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Abstract

Analysis of large scale geonomics data, notably gene expression, has initially focused on
clustering methods. Recently, biclustering techniques were proposed for revealing submatrices
showing unique patterns. We review some of the algorithmic approaches to biclustering and
discuss their properties.

1 Introduction

Gene expression profiling has been established over the lastdecade as a standard technique for
obtaining a molecular fingerprint of tissues or cells in different biological conditions [18, 7]. Based
on the availability of whole genome sequences, the technology of DNA chips (or microarrays)
allows the measurement of mRNA levels simultaneously for thousands of genes. The set (or vector)
of measured gene expression levels under one condition (or sample) are called theprofile of that
condition. Gene expression profiles are powerful sources ofinformation and have revolutionized
the way we study and understand function in biological systems [1].

Given a set of gene expression profiles, organized together as agene expression matrixwith
rows corresponding to genes and columns corresponding to conditions, a common analysis goal
is to group conditions and genes into subsets that convey biological significance. In its most
common form, this task translates to the computational problem known asclustering. Formally,
given a set of elements with a vector of attributes for each element, clustering aims to partition
the elements into (possibly hierarchically ordered) disjoint sets, called clusters, so that within each
set the attribute vectors are similar, while vectors of disjoint clusters are dissimilar. For example,
when analyzing a gene expression matrix we may apply clustering to the genes (as elements) given
the matrix rows (as attributes) or cluster the conditions (as elements) given the matrix columns (as
attributes). For reviews on clustering see an earlier chapter in this book. Analysis via clustering
makes several a-priori assumptions that may not be perfectly adequate in all circumstances. First,
clustering can be applied to either genes or samples, implicitly directing the analysis to a particular�School of Computer Science, Tel-Aviv University, Tel-Aviv69978, Israel.famos,rshamirg@post.tau.ac.il.yInternational Computer Science Institute, 1947 Center St., Berkeley CA 94704, USA. roded@icsi.berkeley.edu
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Figure 1: Clustering and biclustering of a gene expression matrix. Clusters correspond to disjoint
strips in the matrix. A gene cluster must contain all columns, and a condition cluster must contain
all rows. Biclusters correspond to arbitrary subsets of rows and columns, shown here as rectangles.
Note that since gene (condition) clusters are disjoint, therows (columns) of the matrix can be
reordered so that each cluster is a contiguous strip. Similar reordering of rows and columns that
shows all the biclusters as rectangles is usually impossible.

aspect of the system under study (e.g., groups of patients orgroups of co-regulated genes). Second,
clustering algorithms usually seek a disjoint cover of the set of elements, requiring that no gene or
sample belongs to more than one cluster.

The notion of a bicluster gives rise to a more flexible computational framework. Abiclusteris
defined as a submatrix spanned by a set of genes and a set of samples (compare Figure 1). Alter-
natively, a bicluster may be defined as the corresponding gene and sample subsets. Given a gene
expression matrix, we can characterize the biological phenomena it embodies by a collection of
biclusters, each representing a different type of joint behavior of a set of genes in a corresponding
set of samples. Note that there are no a-priori constraints on the organization of biclusters and in
particular, genes or samples can be part of more than one bicluster or of no bicluster. The lack
of structural constrains on biclustering solutions allowsgreater freedom but is consequently more
vulnerable to overfitting. Hence, biclustering algorithmsmust guarantee that the output biclusters
are meaningful. This is usually done by an accompanying statistical model or a heuristic scor-
ing method that define which of the many possible submatricesrepresent a significant biological
behavior. Thebiclustering problemis to find a set of significant biclusters in a matrix.

In clinical applications, gene expression analysis is doneon tissues taken from patients with
a medical condition. Using such assays, biologists have identified molecular fingerprints that can
help in the classification and diagnosis of the patient status and guide treatment protocols [2, 16].
In these studies, the focus is primarily on identifying profiles of expression over a subset of the
genes that can be associated with clinical conditions and treatment outcomes, where ideally, the
set of samples is equal in all but the subtype or the stage of the disease. However, a patient may be a
part of more than one clinical group, e.g., may suffer from syndrome A, have a genetic background
B and be exposed to environment C. Biclustering analysis is thus highly appropriate for identifying
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and distinguishing the biological factors affecting the patients along with the corresponding gene
subsets.

