[bookmark: _GoBack]N-gram Markov Chain Analysis English Corpus	Comment by Debasis Mitra: Major flaw in your report is not to write any section discussing your results, even though you have shown the charts.
Florida Institute of Technology, Melbourne, FL, USA
by Qingyu Fan, Junhao Zhang

1 Introduction
N-gram Markov, a widely used algorithm in areas of speech and text cognition is changing the pattern of people’s life and improving efficiency of work. Talking to Siri has become a fashionable matter, and on the other hand, we do not need to worry about the spelling when working with Microsoft Word.

Given a text or speech, N-gram applying to the area of computational linguistic is a sequence consisting of n continuous items such as characters or words.1 Markov chain is a random process of transitions from one state to another in the state space. The process needs a "no memory" nature: the probability of the next event can only depend on the current state, and it is no relationships with the state in front of it .2

2 N-gram
In a text or speech corpus, n-gram can be any size of continuous sequence items. Size 1 is a "unigram"; size 2 is a "bigram" and size 3 is called "trigram" etc. Bigram indicates that the occurrence of next item depends on previous one word; the word that conditioned on previous two words is trigram and so forth. The purpose of N-gram model is to predict next words or characters according their probabilities computing at the time of doing statistics.

Listing the n continuous words in the text can be used to predict the next word. Let’s take the “I am done with homework” as an example. 2-gram sequences are comprised of “I am”, “am done”, “done with”, “with homework”.

Apart from being used for sequences of words or characters, N-gram almost suport any type of data. Given a large number of satellite earth images, N-gram could determine the parts of the earth a particular image indicates.3 In biology, N-gram is usually used to identify one particular species on the basis of genetic sequence.

3 N-gram Markov chain algorithm
In Markov chain, it tells us a general idea that the probability that change into the present status is only relevant to previous one or two steps.
An N-gram model is a type of probabilistic language model based on the idea of Markov chain for predicting the next item in such a sequence in the form of (n-1) order Markov model.

In this problem, if we apply Markov chain, it means every next word’s probability is based on the previous one or more(it depends on the N-gram model) words.
More concisely, it is an algorithm to predict xi’s probability depends on xi-(n-1),…,xi.
So by the conditional probability equation, the expression should be:

And we use Si to replace the sequence for x1,…,xi, we could get

So that,

By recursively apply conditional probability , we could get a product over conditional equations,

And for here S0=# should be a special toke for the initial of the string.
After this conclusion, we could easily conclude that for n-gram model in our problem,
Bigram model, all correlations beyond the preceding sign are discarded:

Trigram model, all correlations beyond the preceding two sign are discarded:
3

3.1 General Idea For Prediction
Based on the bigram. We have the formula that:

And based on the Maximum Likelihood Estimate,
	Comment by Debasis Mitra: what do you mean by numbers of bigram-model or unigram-model?
means numbers.
Since in the same corpus,

When corpus’ words become large enough, we could treat these two things are same.
So,

Next words’ appearance probability based on the number of the previous word and itself appearance times in our corpus.
The same idea for trigram, we have:

And by the idea above, it is possible to calculate the whole sequence appearance probability,
Take an example, based on bigram model,
P(I love you mom) = P(I) P(love|I) P(you|love) P(mom|you).
All needed information can be obtained from the above.

4 Program and Data
4.1 General Idea For Code Writing:
Based on the bigram prediction, since we need to get the numbers of xi-1xi and xi-1, from the unigram, bigram, trigram data, we could search for it, by the code below:
string getuni(string find)
{
	ifstream fin;
	vector<string> tokens;
	fin.open("unigramdata.txt");
	string s,word;
	while (!fin.eof())
	{
		getline(fin, s);
		istringstream ss(s);
		while (ss >> word)
			tokens.push_back(word);
		if (tokens[0] == find)
		{
			return tokens[1];
			break;
		}
		vector <string>().swap(tokens);
	}
	return "0";
}
It shows how to find xi in unigram data, the same idea for xi-1xi.
Suppose we want to search for a word, we read the text by lines, and separate every line by spaces into a vector named tokens. Since in unigram data, every line only has two things, the word’s name and the number of it. So when we match the tokens[0] with our searching word, tokens[1] should be the numbers of the word.

And for the whole sequence probability calculation, since by the above code we could only obtain one value after searching the whole database. It is slow when the sequence has too many words(that means the program need to search the whole database several times). So we construct a map in our program, by every time we read data by lines, we check whether there is any data we needed. If there is, we keep it into map[key]. It is kind of dynamic programming for saving the calculation time.
for (Mapit my_Itr = map.begin(); my_Itr != map.end(); ++my_Itr)
		{
			find = my_Itr->first;
			if (tokens[0] == find)
			{
				map[tokens[0]] = stdo(tokens[1]);
				times = times + 1;
			}
		}
		if (times == tk.size())
		{
			break;
		}
Here is the part of code for it.

