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Image recognition with Convolutional Neural Networks

Image recognition is the task of determining whether an image contains a specific object,
feature or activity. Image recognition is one of the primary tasks in the cross disciplinary field of
computer vision and machine learning. Image recognition can be broadly classified in the
following categories:

e Object classification: This is the set of tasks where the image of an object is classified
into one of the many predefined classes. Eg: Classifying the image of an animal as a
mammal, amphibian or a reptile etc.

e Identification: An object in the provided image is identified. Eg: identifying a person
based on a photograph.

e Detection: Searching the image for the presence of one or more objects. Eg: Detecting
the presence of tumors from a medical image.

Convolutional Neural Network (CNN), also known as a ConvNet, is a machine learning technique
that is currently among the most popular methods for image recognition. CNNs have
demonstrated that they can be used for image recognition with very high accuracy, approaching
those of humans.

Artificial neural networks

An Artificial Neural Network (ANN) is a type of a biologically inspired computational model that
is analogous to the neurons in the human brain. An ANN consists of interconnected layers of
artificial neurons, also known as perceptrons. A perceptron is the basic building block of a
neural network. A perceptron in a neural network consists of a set of weights for each one of
the inputs to the neuron and an activation function. The final output of the neuron is calculated
by applying the activation function to the weighted sum of the inputs to the neuron:
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Figure 1: A biological neuron and an artificial neuron
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Figure 2: Output of a neuron

In typical neural network structures, the outputs of one layer of perceptrons serve as the inputs
to the perceptrons in the next layer. The first layer of neurons of the neural network is the input
layer. The outputs of the input layer serve as the inputs to another set of neurons known as a
hidden layer. A neural network may have one or more of such hidden layers. The outputs of the
hidden layer serve as the inputs of the final layer known as the output layer.
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Figure 3: A typical network structure

ANNSs are typically trained using the backpropagation algorithm in conjunction with an optimizer
like gradient descent. When an input is provided to the network, it is calculated and propagated
through the network until it produces an output after the output layer. The output of the network
is compared to the desired output and the error for each neuron is calculated using a loss
function. The error is then propagated backwards through the network to calculate the gradient
of the loss function with respect to each neuron in the network. The optimization function is
then used to adjust the weights of the network to minimize the loss function.

Convolutional neural networks

Convolutional neural networks (CNN) are a specialized type of feedforward artificial neural
network, the main use of CNNs is classification and they have proven to be very useful in image
recognition tasks. The name of convolutional comes from the fact that CNNs use a convolution
operation instead of matrix multiplication[6]. Training in CNN is similar to the training of a
regular ANN, but some modifications are made to the backpropagation algorithm to fit the
network design.

The idea behind CNNs is that it shares a set of weights across the whole input set, finding the
same kind of feature in different sections of the input data; this set of weights is often call a
filter. To visualize this, let's use an image as an input example for a CNN. The filter will identify a
feature of section of an image, for example an horizontal edge, and searches for that particular
feature in other sections of the image. In Figure 4 we can see how the filter is applied to a 5x5



section of the image and produces the output for the hidden layer. To continue with feature
extraction we slide the input section by one (or more) pixel to the right and repeat the process.
This is usually called the convolution stage. The result of applying the filter to image is called a
feature map (the hidden layer in Figure 4). To actually achieve image recognition a set of
features map is needed, one for a each filter applied to the image.
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Figure 4: Applying a filter to a section of the
input

CNNs also use a technique known as pooling, pooling is used to generalize the input further.
Pooling takes a section of the input (similarly as the convolutional stage does) and applies a
function to it, usually just extract the maximum value (max-pooling). See the image below for a
graphical representation. The intuition behind pooling is that the networks just cares if certain
feature is present in a region of the image, but it does not care about the exact position of the
feature.