In functional genomics applications, the goal is to understand the functions of each of the genes
operating in a biological system. The rationale is that genes with similar expression patterns are
likely to be regulated by the same factors and therefore may share function. By collecting ex-
pression profiles from many different biological conditions and identifying joint patterns of gene
expression among them, researchers have characterized transcriptional programs and assigned pu-
tative function to thousands of genes [23, 11, 8]. Since genes have multiple functions, and since
transcriptional programs are often based on combinatorialregulation, biclustering is highly appro-
priate for these applications as well.

An important aspect of gene expression data is their high noise levels. DNA chips provide only
rough approximation of expression levels, and are subject to errors of up to two-fold the measured
value [1]. Any analysis method, and biclustering algorithms in particular, should therefore be
robust enough to cope with significant levels of noise.

Below we survey some of the biclustering models and algorithms that were developed for gene
expression analysis. Our coverage is not exhaustive, and isbiased toward what we believe are the
more practical methods. We attempt to cover at least one method from each class of algorithms
under development. We do not review methods that are based onextended biological models (e.g.,
inferring regulation or integrating data types [19, 24]), but focus on algorithms for biclustering
per-se. Throughout, we assume that we are given a set of genesV a set of conditionsU , and a
gene expression matrixE = (evu) whereevu is the expression level of genev in sampleu. We
assume that the matrix is normalized, though some of the algorithms below perform additional
normalization. AbiclusterB = (U 0; V 0) is defined by a subset of genesV 0 � V and a subset of
conditions (or samples)U 0 � U . Different algorithmic approaches to the biclustering problem use
different measures for the quality of a given biclustering solution. We therefore define the goal
function of each algorithm as part of its description.

2 Cheng and Church’s Algorithm

Cheng and Church were the first to introduce biclustering to gene expression analysis [6]. Their
algorithmic framework represents the biclustering problem as an optimization problem, defining a
score for each candidate bicluster and developing heuristics to solve the constrained optimization
problem defined by this score function. In short, the constraints force the uniformity of the matrix,
the procedure gives preference to larger submatrices and the heuristic is a relaxed greedy algorithm.

Cheng and Church implicitly assume that (gene, condition) pairs in a “good” bicluster have a
constant expression level, plus possibly additive row and column specific effects. After removing
row, column and submatrix averages, the residual level should be as small as possible. More
formally, given the gene expression matrixE, a subset of genesI and a subset of conditionsJ ,

we defineeIj = Pi2I eijjIj (row subset average)eiJ = Pj2J eijjJj (column subset average) andeIJ =Pi2I;j2J eijjIjjJj (submatrix average). We define theresidue scoreof an elementeij in a submatrixEIJ
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asRSIJ(i; j) = eij � eIj � eiJ + eIJ and themean square residue scoreof the entire submatrix asH(I; J) = Pi2I;j2J RS2ijjIjjJj. The intuition behind this definition can be understood via two examples:
a completely uniform matrix will have score zero. More generally, any submatrix in which all
entries have the formeij = bi + 
j would also have score zero. Given the score definition, the
maximum bicluster problemseeks a bicluster of maximum size among all biclusters with score not
exceeding a thresholdÆ. The size can be defined in several ways, for example as the number of
cells in the matrix (jIjjJ j) or the number of rows plus number of columns (jIj+ jJ j).

The maximum bicluster problem is NP-hard if we force all solutions to be square matrices
(jIj = jJ j) or if we use the total number of submatrix cells as our optimization goal (Reductions
are from Maximum Balanced Biclique or Maximum Edge Biclique). Cheng and Church suggested
a greedy heuristic to rapidly converge to a locally maximal submatrix with score smaller than
the threshold. The algorithm (presented in Figure 2) can be viewed as a local search algorithm
starting from the full matrix. Given the threshold parameter Æ, the algorithm runs in two phases.
In the first phase, the algorithm removes rows and columns from the full matrix. At each step,
where the current submatrix has row setI and column setJ , the algorithm examines the set of
possible moves. For rows it calculatesd(i) = 1jJjPj2J RSI;J(i; j) and for columns it calculatese(j) = 1jIjPi2I RSI;J(i; j). It then selects the highest scoring row or column and removes it
from the current submatrix, as long asH(I; J) > Æ. The idea is that rows/columns with large
contribution to the score can be removed with guaranteed improvement (decrease) in the total mean
square residue score. A possible variation of this heuristic removes at each step all rows/columns
with a contribution to the residue score that is higher than some threshold.

In the second phase of the algorithm, rows and columns are being added, using the same scoring
scheme, but this time looking for the lowest square residuesd(i); e(j) at each move, and terminat-
ing where none of the possible moves increases the matrix size without crossing the thresholdÆ.
Upon convergence, the algorithm outputs a submatrix with low mean residue and locally maximal
size.