4.2 Data
GloWbE has 1.9 million words over 20 different countries, it is about 100 times as large as other corpora like the International Corpus of English. So it is useful for people who want to make a research for linguistics.4
And in the corpus, 60% of corpus consists of many different informal blogs, and other web-based materials, such as newspapers, magazines, company websites, and so on.5
And we use a free sample like 10 percent of the original GloWbe corpus, contains like 2.2 million words in our corpus.	Comment by Debasis Mitra: No description of your experiment?

5 Conclusion
By applying knowledge we have learnt from AI courses, we overcome a program that we have never imagine we can get over it at the beginning. And there are also many things need to be done in the future after the program have been written. Take an example of bigram, if we have a 10000 words corpus, there are 108 different combination of bigram model. But many of them does not appear in the corpus. It makes many sequences probability becomes lower or 0 due to one bigram model is lower or 0. So the data needs to apply data smoothing. The general idea of it is to make the whole ngram models probability sum equal to 1, and makes each of them not 0.5 After that, the whole sequence appearance probability should be more reliable.
Here are some screen shots for the program running:

Figure 1. The probability of “I love you” occurring independently in the corpus

Figure 2. 2-gram - Top 10 words of high frequency coming after word “I”.

Figure 3. 3-gram - Top 10 words of high frequency coming after word “You are”.

Reference
1."N-gram." Wikipedia. Wikimedia Foundation, 15 Mar. 2017. Web.

2. Asmussen, Søren. Applied probability and queues. New York: Springer, 2003. Print.

3.Soffer, A. “Image categorization using texture features”. Proceedings of the Fourth International Conference on.1(233): 237.

4. Corpus of Web-Based Global English. Byu. Web. 16 Apr. 2017.

5. Davies, Mark. "Introducing the 1.9 Billion Word Global Web-Based English Corpus (GloWbE)." The 21st Century Text. 06 July 2015. Web.

6."Smoothing." Wikipedia. Wikimedia Foundation, 16 Feb. 2017. Web.

image1.wmf
(1)

(|,...,)

iini

Pxxx

--

image2.wmf
1

1

()

(|)

()

i

ii

i

PS

PxS

PS

-

-

=

image3.wmf
11

()(|)()

iiii

PSPxSPS

--

=

image4.wmf
()(|)()

PabPbaPa

=

image5.wmf
1

1

()(|)

N

Nii

i

PSPxS

-

=

=

Õ

image6.wmf
111

(|,...,)(|)

iiii

PxxxPxx

--

=

image7.wmf
1112

(|,...,)(|)

iiiii

PxxxPxxx

=

image8.wmf
1

1

1

1

1

#()

()

#()

(|)

#()

()

#()

ii

ii

ii

i

i

ofxx

Pxx

ofBigramModel

Pxx

ofx

Px

ofUnigramModel

-

-

-

-

-

==

image9.wmf
#()#()1

ofUnigramModelofBigramModel

=+

image10.wmf
11

1

11

()#()

(|)

()#()

iiii

ii

ii

Pxxofxx

Pxx

Pxofx

--

-

--

==

image11.wmf
2121

21

2121

()#()

(|)

()#()

iiiiii

iii

iiii

Pxxxofxxx

Pxxx

Pxxofxx

--

==

image12.png
B C:\Users\fanqi\Documents\Visual Studio 2015\Projects\Sequnece by 2 model\Debug\Sequnece by 2 model.exe

Type the sequence you want to check with:
I love you

I love you appearance probability is:0.000357412
ERARREE. . . .

image13.png
W C:\Users\fanqi\Documents\Visual Studio 2015\Projects\2 gram calculators\Debug\2 gram calculators.exe

Enter the word you want to check:

I

m’ s appearance probability is 0.06486
have’ s appearance probability is 0.0584429
was’ s appearance probability is 0.0526623
am’ s appearance probability is 0.0520259
do’ s appearance probability is 0.0462452
think’s appearance probability is 0. 0417904
ve’ s appearance probability is 0.0303882
had’ s appearance probability is 0.0264107
would’ s appearance probability is 0.0263046
can’ s appearance probability is 0.0211073
others’ appearance probability is 0.579762
FEREREHE. . . o

image14.png
6.0%

5.0% -

4.0% -
3.0%
2.0%
0.0% -

do think ve would

image15.png
I C:\Users\fangi\Documents\Visual Studio 2015\Projects\3 gram calculator\Debug\3 gram calculator.exe

Enter the wordl you want to check:

you

Enter the word2 you want to check:

are

2’ s appearance probability is 0.0772727

not’ s appearance probability is 0.0556818
going s appearance probability is 0.0329545
in's appearance probability is 0.025
looking s appearance probability is 0.0227273
the’ s appearance probability is 0.0227273
doing’ s appearance probability is 0.0159091
ready’ s appearance probability is 0.0147727
trying’s appearance probability is 0.0147727
using’ s appearance probability is 0.0147727
others’ appearance probability is 0.703409
EERERERE . .

image16.png
9.00%
8.00%
7.00%
6.00%
5.00%
4.00%
3.00%
2.00%
1.00%

0.00%

illllllllt

not going in looking the doing ready trying using