Single depth slice

.| RN 2 | 4 — -
5|68 | 7|8 and stnde 6 B
3/2/1]0 5 3 4
112134
y

Figure 5: Max-pooling

The ideas mentioned above make up a convolutional layer. A convolutional layer starts with the
convolutional stage to extract features, then the output of each convolutional stage is passed
through activation function (usually a rectified linear function) to increase its nonlinear
properties. Finally the data can optionally pass through a pooling stage to generalize the data.
The pooling stage in some literature is considered part of the convolutional stage, in other



literature it is considered a stage on its own. Below is a graphical representation of a typical
convolutional layer.
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Figure &: Structure of a convolutional layer

After specifying what a convolutional layer is, we can put together a CNN. A CNN has one or
more convolutional layers, and usually the last layer of the network is a fully connected layer.
Below is a diagram of CNN. From the input image after a convolutional layer the result is a set
of feature maps, one for each of the filters applied to the network. Each feature map is reduced

using a pooling layer, finally th - ut is rearranged in a linear manner and that becomes the
input for the fully connected Ia'
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Figure 7; Structure of a convolutional neural network

Due to their accuracy in the task of image recognition, CNNs are widely used by Internet
technology companies such as Google and Facebook. We have a brief introduction to two of
these platforms below:

Facebook Lumos

Facebook’s Lu@ is a platform built for image and video understanding. It is a self-serve
platform built on top of FBLearner Flow. FBLearner Flow is Facebook's internal backbone Al
platform. Lumos allows teams within Facebook to harness the power of computer vision for
their products and services with prior expertise. Using Lumos, Facebook has implemented the
u@ to search photographs by what is contained within them. This is achieved by training a
deep CNN on their large dataset of photographs. After training the model, the search
functionality is achieved by essentially matching the search terms to features extracted from
photographs. In order avoid displaying the same images with slight changes in zoom and
angles, weights are added in to prioritize diversity in the search results.

Google Tensorflow

Google Tensorflow is based on Google DistBelief which was a proprietary machine learning
platform based on deep neural networks. After DistBelief gained popularity within Google, it was
refactored into a more robust, application grade library and came to be known as Tensorflow.
Tensorflow was released as an open source software on November 9, 2015. Tensorflow
provides APlIs for Python, C++, Java and Go. Computations are expressed in TensorFlow using
dataflow graphs. The nodes in a dataflow graph represent mathematical operations whereas
the edges represent multidimensional data (tensors) that flow between them. Due to it's open
source nature, we chose to build our CNN implementation using TensorFlow.
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MNIST database

To implement the CNN for image recognition we have used the MNIST database. The MNIST
(Modified National Institute of Standards and Technology) database is a large database of
handwritten digits. It is a popular dataset that is used very commonly to train algorithms for
image recognition. The MNIST database was remixed from the original samples from the
database by National Institute of Standards and Technology. The database contains 60000
samples for training of which 5000 samples are used for validation, and 10000 samples for
testing. Each image in the database is a monochrome image of 28 by 28 pixels. Each sample in
the database consists of data points which represent the image and a label which indicates the
class of the image.
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Figure 8: Sample of MNIST data

CUDA

Graphical processor units (GPU) are popular in the field of neural networks. GPU was originally
made with the purposes of graphical processing, especially for video games, to perform matrix
multiplication and video rendering operations in parallel. GPU has evolved to be able to perform
general purpose computations. CUDA is one of the most popular GPU languages used, and
Tensorflow makes use of it. Since CNNs uses the same filter in different parts of the input, the
process can be parallelize. Another advantage of using GPUs over CPUs is that GPUs have a
higher memory bandwidth with is useful for the large number of parameter CNNs have. Some



research has shown that GPU implementations of CNNs can be up to 40 times more time
efficient that CPU ones|5].

Implementation in Tensorflow

The following table shows the structure of the netuark used in our implementation. Using our
implementation we were able to achieve an accu@ of 97% on the test images. The input and
output columns shows the input and output of the layer respectively in the format(batch_size,
height, width, feature_maps). In our implementation the batch size was 128, the height and
width represent the dimension of the image in process, and feature_maps is the number of
features maps at each stage of the network. The filter column represents the size of the filter

use in each layer.

