Cluster Analysis for Gene Expression Data CSE 5615 Class Project, Group 2

Stephen Connetti
Sally Ellingson
Luis Quiles

Gene Expression Analysis?

- Virus, Bacteria, and Cellular Function Research
- Map unknown genes to cellular functions
- Map illness to malfunctioning cellular processes
- Measuring gene expression comparing expression of proteins under different situations against a base situation

Gene Expression - Data

- To measure gene expression, measure the mRNA being produced vs. base production
- Data: mRNA production vs. microarray test

	E. Coli	E. coli	E. coli	E. coli	EHEC	EHEC	EHEC	EHEC	EHEC
Gene	1 hr	6 hr	12 hr	24 hr	1 hr	2 hr	6 hr	12 hr	24 hr
GCSF	0.083	2.615	2.007	1.96	0.001	0.714	3.642	3.138	2.229
GMCSF	0.722	2.002	0.940	1.21	1.034	1.430	2.961	2.920	2.352
IL12B	0.845	4.77	4.369	3.454	0.426	-0.426	4.316	4.816	3.671
IL1RN	0.548	1.732	1.938	1.389	0.781	-1.27	1.344	1.419	1.301
IL6	3.006	5.244	3.897	3.957	3.889	4.106	4.396	4.137	3.990

Gene Expression - Clustering

- Groups together data with similar properties
- Data sets are partitioned clusters contain points more similar to themselves than others
- Clustering aids researchers to infer relationships between genes, especially when cellular functions are known
- Also helps identify relationships in co-expressed genes

Human Macrophage Activation Programs induced by Pathogens

- Originating source of our data
- 6800 genes, 43 microarray tests
- Significance tests reduce this to 977 genes
- Results were clustered to find relevance
- 198 genes expressed with the same pattern

Project Goals

- Implement 3 Clustering algorithms
 - Bayesian Clustering, Self-Organizing Maps, CLICK
- Find most similar clusters relevant similarity
- Compare paper's best cluster to our results
 - How many of the 198 genes did we find?

K-Means

K-Means

K-Means

[3.1] Jiang, D., Tang, C., and Zhang, A. Cluster Analysis for Gene Expression Data: A Survey.

- Initialize Clusters
- Until Convergence
 - Expectation: Compute new probabilities
 - Maximization: Compute new clusters
- Use BIC to prune clusters
- Compute global BIC
- Repeat with different initial clusters
 - Keep results with best BIC

Normal Distribution

$$N(x) = \frac{e^{-(x-x_0)^2/2\sigma^2}}{\sigma\sqrt{2\pi}} \begin{cases} 0.8 \\ 0.7 \\$$

Expectation: Non-spherical Clusters

$$\Sigma_k = D_k \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} D_k^T$$

- D_k =Eigenvectors of Σ are the orientation of cluster k.
- $\lambda_1 \dots \lambda_n$ =Eigenvalues of Σ are the radii of cluster k.
- Spherical clusters are usually sufficient (Identity Matrix)

Compute initial probabilities

 Given the initial clusters initialize the probabilities with the Normal Distribution.

$$P(\overrightarrow{d_i} \in \overrightarrow{\mu_k^0} \mid \overrightarrow{\mu_k^0}) = e^{-(\overrightarrow{d_i} - \overrightarrow{\mu_k^0}) \cdot (\overrightarrow{d_i} - \overrightarrow{\mu_k^0})/2}$$

 Since the probabilities will have to be normalized anyway, we can skip the constant.

Expectation: Baye's law

Posterior Prior
$$P(Cause \mid Effect) = \frac{P(Effect \mid Cause) \cdot P(Cause)}{P(Effect)}$$

$$P(Cause \mid Effect) = \frac{P(Effect \mid Cause) \cdot P(Cause)}{\sum P(Effect \mid Cause) \cdot P(Cause)}$$

Expectation: Baye's law

Recompute membership probabilities using normal distribution.