To discover more than one bicluster, Cheng and Church suggested repeated application of
the biclustering algorithm on modified matrices. The modification includes randomization of the
values in the cells of the previously discovered biclusters, preventing the correlative signal in them
to be beneficial for any other bicluster in the matrix. This has the obvious effect of precluding the
identification of biclusters with significant overlaps.

An application of the algorithm to yeast and human data is described in [6]. The software is
available at http://arep.med.harvard.edu/biclustering.

4



Cheng-Church(U , V , E, Æ):U : conditions.V : genes.E : Gene expression matrix.Æ: maximal mean square residue score.

DefineeIj = Pi2I eijjIj
DefineeiJ = Pj2J eijjJj
DefineeIJ = Pi2I;j2J eijjIjjJj
DefineRSIJ(i; j) = eij � eIj � eiJ + eIJ
DefineH(I; J) =Pi2I;j2J RS2ijjIjjJj .
Initialize a bicluster(I; J) with I = U; J = V .
Deletion phase:

While (H(I; J) > Æ) do
Compute fori 2 I, d(i) = 1jJjPj2J RSI;J(i; j).
Compute forj 2 J , e(j) = 1jIjPi2I RSI;J(i; j).
If maxi2Id(i) > maxj2Je(j) assignI = I n fargmaxi(d(i))g.
ElseJ = J n fargmaxj(e(j))g

Addition phase:
assignI 0 = I; J 0 = J
While (H(I 0; J 0) < Æ) do

AssignI = I 0; J = J 0
Compute fori 2 U n I, d(i) = 1jJjPj2J RSI;J(i; j).
Compute forj 2 V n J , e(j) = 1jIjPi2I RSI;J(i; j).
If maxi2Id(i) < maxj2Je(j) assignI 0 = I [ fargmaxi(d(i))g.
ElseJ 0 = J [ fargmaxj(e(j))g

ReportI; J
Figure 2: The Cheng-Church algorithm for finding a single bicluster.

3 Coupled Two-way Clustering

Coupled two-way clustering (CTWC), introduced by Getz, Levine and Domany [9], defines a
generic scheme for transforming a one-dimensional clustering algorithm into a biclustering algo-
rithm. The algorithm relies on having a one-dimensional (standard) clustering algorithm that can
discover significant (termedstablein [9]) clusters. Given such an algorithm, the coupled two-way
clustering procedure will recursively apply the one-dimensional algorithm to submatrices, aiming
to find subsets of genes giving rise to significant clusters ofconditions and subsets of conditions
giving rise to significant gene clusters. The submatrices defined by such pairings are calledstable
submatricesand correspond to biclusters. The algorithm, which is shownin Figure 3, operates on
a set of gene subsetsV and a set of condition subsetsU . Initially V = fV g andU = fUg. The
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algorithm then iteratively selects a gene subsetV 0 2 V and a condition subsetU 0 2 U and applies
the one dimensional clustering algorithm twice, to clusterV 0 andU 0 on the submatrixU 0 � V 0. If
stable clusters are detected, their gene/condition subsets are added to the respective setsV, U . The
process is repeated until no new stable clusters can be found. The implementation makes sure that
each pair of subsets is not encountered more than once.

Note that the procedure avoids the consideration of all rowsand column subsets, by starting
from an established row subset when forming subclusters of established column subsets, and vice
versa. The success of the coupled two-way clustering strategy depends on the performance of the
given one-dimensional clustering algorithm. We note that many popular clustering algorithms (e.g.
K-means, Hierarchical, SOM) cannot be plugged ”as is” into the coupled two-way machinery, as
they do not readily distinguish significant clusters from non-significant clusters or make a-priori
assumption on the number of clusters. Getz et al. have reported good results using the SPC
hierarchical clustering algorithm [10]. The results of thealgorithm can be viewed in a hierarchical
form: each stable gene (condition) cluster is generated given a condition (resp. gene) subset. This
hierarchical relation is important when trying to understand the context of joint genes or conditions
behavior. For example, when analyzing clinical data, Getz et al. have focused on gene subsets
giving rise to stable tissue clusters that are correlative to known clinical attributes. Such gene sets
may have an important biological role in the disease under study.

