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Gene Expression Analysis?

Virus, Bacteria, and Cellular Function Research
Map unknown genes to cellular functions
Map illness to malfunctioning cellular processes

Measuring gene expression —comparing
expression of proteins under different situations
against a base situation



Gene Expression - Data

 To measure gene expression, measure the
MRNA being produced vs. base production

e Data: mRNA production vs. microarray test

E.Coli | E.coli | E.coli | E.coli | EHEC | EHEC | EHEC | EHEC | EHEC
Gene 1hr 6hr | 12hr | 24hr | 1hr 2 hr 6hr | 12hr | 24 hr
GCSF 0.083| 2.615 2.007[ 1.96 0.001] 0.714] 3.642] 3.138 2.229
GMCSF 0.722| 2.002] 0.940f 1.21] 1.034] 1.430] 2.961] 2.920] 2.352
IL12B 0.845| 4.77] 4.369| 3.454] 0.426| -0.426] 4.316] 4.816| 3.671
ILARN 0.548| 1.732| 1.938 1.389 0.781] -1.27] 1.344] 1.419] 1.301
IL6 3.006| 5.244f 3.897| 3.957| 3.889] 4.106] 4.396| 4.137| 3.990




Gene Expression - Clustering

Groups together data with similar properties

Data sets are partitioned — clusters contain
points more similar to themselves than others

Clustering aids researchers to infer
relationships between genes, especially when
cellular functions are known

Also helps identify relationships in
co-expressed genes



Human Macrophage Activation
Programs induced by Pathogens

e Originating source of our data

e 6800 genes, 43 microarray tests

e Significance tests reduce this to 977 genes
e Results were clustered to find relevance

e 198 genes expressed with the same pattern

Gerard J. Nau, Joan F. L. Richmond, Ann Schlesinger, Ezra G. Jennings, Eric S. Lander, and Richard A. Young. Human macrophage
activation programs induced by bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America.
Vol. 99, No. 3, Feb. 5, 2002.




Project Goals

 Implement 3 Clustering algorithms
— Bayesian Clustering, Self-Organizing Maps, CLICK

* Find most similar clusters — relevant similarity

e Compare paper’s best cluster to our results
— How many of the 198 genes did we find?



K-Means

Initial Clusters
@

N\

Data —* ’

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



K-Means
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[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.
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K-Means

Clusters adjust —*

[3.1] Jiang, D., Tang, C., and Zhang, A. Cluster
Analysis for Gene Expression Data: A Survey.



Bayesian Clustering
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[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Bayesian Clustering
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[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Bayesian Clustering

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Bayesian Clustering

Weak contributors removed

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Bayesian Clustering

Initialize Clusters
Until Convergence

— Expectation: Compute new probabilities
— Maximization: Compute new clusters

Use BIC to prune clusters
Compute global BIC

Repeat with different initial clusters
— Keep results with best BIC

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Normal Distribution
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[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.




Expectation : Non-spherical Clusters

A 0 0
0 2 0

> =D, . D/
0 0 A, |

* D,=Eigenvectors of Z are the orientation of cluster k.
* A,...A =Eigenvalues of Z are the radii of cluster k.
e Spherical clusters are usually sufficient (Identity Matrix)

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Compute initial probabilities

e Given the initial clusters initialize the probabilities
with the Normal Distribution.

e M A )V 10
P(d, € | ) = 100

* Since the probabilities will have to be normalized
anyway, we can skip the constant.



Expectation: Baye’s law

Posterior Prior

N\ N\

P(Effect | Cause)- P(Cause)
P(Effect)

P(Cause | Effect) =

P(Effect | Cause) - P(Cause)

P(Cause | Effect) = Z P(Effect | Cause)- P(Cause)



Expectation: Baye’s law

New Probability Old Probabilities
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Recompute membership
probabilities using normal
distribution.

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Maximization: New Clusters

e Clusters are computed as the weighted
average of each point and the probability it
belongs to the cluster.

e === , ,
t—1 t—1
Zp(ﬂk |dl < lle )
i=1

[3.2] Fraley, C., and Raftery, A. How Many Cluster? Which
Clustering Method? Answers Via Model-Based Cluster Analysis.



Bayesian Information Criterion

* BIC measures the efficiency of the parameterized
model in terms of predicting the data.

e |tisindependent to prior knowledge and the model

used.
(&, T i
Y P, € | 1)
BIC, =n-In| =
n
S

Fit quality

+ k - In(n)

|

Complexity penalty

[3.3] http://en.wikipedia.org/wiki/Bayesian_information_criterion



Bayesian Information Criterion

* After convergence compute global BIC.