Maximization: New Clusters

 Clusters are computed as the weighted average of each point and the probability it belongs to the cluster.

$$\overrightarrow{\mu_k^t} = \frac{\sum_{i=1}^n P(\overrightarrow{\mu_k^{t-1}} \mid \overrightarrow{d_i} \in \overrightarrow{\mu_k^{t-1}}) \cdot \overrightarrow{d_i}}{\sum_{i=1}^n P(\overrightarrow{\mu_k^{t-1}} \mid \overrightarrow{d_i} \in \overrightarrow{\mu_k^{t-1}})}$$

Bayesian Information Criterion

- BIC measures the efficiency of the parameterized model in terms of predicting the data.
- It is independent to prior knowledge and the model used.

$$BIC_{k}^{t} = n \cdot \ln \left(\frac{\sum_{i=1}^{n} P(\overrightarrow{d}_{i} \in \overrightarrow{\mu_{k}^{t}} \mid \overrightarrow{\mu_{k}^{t}})^{2}}{n} + k \cdot \ln(n) \right)$$
Fit quality Complexity penalty

Bayesian Information Criterion

After convergence compute global BIC.

$$BIC = n \cdot \ln \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{k} P(\vec{d}_i \in \overrightarrow{\mu}_j \mid \overrightarrow{\mu}_j)^2}{nk} \right) + k \cdot \ln(n)$$

E-Coli Initial Clusters (Test Data)

Hour 1 vs Hour 12

E-Coli Final Clusters (Test Data)

Hour 1 vs Hour 12

EHEC

S Aureus

Ecoli

1 Hour

S Typhirium

1 Hour

Self-Organizing Maps

 SOMs are based off of neural networks. They use a learning algorithm to train a random map to be like the input values. Thus similar inputs will be mapped close to each other

```
n ← number of iterations for training algorithm

V ← set of learning vectors (same dimension as input)

learning_algorith(n, V)

SOM ← random values

for j ← 1 to n

v ← V(random)

BMU ← min(d(v,SOM)) \\ for every node in SOM neighbors ← neighborhood(BMU)

neighbors.weight= neighbors.weight+adjustment

end
```

Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.

Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-organizing maps in mining gene expression data, Information Sciences 139 (2001) 79-96.

Kohonen's Self organizing Feature Maps, AI – Junkie, March 11, 2009, http://www.ai-junkie.com/ann/som/som1.html.

Best Matching Unit

 The BMU is the minimum distance between the training vector and all the nodes in the SOM. It is typically found using the Euclidean distance formula.

$$d = \sqrt{\sum_{i=1}^k (v_1 - w_i)}$$

 $d = \sqrt{\sum_{i=1}^k (v_1 - w_i)}$ Where k is the legal of t training vector, and w is the weight vector from the current node in the SOM

- Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.
- Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-organizing maps in mining gene expression data, Information Sciences 139 (2001) 79-96.
- Kohonen's Self organizing Feature Maps, AI Junkie, March 11, 2009, http://www.ai-junkie.com/ann/som/som1.html.

Neighborhood

 The area of the neighborhood shrinks over time. You can use the exponential decay function for this.

$$\sigma(t) = \sigma_0 \exp\left(-\frac{t}{\lambda}\right), \quad t = 1, 2, \dots, n$$

Where n is the number of iterations that the algorithm will run and sigma_0 is the initial size of the neighborhood.

- Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.
- Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-organizing maps in mining gene expression data, Information Sciences 139 (2001) 79-96.
- Kohonen's Self organizing Feature Maps, AI Junkie, March 11, 2009, http://www.ai-junkie.com/ann/som/som1.html.

Weight Adjustment

 The weight is adjusted by multiplying two decay functions by the difference between the training vector and the SOM node.

$$w(t+1) = w(t) + \theta(t)L(t)[v(t) - w(t)]$$

One decay function decreases the learning variable by time.

$$L(t) = L_0 \exp\left(-\frac{t}{\lambda}\right)$$
 $t = 1, 2, \dots, n$

 The other decay function decreases the rate of learning for neighbors further away from the BMU.

- Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1997.
 - Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., and Ma, C., Self-org
- Kohonen's Self organizing Feature Maps, Al Junkie, March 11, 200

$$\theta(t) = \exp\left(-\frac{d^2}{2\sigma^2(t)}\right)$$
 $t = 1, 2, \dots, n$

Mapping Mode (SOM)

 After the learning algorithm is ran on the map, the input is mapped onto the SOM and similar n-dimensional inputs will be near each other on the two-dimensional map

GenePattern

 http://www.broad.mit.edu/cancer/software/g enepattern/

 GenePattern combines a powerful scientific workflow platform with more than 100 genomic analysis tools.

