
Gengbo Liu and Yutian Gui ICA and CNN report 
ICA (Independent Component Analysis): 
 
Description: 
 
In the mu​lti​-dimensional data processing, in order to decompose data into components that 
simplify the analysis and reduce storage space, some dimension reduction methods are 
applied, include principal component analysis, PCA and independent component analysis, ICA. 
 
PCA 
 
Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 
transformation to convert a set of observations of possible correlated variables into a set of 
values of linearly uncorrelated variables called principal components. [1] PCA maximize the 
variance on the multi-dimensional statistic data and therefore find globel feature of the 
multi-dimensional data. [2] There are two way to apply PCA: eigenvalue decomposition, EVD 
and singular value decomposition, SVD [3] [4] 

 
Comparing with PCA, ICA which is applied to solve blind source separation problem, BSS, do 
not need have orthogonal system. ​In signal processing, ​independent component 
analysis​ (​ICA​) is a computational method for separating a multivariate signal into 
additive subcomponents. This is done by assuming that the subcomponents are 
non-Gaussian signals and that they are statistically ​independent​ from each other. [5] 
One of the classic example to understand the problem ICA dealing with is cocktail party 
problem. [6] This problem is about separating different sound sources in a noisy, 



unordered cocktail party. ICA is a perfect tool to solve this problem since it is used to 
find fundamental and mutually independent components.  

 
The general model for ICA is that the sources are generated through a linear basis 
transformation, where additive noise can be present. Suppose we have N statistically 
independent signals, si (t), i = 1, ..., N. We assume that the sources themselves can not 
be directly observed and that each signal, si (t), is a realization of some fixed probability 
distribution at each time point t. Also, suppose we observe these signals using N 
sensors, then we obtain a set of N observation signals xi (t), i = 1, ..., N that are 
mixtures of the sources. A fundamental aspect of the mixing process is that the sensors 
must be spatially separated so that each sensor records a different mixture of the 
sources. There are three assumptions of ICA: 1 The sources being considered are 
statistically independent; 2 the independent components have non-Gaussian 
distribution; 3 the mixing matrix is invertible 
 
According to central limit theorem the distribution of a sum of independent signals with 
arbitrary distributions ratios toward a Gaussian distribution under certain conditions. The 
sum of two independent signals usually has a distribution that is closer to Gaussian than 
distribution of the two original signals. Thus a gaussian signal can be considered as a 
linear combination of many independent signals. This furthermore elucidate that 



separation of independent signals from their mixtures can be accomplished by making 
the linear signal transformation as non-Gaussian as possible. Non-Gaussianity is an 
important and essential principle in ICA estimation. To use non-Gaussianity in ICA 
estimation, there needs to be quantitative measure of non-Gaussianity of a signal. 
Before using any measures of non-Gaussianity, the signals should be normalised. 
Some of the commonly used measures are kurtosis and entropy measures. [7] 
 
Applications: 
 
PCA and ICA are concepts in statistic and also widely used in machine learning, such as image 
and signal analysis. [8]  
 
Input data of ICA:  
 
Python : 
 
# Generate sample data 
np.random.seed(0) 
N_samples = 2000 #x axis 
Time = np.linspace(0, 8, n_samples) #y axis 
 
s1 = np.sin(2 * time) # Signal 1: sinusoidal signal 
s2 = np.sign(np.sin(3 * time)) #Signal 2: square signal 
s3 = signal.sawtooth(2 * np.pi * time) #signal 3: saw tooth signal 
 
S = np.c [s1, s2, s3] 
S += 0.2 * np.random.normal(size = S.shape) #add noise 
 
S /= S.std(axis = 0) #Standardize data 
#Mix data 
A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) #Mixing matrix 
X = np.dot(S, A.T) #Generate observations 
 
#Compute ICA 
Ica = FastICA(n_components=3) 
S_ = ica.fit_transform(X) #Reconstruct signals 
A_ = ica.mixing_ #Get estimated mixing matrix 
 
# We can ‘prove’ that the ICA model applies by reverting the unmixing. 
Assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) 
 
#For comparison, compute PCA 



pca = PCA(n_components=3) 
H = pca.fit.transform(X) #Reconstruct signals based on orthogonal components 
 
#Plot results 
 
plt.figure() 
models = [X, S, S_, H] 
names = [‘Observations (mixed signal)’, ‘True Sources’, ‘ICA recovered signals’, ‘PCA 
recovered signals’] 
colors = [‘red’, ‘steelblue’, ‘orange’] 
for ii, (model, name) in enumerate(zip(models, names), 1): 

plt.subplot(4, 1, ii) 
plt.title(name) 
for sig, color in zip(model.T, colors): 

plt.plot(sig, color = color) 
plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) 
plt.show() 

 
 
ICA code [9] 



 
CNN (Convolutional Neural Network): 
 
Description: 
 

1. Artificial Neural Network 
 

Artificial neural network(ANN), is the foundation of Convolutional Neural Network. 
The artificial neural network is a network inspired by biological neural networks [10], 
which are used to estimate or approximate functions that can depend on a large number 
of inputs that are generally unknown. [11]  
 

Normally,​Artificial neural networks are typically specified using three things: [12]  
 

1) Architecture: specifies what variables are involved in the network and their 
topological​ relationships—for example the variables involved in a neural network 
might be the ​weights​  of the connections between the ​neurons​, along with 
activities​  of the neurons. 