[ n k , , ;2\
DD Pdiep|u)

BIC =n-In| == p +k -In(n)
n

[3.3] http://en.wikipedia.org/wiki/Bayesian_information_criterion
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12 Hours

E-Coli Initial Clusters (Test Data)

Hour 1 vs Hour 12

e GCSF e GMCSF ¢ IL12B e L1RN e IL6 e IL6 e PBEF* e prolL1B * TNFA e L8 e IL8
P10 * MCP1 * MGSA e MIP1A e MIP1B °* MIP2A * MIP2B e RANTES e CD44 e CD44 e ICAM1
e [FITM1 e LAMB3 e NINJ1 e TNFAIP6 e ADORA2A < CCR6 e CCR7 e CCRL2 e DTR

1 Hour



12 Hours

E-Coli Final Clusters (Test Data)
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6 Hours

EHEC

Rational Clusters

Discrete Clusters
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1 Hour




6 Houra

S Aureus
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6 Hours

Ecoli

Discrete Clusters
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S Typhirium
Rational Clusters  Discrete Clusters

o Cluster0 o Cluster1l  Cluster2 o Cluster3 o Cluster4 o Cluster5 o Cluster6 o Cluster 7 o Cluster 10 o Cluster 12

6 Hours

1 Hour



Self-Organizing Maps

e SOMs are based off of neural networks. They use a learning algorithm to train a

random map to be like the input values. Thus similar inputs will be mapped close
to each other

n<& number of iterations for training algorithm
V& set of learning vectors (same dimension as input)

learning_algorith(n, V)
SOM < random values
forj<1ton
v & V(random)
BMU & min(d(v,SOM)) \\ for every node in SOM
neighbors & neighborhood(BMU)

neighbors.weight= neighbors.weight+adjustment
end

Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.

Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-organizing maps in mining gene expression data, Information Sciences 139 (2001) 79-96.
Kohonen's Self organizing Feature Maps, Al — Junkie, March 11, 2009, http://www.ai-junkie.com/ann/som/som1.html.



http://www.ai-junkie.com/ann/som/som1.html

Best Matching Unit

e The BMU is the minimum distance between the
training vector and all the nodes in the SOM. It is
typically found using the Euclidean distance formula.

d =\ Lia(n —w)
Where k is the le _ ~ut vectors, vis the
training vector, and w is the weight vector from the

current node in the SOM

Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.
Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-organizing maps in mining gene expression data, Information Sciences 139 (2001) 79-96.
Kohonen’s Self organizing Feature Maps, Al —Junkie, March 11, 2009, http://www.ai-junkie.com/ann/som/som1.html.



http://www.ai-junkie.com/ann/som/som1.html

Neighborhood

 The area of the neighborhood shrinks over time. You
can use the exponential decay function for this.

o(t) =ogexp(—1). t=1.2..... n

Where n is the number ot iterations that the
algorithm will run and sigma_0 is the initial size of
the neighborhood.

Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.
Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-organizing maps in mining gene expression data, Information Sciences 139 (2001) 79-96.
Kohonen’s Self organizing Feature Maps, Al —Junkie, March 11, 2009, http://www.ai-junkie.com/ann/som/som1.html.



http://www.ai-junkie.com/ann/som/som1.html

Weight Adjustment

e The weight is adjusted by multiplying two decay functions by
the difference between the training vector and the SOM

node.
w(t+ 1) =wi(t)+ e)L(t)[v(t) — w(t)]

 One decay function decreases the learning variable by time.

L(t) = Loexp(—5) t=1.2,....n
e The other decay function uecreases wne rdate or iearning for
neighbors further away from the BMU.

Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997. {.}{!] _ E}f_p (_ -TI:;E ) t _ 1- 2‘ . n

Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-or;
Kohonen's Self organizing Feature Maps, Al —Junkie, March 11, 20C



http://www.ai-junkie.com/ann/som/som1.html
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Mapping Mode (SOM)

e After the learning algorithm is ran on the map,
the input is mapped onto the SOM and similar
n-dimensional inputs will be near each other
on the two-dimensional map



GenePattern

e http://www.broad.mit.edu/cancer/software/g
enepattern/

e GenePattern combines a powerful scientific
workflow platform with more than 100
genomic analysis tools.

e Use online or download


http://www.broad.mit.edu/cancer/software/genepattern/
http://www.broad.mit.edu/cancer/software/genepattern/
http://www.broad.mit.edu/cgi-bin/cancer/software/genepattern/modules/gp_modules.cgi