Use online or download

GenePattern

Module name: SOMClustering

Description: Self-Organizing Maps algorithm

Author: Keith Ohm (Broad Institute), gp-help@broad.mit.edu

Date: 10/28/03

Release: 1.0

Summary:

The Self Organizing Map (SOM) is a clustering algorithm where a grid of 2D nodes (clusters) is iteratively adjusted to reflect the global structure in the expression dataset. With the SOM, the geometry of the grid is randomly chosen (e.g., a 3 x 2 grid) and mapped to the k-dimensional gene expression space. The mapping is then iteratively adjusted to reflect the natural structure of the data. Resulting clusters are organized in a 2D grid where similar clusters lie near to each other and provide an automatic "executive" summary of the dataset. This module is a standard implementation of the SOM algorithm that can be used to cluster genes or samples (or just about any data, i.e. stocks, mutual funds, spectral peaks, etc).

Final Results

- http://my.fit.edu/~sellings/finalClusters.zip
- Arranged input data into 9 clusters using GenePattern software
- Why 9 clusters?
 - Used average of Stephen's output (8) + 1 to use a square map (3X3 SOM)

CLuster Identification via Connectivity Kernels (CLICK)

- Initialize Graph G=(V,E)
 - Vertex v: single gene "fingerprint" vector
 - Edge e: pairwise similarity between genes
 - Cut C: subset of E that partitions the graph
 - Cluster c: subset of V
 - Intersection of clusters c_i , c_j , $i \neq j$ is \emptyset
 - Fingerprint of a cluster c: mean_vector(c)

CLICK: Preprocessing

- Input: n x p matrix M of values
- n: Genes, p: Tests
- Data must be normalized
- Similarity measure:
 - $-S_{vu}=v\cdot u=|v||u|\cos\theta$
 - Proportional only when norm is fixed for all veV

CLICK: Similarity

Key idea: S is normalized, mixed distribution

For
$$u, v \in V$$
, mean $= \mu_T$, variance $= \sigma_T^2$
 $f(x | \mu_T, \sigma_T)$: pdf for elements in same cluster
For $u, v \in V$, mean $= \mu_F$, variance $= \sigma_F^2$
 $f(x | \mu_F, \sigma_F)$: pdf for elements in different clusters

Basic CLICK

- M: n x p matrix (genes vs. test conditions)
- S_{ij}: dot product of v_i, v_j
- w_{ij}: probability that v_i, v_j are mates

$$f(S_{ij} | \mu, \sigma) = (\sigma \sqrt{2\pi})^{-1} e^{\frac{-(S_{ij} - \mu)^{2}}{2\sigma^{2}}}$$

$$w_{ij} = \ln \left(\frac{p_{mates} f(S_{ij} | \mu_{T}, \sigma_{T})}{(1 - p_{mates}) f(S_{ij} | \mu_{F}, \sigma_{F})} \right)$$

$$w_{ij} = \ln \left(\frac{p_{mates} \sigma_{F}}{(1 - p_{mates}) \sigma_{T}} \right) + \frac{\sigma_{T}^{2} (S_{ij} - \mu_{F})^{2} - \sigma_{F}^{2} (S_{ij} - \mu_{T})^{2}}{2\sigma_{F}^{2} \sigma_{T}^{2}}$$

Basic CLICK

```
R: Singleton Set
Basic_CLICK(Graph G) {
    //v is a singleton
    If V(G)={v} then R.add(v)
    Else if G is a kernel then
        Output(V(G))
    Else
        (H,K)<-MinWeightCut(G)
        Basic_CLICK(H)
        Basic_CLICK(K)
}</pre>
```


CLICK: Kernel

- Decision problem: is V...
 - a singleton? (|V| = 1)
 - a subset of 2+ clusters? (need to partition more)
 - a subset of a single cluster? (kernel)

CLICK: Kernel

- For all possible cuts C connecting V:
 - H₀^C: Cut C disconnects two clusters
 - H₁^C: Cut C partitions a kernel
 - If $H_0^C > H_1^C$ for any C, then V is not a kernel
 - If V is not a kernel, then the graph should be partitioned into sub-graphs H, K

$$W(C) = \ln \left(\frac{\Pr(H_1^C \mid C)}{\Pr(H_0^C \mid C)} \right) = \sum_{(i,j)inC} w_{i,j}$$

Minimal Weight Cut

- Choose one vertex as source, mark visited
- Mark each next highly connected vertex
- Last node, t, represents the cut:
 - $-W(C_t) = \sum w_{i,t}$
 - Merge t with 2nd last marked node, s
 - Remove t from V
 - Repeat until |V| = 1

MinWeightCut Example

MinWeightCut

CLICK: Adoption & Merging

- Basic_CLICK kernels not full clusters
- Expand kernels by adding closest singletons
- Merge kernels with closest similarity
 - In both situations, only merge/adopt over some threshold