 
2) Activity Rule: Most neural network models have short time-scale dynamics: local 

rules define how the ​activities​  of the neurons change in response to each other. 
Typically the activity rule depends on the ​weights​  ​(the parameters) in the 
network. 

 
3) Learning Rule The learning rule specifies the way in which the neural network's 

weights change with time. This learning is usually viewed as taking place on a 
longer time scale than the time scale of the dynamics under the activity rule. 
Usually the learning rule will depend on the activities of the neurons. It may also 
depend on the values of the target values supplied by a teacher and on the 
current value of the weights. 

 
Convolutional Neural Network(CNN) is a typical kind of feed-forward-artificial 

neural network in the area of computer science and electron. CNN is based on machine 
learning and it is widely used in a lot of application fields.  
 

Simply, the main purpose of CNN is to reduce the complexity of data processing, 
especially in image processing and data mining. By adding some artificial mechanism, 
CNN algorithm can reduce the complexity of data set intelligently. 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Weighting
https://en.wikipedia.org/wiki/Artificial_neuron


 
Figure Simple Architecture of an artificial neural network  

 
Figure shows the general architecture of artificial neural network. Similar to 

biological neural network, the artificial neural network also consists of many neural 
nodes. There are three different types of neural nodes: input node, hidden node and 
output node. Each node are connected with one or more other nodes, and data can be 
processed by the different rules among these units. In figure, black lines means different 
rules among nodes in the neural network.  

 
 

2. Convolutional Neural Network 
 

In ​machine learning​, a convolutional neural network (CNN, or ConvNet) is a type 
of ​feed-forward​ ​artificial neural network​ in which the connectivity pattern between 
its​neurons​ is inspired by the organization of the animal ​visual cortex​. [13]  

 
On the basis of the multiple architecture of artificial neural network, if the quantity 

of input nodes and rules of hidden node is too many, then the calculation will be 
increased exponentially. For example, given a simple artificial neural network with 
10000 inputs and a same number of hidden nodes, then the total number of data to be 
received in hidden level will be 10000 x 10000 = 10^8. As a result, if the complexity of 
input data and hidden node is high, the efficiency of whole system will be decreased 
obviously.  
 

There are several ways to solve this problem. Reducing the amount of 
parameters(rules) between input nodes and hidden nodes is the most effective method 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Visual_cortex


to improve the performance of neural network. By adding some algorithm which can 
reduce some relative parameters, the ​convolutional neural network​ can bring an 
remarkable improvement of performance to data processing and image processing. [14]  
 

Convolutional neural networks (CNNs) consist of multiple layers of ​receptive 
fields​. These layers can be seen as “filters”, and it works following different algorithms. 
Typically, there are two main steos to reduce and remove irrelative or less relative 
parameters in neural networks. 
 

1) Local receptive fields: Similar to humans’ neural system, perceptrons in artificial 
neural network also work from local area to the whole situation. The connection 
of two nodes decreases with the increasing of distance between them. So, it is 
unnecessary to percept all the data set at same time. Local receptive fields 
provide a local connection mechanism to reduce the complexity of whole system. 
The whole data set is divided to several small groups of data, and data in each 
group are connected with each other independently. Then, the results of each 
small group are collected and computed on a higher level layer. Figure shows the 
working architecture of traditional neural network and convolutional neural 
network with local receptive fields mechanism. 

 

 
Figure Fully connected Neural Net vs. Locally Connected Neural Net 

 
By local receptive fields, the calculation can be reduced easily. For example, in 
figure, data size is 1000 x 1000 and there are 1000000 hidden units in the data 
set. By using traditional neural network, there will be 10^12 parameters. By 
contrast, if each hidden node connect only 10 input nodes, then the number of 
parameters will be reduced to 10^8. 

 

https://en.wikipedia.org/wiki/Receptive_fields
https://en.wikipedia.org/wiki/Receptive_fields


2) Weight sharing: After local receptive fields, the data set is divided to many small 
groups, and the size of each group is same. If some of these groups have same 
or similar feature, it means that these groups are replaceable to each other. 
Picking one of them as a convolution kernel, then the quantity of parameters will 
be reduced further. This process is called weight sharing. 

