extended interpretation specifies a domain element to which \(x \) refers.

This sounds complicated, but it is really just a careful way of stating the initializing of universal quantification. Consider the model shown in Figure 8.2 and the interpretation that goes with it. We can extend the interpretation in five ways:

\[
x \rightarrow \text{Richard the Lionheart},
\]

\[
x \rightarrow \text{King John},
\]

\[
x \rightarrow \text{Richard's left leg},
\]

\[
x \rightarrow \text{John's left leg},
\]

\[
x \rightarrow \text{the crown}.
\]

The universally quantified sentence \(\forall x \; \text{King}(x) \Rightarrow \text{Person}(x) \) is true in the original if the sentence \(\text{King}(x) \Rightarrow \text{Person}(x) \) is true under each of the five extended interpretations. That is, the universally quantified sentence is equivalent to asserting the following sentences:

Richard the Lionheart is a king \(\Rightarrow \) Richard the Lionheart is a person.

King John is a king \(\Rightarrow \) King John is a person.

Richard's left leg is a king \(\Rightarrow \) Richard's left leg is a person.

John's left leg is a king \(\Rightarrow \) John's left leg is a person.

The crown is a king \(\Rightarrow \) the crown is a person.

Let us look carefully at this set of assertions. Since, in our model, King John is the king, the second sentence asserts that he is a person, as we would hope. But what about the other four sentences, which appear to make claims about legs and crowns? Is that part of the meaning of "All kings are persons"? In fact, the other four assertions are true in the model, but make no claim whatsoever about the personhood qualifications of legs, crowns, or indeed Richard. This is because none of these objects is a king. Looking at the truth table for \(\Rightarrow \) (Figure 7.8 on page 246), we see that the implication is true whenever its premise is false—regardless of the truth of the conclusion. Thus, by asserting the universally quantified sentence, which is equivalent to asserting a whole list of individual implications, we end up asserting the conclusion of the rule just for those objects for whom the premise is false and saying nothing at all about those individuals for whom the premise is true. Thus, the truth-table definition of \(\Rightarrow \) turns out to be perfect for writing general rules with universal quantifiers.

A common mistake, made frequently even by diligent readers who have read this paragraph several times, is to use conjunction instead of implication. The sentence

\[\forall x \; \text{King}(x) \land \text{Person}(x) \]

would be equivalent to asserting

Richard the Lionheart is a king \& Richard the Lionheart is a person,

King John is a king \& King John is a person,

Richard's left leg is a king \& Richard's left leg is a person,

and so on. Obviously, this does not capture what we want.

Existential quantification

Universal quantification makes statements about every object. Similarly, we can make statements about some object in the universe without naming it, by using an existential quantifier. To say, for example, that King John has a crown on his head, we write

\[\exists x \; \text{Crown}(x) \land \text{OnHead}(x, \text{John}). \]

\(\exists x \) is pronounced "There exists an \(x \) such that . . . " or "For some \(x \)"

Intuitively, the sentence \(\exists x \; P \) says that \(P \) is true for at least one object \(x \). More precisely, \(\exists x \; P \) is true in a given model if \(P \) is true in at least one extended interpretation that assigns \(x \) to a domain element. That is, at least one of the following is true:

Richard the Lionheart is a crown \& Richard the Lionheart is on John's head;

King John is a crown \& King John is on John's head;

Richard's left leg is a crown \& Richard's left leg is on John's head;

John's left leg is a crown \& John's left leg is on John's head;

The crown is a crown \& the crown is on John's head.

The fifth assertion is true in the model, so the original existentially quantified sentence is true in the model. Notice, however, that our definition, the sentence would also be true in a model in which King John was wearing two crowns. This is entirely consistent with the original sentence "King John has a crown on his head."? Just as \(\Rightarrow \) appears to be the natural connective to use with \& is the natural connective to use with \(\exists \). Using \& as the main connective with \(\forall \) led to an overly strong statement in the example in the previous section; using \& with \(\exists \) usually leads to a very weak statement, indeed. Consider the following sentence:

\[\exists x \; \text{Crown}(x) \Rightarrow \text{OnHead}(x, \text{John}). \]

On the surface, this might look like a reasonable condition of our sentence. Applying the semantics, we see that the sentence says that at least one of the following assertions is true:

Richard the Lionheart is a crown \(\Rightarrow \) Richard the Lionheart is on John's head;

King John is a crown \(\Rightarrow \) King John is on John's head;

Richard's left leg is a crown \(\Rightarrow \) Richard's left leg is on John's head;

and so on. Now an implication is true if both premise and conclusion are true, or if its premise is false. So if Richard the Lionheart is not a crown, then the first assertion is true and the existential is satisfied. So, an existentially quantified implication sentence is true whenever any object fails to satisfy the premise; hence such sentences really do not say much at all.

Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The simplest case is where the quantifiers are of the same type. For example, "Brothers are siblings" can be written as

\[\forall x \; \forall y \; \text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y). \]

\(\exists \) There is a variant of the existential quantifier, usually written \(\exists! \) or \(\exists! \), that means "There exists exactly one." The same meaning can be expressed using equality statements.
object that is the left leg of everything that has no left leg, including itself. Fortunately, as long as one makes no assertions about the left legs of things that have no left legs, there are no technicalities of any import.

So far, we have described the elements that populate models for first-order logic. The other essential part of a model is the link between those elements and the vocabulary of the logical sentences, which we explain next.

8.2.2 Symbols and interpretations

We turn now to the syntax of first-order logic. The impatient reader can obtain a compact description from the formal grammar in Figure 8.3.

The basic syntactic elements of first-order logic are the symbols that stand for objects, relations, and functions. The symbols, therefore, come in three kinds: constant symbols, which stand for objects; predicate symbols, which stand for relations; and function symbols, which stand for functions. We adopt the convention that these symbols will begin with uppercase letters. For example, we might use the constant symbols Richard and John; the predicate symbols Brother, OnHead, Person, King, and Crown; and the function symbol LeftLeg. As with proposition symbols, the choice of names is entirely up to the user. Each predicate and function symbol comes with an arity that fixes the number of arguments.

As in propositional logic, every model must provide the information required to determine if any given sentence is true or false. Thus, in addition to its objects, relations, and functions, each model includes an interpretation that specifies exactly which objects, relations, and functions are referred to by the constant, predicate, and function symbols. One possible interpretation for our example—which a logician would call the intended interpretation—is as follows:

- **Richard** refers to Richard the Lionheart and **John** refers to the evil King John.
- **Brother** refers to the brotherhood relation, that is, the set of tuples of objects given in Equation (8.1); **OnHead** refers to the "on head" relation that holds between the crown and King John; **Person, King, and Crown** refer to the sets of objects that are persons, kings, and crowns.
- **LeftLeg** refers to the "left leg" function, that is, the mapping given in Equation (8.2).

There are many other possible interpretations, of course. For example, one interpretation maps Richard to the crown and John to King John's left leg. There are five objects in the model, so there are 25 possible interpretations just for the constant symbols Richard and John. Notice that not all the objects need have a name—for example, the intended interpretation does not name the crown or the legs. It is also possible for an object to have several names; there is an interpretation under which both Richard and John refer to the crown. If you find this possibility confusing, remember that, in propositional logic, it is perfectly possible to have a model in which Cloudy and Sunny are both true; it is the job of the knowledge base to rule out models that are inconsistent with our knowledge.

8 Later, in Section 8.2.8, we examine a semantics in which every object has exactly one name.