Full CLICK

```
R: Singleton Set
Full CLICK(Graph G = (V,E)) {
  R <- V
  While |R| is reduced {
    Basic CLICK(G = (R, E_R))
    Let L be the list of Kernels produced
    Let R be the set of Singletons produced
    Adopt (L, R)
 Merge(L)
  Adopt(L, R)
```

Results & Analysis

- Two metrics:
 - Similarity between result clusters
 - Similarity of clusters with paper's results
- Map clusters to find regions of similar data
- Compare best clusters to find relationships

1 Hour

E. Coli

1 Hour

1 Hour

L Monocytogenes

1 Hour

M Tuberculosis

1 Hour

S Aureus

1 Hour

S Typhi

1 Hour

S Typhimirium

1 Hour

Error Metric

- Scores higher for clusters that either contain very many or very few clusters in the truth set.
- Scales to the number of datums in each cluster.
- Low error implies
 Truth cluster were
 highly correlated.
- High error implies
 Truth Clusters were
 well distributed.

$$E = \frac{\sum_{i=1}^{k} \left[\left(\frac{1}{2} - \left| \frac{1}{2} - \frac{\left| T \cap C_i \right|}{\left| T \right|} \right) \cdot \left| C_i \right| \right]}{\sum_{i=1}^{k} \left| C_i \right|}$$

	Bayesian	Click	SOM
Error	4.33%	24.4%	18.22%

	Percent of Our Clusters		Percent of Paper Cluster		Quality			Min Cluster Composition					
E	Bayesian Click SOM		Bayesian Click SOM		Bayesian Click SOM		E	Bayesian Click SOM					
0	0	0.02381		0	0.005051		0	0.212121		0%	0.00%	0.00%	0.00%
1	0.418605	0.368771	0	0.090909	0.560606	0	3.909091	132.2576	0	5%	98.48%	98.48%	98.99%
2	0	0.163333	0.013793	0	0.247475	0.010101	0	74.24242	1.464646	10%	98.48%	98.48%	98.99%
3	1	0	0.337278	0.005051	0	0.287879	0.005051	0	48.65152	15%	98.48%	94.44%	98.99%
4	0.8	0.341772	0.390805	0.020202	0.136364	0.171717	0.10101	10.77273	14.93939	20%	98.48%	69.70%	98.99%
5	0.8	0.121212	0	0.040404	0.040404	0	0.40404	2.666667	0	25%	84.85%	69.70%	98.99%
6	1	0.037037	0	0.005051	0.005051	0	0.005051	0.136364	0	30%	84.85%	69.70%	87.37%
7	1	0.041667	0.88172	0.025253	0.005051	0.414141	0.126263	0.121212	38.51515	40%	84.85%	0.00%	41.41%
8	1	0	0.255556	0.015152	0	0.116162	0.045455	0	10.45455	45%	69.70%	0.00%	41.41%
9	1	0	0	0.010101			0.020202	18	64	50%	61.11%	0.00%	41.41%
10	1			0.015152			0.045455			55%	61.11%	0.00%	41.41%
11	1			0.005051			0.005051			60%	41.92%	0.00%	41.41%
12	1			0.010101			0.020202			65%	41.92%	0.00%	41.41%
13	1			0.020202			0.080808			70%	41.92%	0.00%	41.41%
14	1			0.015152			0.045455			75%	34.85%	0.00%	41.41%
15	1			0.005051			0.005051			80%	28.79%	0.00%	41.41%
16	0.928571			0.065657			0.919192			85%	28.79%	0.00%	41.41%
17	1			0.035354			0.247475			90%	28.79%	0.00%	0.00%
18	0.444444			0.020202			0.181818			95%	17.17%	0.00%	0.00%
19	0			0			0			100%	100.00%	100.00%	100.00%
20	0.909091			0.050505			0.555556						
21	0.444444			0.040404			0.727273			Error	42.2929	238.409	178.025
22	1			0.005051			0.005051		_	Error %	4.33%	24.40%	18.22%
23	0			0			0						
24	0			0			0						
25	0.037037			0.005051			0.136364						
26	0			0			0						
27	0			0			0						
28	0.225			0.136364			16.36364						
29	0.485714			0.085859			3.005051						
30	0.736842			0.070707			1.343434						
31	0.004673			0.005051			1.080808						
32	0.59375			0.191919			12.28283						
33	0			0			0						
34	0.008065			0.005051			0.626263						