 
Generally, it is only a ideally situation that all the groups in data set are totally 
same. So, as an alternative solution, the system will generate several convolution 
kernels. This process sorts out same or similar groups and replace them with a 
convolution kernel. 

 
Input data of CNN: 
Using Mnist dataset by python [15][16] 
 
import matplotlib  
import matplotlib.pyplot as plt  
import matplotlib.cm as cm  
from urllib import urlretrieve  
import cPickle as pickle  
import os  
import gzip  
import numpy as np  
import theano  
import lasagne  
from lasagne import layers  
from lasagne.updates import nesterov_momentum  
from nolearn.lasagne import NeuralNet  
from nolearn.lasagne import visualize  
from sklearn.metrics import classification_report  
from sklearn.metrics import confusion_matrix  
 
def load_dataset():  
    url = 'http://deeplearning.net/data/mnist/mnist.pkl.gz'  
    filename = 'mnist.pkl.gz'  
    if not os.path.exists(filename):  
        print("Downloading MNIST dataset...")  
        urlretrieve(url, filename)  
    with gzip.open(filename, 'rb') as f:  
        data = pickle.load(f)  



    X_train, y_train = data[0]  
    X_val, y_val = data[1]  
    X_test, y_test = data[2]  
    X_train = X_train.reshape((-1, 1, 28, 28))  
    X_val = X_val.reshape((-1, 1, 28, 28))  
    X_test = X_test.reshape((-1, 1, 28, 28))  
    y_train = y_train.astype(np.uint8)  
    y_val = y_val.astype(np.uint8)  
    y_test = y_test.astype(np.uint8)  
    return X_train, y_train, X_val, y_val, X_test, y_test 
 
As you can see, we are downloading the MNIST pickled dataset and then unpacking it 
into the three different datasets: train, validation and test. After that we reshape the 
image contents to prepare them to input into the Lasagne input layer later and we also 
convert the numpy array types to uint8 due to the GPU/theano datatype restrictions. [17] 
[18] 
 
[1] ​https://en.wikipedia.org/wiki/Principal_component_analysis 
[2] ​https://www.youtube.com/watch?v=e4woe8GRjEI 
[3] ​http://blog.csdn.net/zrjdds/article/details/50318065 
[4] ​http://blog.csdn.net/xiaojidan2011/article/details/11595869 
[5] ​https://en.wikipedia.org/wiki/Independent_component_analysis 
[6] ​http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi 
[7] ​http://cdn.intechopen.com/pdfs-wm/39839.pdf 
[8] ​http://www.mit.edu/~gari/teaching/6.555/LECTURE_NOTES/ch15_bss.pdf 
https://www.youtube.com/watch?v=GfIQlql-i2k 
[9]http://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.
html 
[10] Hentrich, Michael (2015).​"Methodology and Coronary Artery Disease Cure" 
[11] https://en.wikipedia.org/wiki/Artificial_neural_network 
[12] ​MacKay, David, J.C.​ (2003). ​Information Theory, Inference, and Learning Algorithms​ . 
Cambridge University Press​. ​ISBN​ ​9780521642989​. 
[13] https://en.wikipedia.org/wiki/Convolutional_neural_network 
[14] Ciresan, Dan; Meier, Ueli; Schmidhuber, Jürgen (June 2012). ​"Multi-column deep neural 
networks for image classification"​. 2012 ​IEEE Conference on Computer Vision and Pattern 
Recognition​. 
[15] ​http://www.csdn.net/article/1970-01-01/2825549 
[16]​http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extractio
n-with-python/ 
[17] ​http://doc.okbase.net/u012162613/archive/126058.html 
[18] ​https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 

https://en.wikipedia.org/wiki/Principal_component_analysis
https://www.youtube.com/watch?v=e4woe8GRjEI
http://blog.csdn.net/zrjdds/article/details/50318065
http://blog.csdn.net/xiaojidan2011/article/details/11595869
https://en.wikipedia.org/wiki/Independent_component_analysis
http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi
http://cdn.intechopen.com/pdfs-wm/39839.pdf
http://www.mit.edu/~gari/teaching/6.555/LECTURE_NOTES/ch15_bss.pdf
https://www.youtube.com/watch?v=GfIQlql-i2k
https://www.researchgate.net/publication/281017979_Methodology_and_Coronary_Artery_Disease_Cure
https://en.wikipedia.org/wiki/David_J.C._MacKay
http://www.inference.phy.cam.ac.uk/itprnn/book.pdf
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780521642989
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6248110
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6248110
https://en.wikipedia.org/wiki/IEEE_Conference_on_Computer_Vision_and_Pattern_Recognition
https://en.wikipedia.org/wiki/IEEE_Conference_on_Computer_Vision_and_Pattern_Recognition
http://www.csdn.net/article/1970-01-01/2825549
http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/
http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/
http://doc.okbase.net/u012162613/archive/126058.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