GenePattern

Module name: SOMClustering

Description: Self-Organizing Maps algorithm

Author: Keith Ohm (Broad Institute), gp-help@broad.mit.edu
Date: 10/28/03

Release: 1.0

Summary:

The Self Organizing Map (SOM) is a clustering algorithm where a grid of 2D nodes
(clusters) is iteratively adjusted to reflect the global structure in the expression
dataset. With the SOM, the geometry of the grid is randomly chosen (e.g., a3 x 2
grid) and mapped to the k-dimensional gene expression space. The mapping is
then iteratively adjusted to reflect the natural structure of the data. Resulting
clusters are organized in a 2D grid where similar clusters lie near to each other and
provide an automatic “executive” summary of the dataset. This module is a
standard implementation of the SOM algorithm that can be used to cluster genes
or samples (or just about any data, i.e. stocks, mutual funds, spectral peaks, etc).



Final Results

e http://my.fit.edu/~sellings/finalClusters.zip

 Arranged input data into 9 clusters using
GenePattern software

e Why 9 clusters?

— Used average of Stephen’s output (8) + 1 to use a
square map (3X3 SOM)



http://my.fit.edu/~sellings/finalClusters.zip

CLuster Identification via
Connectivity Kernels (CLICK)
e |nitialize Graph G=(V,E)

— Vertex v: single gene “fingerprint” vector
— Edge e: pairwise similarity between genes
— Cut C: subset of E that partitions the graph
— Cluster c: subset of V

— Intersection of clusters ¢, ¢; i#jis @

— Fingerprint of a cluster c: mean_vector(c)

Roded Sharan and Ron Shamir. CLICK: A Clustering Algorithm with Applications to Gene Expression Analysis.
Proceedings of the Intelligent Systems for Molecular Biology. 2000.



CLICK: Preprocessing

Input: n x p matrix M of values
n: Genes, p: Tests

Data must be normalized
Similarity measure:

—S,,=vu = |v||lu|l cos 0
— Proportional only when norm is fixed for all veV



CLICK: Similarity

e Keyidea: S is normalized, mixed distribution

. 2
Foru,veV, mean = u,, variance= o
/(x| u;,o0,):pdf for elements in same cluster
, 2
Foru,veV, mean= u,., varlance = o

f (x| u,o0):pdf for elementsin different clusters



Basic CLICK

e M: n x p matrix (genes vs. test conditions)
* §;: dot product of v, v,
* w;: probability that v, v, are mates

_(Si]'_ﬂ)z
£(S, | o) =(o2z) e >
W.. = hl/ pmatesf(Sij |/’lTDO-T) )

l] \(l_pmates)f(Sij|/«lF,GF)
/

W, =1n

pmateSGF) j+ G;(Slj _'uF)z _GI%(SU _/uT)2

\(1 _pmates )GT 26;0]%



Basic CLICK

R: Singleton Set
Basic CLICK(Graph G) {
//v 1s a singleton
If V(G)={v} then R.add(v)
Else 1f G 1s a kernel then
Output (V(G))
Else
(H,K) <-MinWeightCut (G)
Basic CLICK (H)
Basic CLICK (K)






CLICK: Kernel

e Decision problem:is V...
— a singleton? (| V| = 1)
— a subset of 2+ clusters? (need to partition more)
— a subset of a single cluster? (kernel)



CLICK: Kernel

e For all possible cuts C connecting V:
— H,“: Cut C disconnects two clusters
— H,%: Cut C partitions a kernel

— If H,¢> H,* for any C, then V is not a kernel

e |f Vis not a kernel, then the graph should be
partitioned into sub-graphs H, K

C
W(C)= hl( Pr(ch | C)j = 2w,
Pr(H, |C) (i,)inC




Minimal Weight Cut

e Choose one vertex as source, mark visited
e Mark each next highly connected vertex

e Last node, t, represents the cut:
- W(C) = Zwi,t
— Merge t with 29 last marked node, s
— Remove t from V
— Repeat until |V| =1

Mechthild Stoer and Frank Wagner. A Simple Min-Cut Algorithm. Journal of the ACM, Vol. 44, No. 4. July 1997.