Layer

convl
pool1
conv2
pool2
Ha{::
fel

fc2

Input
(batch_size, 32,32, 1)
(batch_size, 28, 28, 32)
(batch_size, 14, 14, 32)
(batch_size, 14, 14, 64)
(batch_size, 7, 7, 64)
(batch_size, 3136)

(batch_size, 1024)

Output
(batch_size, 28, 28, 32)
(batch_size, 14, 14, 32)
(batch_size, 14, 14, 64)

(batch_size, 7, 7, 64)
(batch_size, 3136)
(batch_size, 1024)

(batch_size, 10)

Table 1: Structure of our implementation

A TensorFlow program consists of two discrete sections:
1. Building the graph
2. Running the graph

Building the graph

We begin by initializing the input to the network and providing the training labels as

placeholders:

# Input and output

Filter

5*5

2%2

9*9

2*2

N/A

N/A

N/A
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x = tf.placeholder(tf.float32, [None, input_size])
y = tf.placeholder(tf.float32, [None, output_size])
keep = tf.placeholder(tf.float32)

The weights are then initialized as variables according to our network shape:

# Weights

# 5*%5 filter, 1 input, 32 outputs

convl_weights = tf.Variable(tf.random_normal([5, 5, 1, 32]))

# 5*5 filter, 32 input, 64 outputs

conv2_weights = tf.variable(tf.random_normal([5, 5, 32, 64]))

# Fully connected layer, 7*7*64 inputs, 1024 outputs

fc_weights = tf.variable(tf.random_normal([7 * 7 * 64, 1024]))

# Output

output_weights = tf.Variable(tf.random_normal([1024, output_size]))

We then initialize the biases as per our network shape:

# Biases

convl bias = tf.Variable(tf.random_normal([32]))
conv2_bias = tf.Variable(tf.random_normal([64]))

fc_bias = tf.variable(tf.random_normal([1024]))
output_bias = tf.variable(tf.random_normal([output_size]))

The forward flow of the network is defined as a function:

# Convolutional network
def convolutional_network(input_data):
# Reshape the input picture
input_data = tf.reshape(input_data, [-1, 28, 28, 1])

# Convolutional layer 1
# Convolution

convl output = tf.nn.conv2d(input_data, convl_weights, [1, 1, 1, 1], 'SAME')

convl_output = tf.nn.bias_add(convl_output, convl_bias)

convl_output = tf.nn.relu(convl_output)

# Pooling

convl_output = tf.nn.max_pool(convl_output, [1, 2, 2, 1], [1, 2, 2, 1],

# Convolutional layer 2

conv2_output = tf.nn.conv2d(convl_output, conv2_weights, [1, 1, 1, 1],
conv2_output = tf.nn.bias_add(conv2_output, conv2_bias)

conv2_output = tf.nn.relu(conv2_output)

# Pooling

conv2_output = tf.nn.max_pool(conv2_output, [1, 2, 2, 1], [1, 2, 2, 1],

# Fully connected layer

"SAME")

"SAME")

"SAME")

fcl_output = tf.reshape(conv2_output, [-1, fc_weights.get shape().as_list()[0]])

fcl_output = tf.add(tf.matmul(fcl_output, fc_weights), fc_bias)



fcl_output = tf.nn.relu(fcl_output)
fcl_output = tf.nn.dropout(fcl_output, keep)

# Output layer
output_output = tf.add(tf.matmul(fcl_output, output_weights), output_bias)
return output_output

We then define the cost function and use an optimizer to reduce the cost function. We have
used the Adam optimizer in our implementation:

# Define cost function

# Softmax activation on output layer and calculate cross entropy. Then reduce mean
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
# Define optimizer

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost_function)

After our graph structure has been initialized, we initialize all the variables:

# Initialize variables
init = tf.global_variables_initializer()

Running the graph
With the network graph initialized, we can now run the graph.

with tf.Session() as sess:
# initialize session
sess.run(init)

step = 1

# We have a batch size of 128

while step * batch_size < epochs:
batch_x, batch_y = mnist_data.train.next_batch(batch_size)
sess.run(optimizer, {x: batch_x, y: batch_y, keep: dropout})

if step % display_step == 0:
loss, acc = sess.run([cost_function, accuracy], {x: batch_x, y: batch_y, keep:
dropout})

print("Iteration: ", step * batch_size, Loss: ", loss, " Accuracy: ", acc * 100)
step += 1

# Test accuracy on the test images

print(sess.run(accuracy, {x: mnist_data.test.images[:256], y:

mnist_data.test.labels[:256], keep: 1}))
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