝑘+1, 𝐻𝑘+1) ≤  𝑓(𝑊𝑘+1, 𝐻𝑘) 

 

4.1. Alternating non-negative least squares [4]: 

1. Initialize  𝑊𝑖𝑎
1  ≥  0, 𝐻𝑏𝑗

1  ≥  0,     ∀ 𝑖, 𝑎, 𝑏, 𝑗.  

2. For k = 1, 2, . . .  

𝑊𝑘+1 = arg
𝑚𝑖𝑛

𝑊 ≥ 0
 𝑓(𝑊, 𝐻𝑘) 

𝐻𝑘+1 = arg
𝑚𝑖𝑛

𝐻 ≥ 0
 𝑓(𝑊𝑘+1, 𝐻) 

  

This approach is the “block coordinate descent” method in bound-constrained optimization 

(Bertsekas, 1999) [5], where sequentially one block of variables is minimized under 

corresponding constraints and the remaining blocks are fixed. For NMF, we have the simplest 

case of only two block variables W and H.  

5. Data  

We consider an image problem:  

CBCL face image database [6] 

 

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html 

This data set consists of 472 faces, 23,573 non-faces. The idea is to reduce the 

dimensionality of the above data so that it can be used for further analysis and 

computation. 

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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