MinWeightCut Example




MinWeightCut

r’“a\ 3 b 4 C
) 6 @
2 2 2 2

O—0 O
f d ¢



CLICK: Adoption & Merging

e Basic_CLICK kernels — not full clusters
 Expand kernels by adding closest singletons
* Merge kernels with closest similarity

— In both situations, only merge/adopt over some
threshold



Full CLICK

R: Singleton Set

Full CLICK(Graph G = (V,E)) {
R <-V
While |R| is reduced {
Basic CLICK(G = (R,Eg))

Let L be the list of Kernels produced
Let R be the set of Singletons produced
Adopt (L, R)

)

Merge (L)

Adopt (L, R)

}



Results & Analysis

e Two metrics:
— Similarity between result clusters
— Similarity of clusters with paper’s results

 Map clusters to find regions of similar data
e Compare best clusters to find relationships



BCG

+ Bayesian = Click 4+ SOM




E. Coli

+ Bayesian = Click 4+ SOM




EHEC

+ Bayesian = Click 4+ SOM




L Monocytogenes

+ Bayesian = Click 4+ SOM




Latex

+ Bayesian = Click 4+ SOM




M Tuberculosis

+ Bayesian = Click 4+ SOM




S Aureus

+ Bayesian = Click 4+ SOM




S Typhi

+ Bayesian = Click 4+ SOM




S Typhimirium

+ Bayesian = Click 4+ SOM




Error Metric

Scores higher for
clusters that either
contain very many or
very few clusters in
the truth set.

Scales to the number
of datums in each
cluster.

Low error implies
Truth cluster were
highly correlated.
High error implies
Truth Clusters were
well distributed.

k_l_l_qu\ |
2 2 |7 l’
E=—-= - -
> [l
Bayesian| Click | SOM
Error| 4.33% | 24.4% |18.22%




Percent of Our Clusters Percent of Paper Cluster Quality Min Cluster Composition
Bayesian  Click SOM Bayesian  Click SOM Bayesian  Click SOM Bayesian Click SOM
0 0 0.02381 0 0.005051 0 0.212121 0% 0.00% 0.00% 0.00%)
1 0.418605 0.368771 0 0.090909 0.560606 0 3.909091 132.2576 0| 5% 98.48% 98.48% 98.99%
2 0 0.163333 0.013793 0 0.247475 0.010101 0 74.24242 1.464646| 10% 98.48% 98.48% 98.99%|
3 1 0 0.337278 0.005051 0 0.287879 0.005051 0 48.65152 15% 98.48% 94.44% 98.99%)
4 0.8 0.341772 0.390805 0.020202 0.136364 0.171717 0.10101 10.77273 14.93939 20% 98.48% 69.70% 98.99%
5 0.8 0.121212 0 0.040404 0.040404 0 0.40404 2.666667 0 25% 84.85% 69.70% 98.99%|
6 1 0.037037 0 0.005051 0.005051 0 0.005051 0.136364 0Ol 30% 84.85% 69.70% 87.37%
7 1 0.041667 0.88172 0.025253 0.005051 0.414141 0.126263 0.121212 38.51515 40% 84.85%  0.00% 41.41%
8 1 0 0.255556 0.015152 0 0.116162 0.045455 0 10.45455 45% 69.70%  0.00% 41.41%
9 1 0 0 0.010101 0.020202 18 64 50% 61.11% 0.00% 41.41%
10 1 0.015152 0.045455 55% 61.11% 0.00% 41.41%
11 1 0.005051 0.005051 60% 41.92%  0.00% 41.41%
12 1 0.010101 0.020202 65% 41.92% 0.00% 41.41%
13 1 0.020202 0.080808 70% 41.92%  0.00% 41.41%
14 1 0.015152 0.045455 75%  34.85% 0.00% 41.41%
15 1 0.005051 0.005051 80% 28.79% 0.00% 41.41%
16 0.928571 0.065657 0.919192 85% 28.79%  0.00% 41.41%
17 1 0.035354 0.247475 90%  28.79% 0.00% 0.00%
18 0.444444 0.020202 0.181818 95% 17.17% 0.00% 0.00%
19 0 0 0 100% 100.00% 100.00% 100.00%|
20 0.909091 0.050505 0.555556
21 0.444444 0.040404 0.727273 Error 42.2929 238.409 178.025
22 1 0.005051 0.005051 Error % 4.33% 24.40% 18.22%
23 0 0 0
24 0 0 0
25 0.037037 0.005051 0.136364
26 0 0 0
27 0 0 0
28 0.225 0.136364 16.36364
29 0.485714 0.085859 3.005051
30 0.736842 0.070707 1.343434
31 0.004673 0.005051 1.080808
32 0.59375 0.191919 12.28283
33 0 0 0
34 0.008065 0.005051 0.626263
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