The CTWC algorithm has been applied to a variety of clinical data sets (see, e.g., [17]), the
software can be downloaded via the site http://ctwc.weizmann.ac.il.
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TWOWAY(U , V , E, ALG):U : conditions.V : genes.E : Gene expression matrix.ALG : one-dimensional clustering algorithm. Inputs a matrix and outputs significant (stable)
clusters of columns or rows
Initialize a hash tableweight
Initialize U1 = fUg, V1 = fV g
Initialize U = ;, V = ;
Initialize the sets hierarchy tableHV storing for gene clusters the condition subsets used to generate them.
Initialize the sets hierarchy tableHU storing for condition clusters the gene subsets used to generate them.
While (U1 6= ; or V1 6= ;) do

Initialize empty setsU2;V2.
For all (U 0; V 0) 2 (U1 � V1) [ (U1 � V) [ (U � V1) do

RunALG(EU 0V 0) to cluster the genes inV 0:
Add the stable gene sets toV2
SetHV [V 00℄ = U 0 for all new clustersV 00.

RunALG(EU 0V 0) to cluster the conditions inU 0:
Add the stable condition sets toU2
SetHU [U 00℄ = V 0 for all new clustersU 00.

AssignU = U [ U1, V = V [ V1
AssignU1 = U2, V1 = V2

ReportU ;V and their hierarchiesHU ;HV .

Figure 3: Coupled two-way clustering.

4 The Iterative Signature Algorithm

In the Iterative Signature Algorithm (ISA) [12, 5] the notion of a significant bicluster is defined
intrinsically on the bicluster genes and samples – the samples of a bicluster uniquely define the
genes and vice versa. The intuition is that the genes in a bicluster are co-regulated and, thus,
for each sample the average gene expression over all the biclsuter’s genes should be surprising
(unusually high or low) and for each gene the average gene expression over all biclusters samples
should be surprising. This intuition is formalized using a simple linear model for gene expression
assuming normally distributed expression levels for each gene or sample as shown below.

The algorithm, presented in Figure 4, uses two normalized copies of the original gene expres-
sion matrix. The matrixEG has rows normalized to mean 0 and variance 1 and the matrixEC
has columns normalized similarly. We denote byeGuV 0 the mean expression of genes fromV 0 in
the sampleu and byeCU 0v the mean expression of the genev in samples fromU 0. A biclusterB = (U 0; V 0) is required to have:U 0 = fu 2 U : jeCuV 0j > TC�Cg; V 0 = fv 2 V : jeGU 0vj > TG�Gg (1)
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HereTG is the threshold parameter and�G is the standard deviation of the meanseGU 0v wherev
ranges over all possible genes andU 0 is fixed. Similarly,TC ; �C are the corresponding parameters
for the column setV 0. The idea is that if the genes inV 0 are up- or down-regulated in the conditionsU 0 then their average expression should be significantly far (i.e., TG standard deviations) from
its expected value on random matrices (which is 0 since the matrix is standardized). A similar
argument holds for the conditions inU 0. The standard deviations can be predicted as1pjU 0j ; 1pjV 0j
being a linear sum ofjU 0j (or jV 0j) independent standard random variables. Alternatively, the
standard deviations can be estimated directly from the data, correcting for possible biases in the
statistics of the specific condition and gene sets used. In other words, in a bicluster, thez-score of
each gene, measured w.r.t. the bicluster’s samples, and thez-score of each sample, measured w.r.t.
the bicluster’s samples, should exceed a threshold. As we shall see below, ISA will not discover
biclusters for which the conditions (1) hold strictly, but will use a relaxed version.

The algorithm starts from an arbitrary set of genesV0 = Vin. The set may be randomly gener-
ated or selected based on some prior knowledge. The algorithm then repeatedly applies the update
equations: Ui = fu 2 U : jeCuVij > TC�Cg; Vi+1 = fv 2 V : jeGUivj > TG�Gg (2)

The iterations are terminated at stepn satisfying:jVn�i n Vn�i�1jjVn�i [ Vn�i�1j < � (3)

for all i smaller than somem. The ISA thus converges to an approximated fixed point that is
considered to be a bicluster. The actual fixed point depends on both the initial setVin and the
threshold parametersTC ; TG. To generate a representative set of biclusters, it is possible to run
ISA with many different initial conditions, including known sets of associated genes or random
sets, and to vary the thresholds. After eliminating redundancies (fixed points that were encountered
several times), the set of fixed points can be analyzed as a setof biclusters.

The ISA algorithm can be generalized by assigning weights for each gene/sample such that
genes/samples with a significant behavior (higherz-score) will have larger weights. In this case,
the simple means used in (1) and (2) are replaced by weighted means.

The signature algorithm has been applied for finding cis-regulatory modules in yeast ([12])
and for detecting conserved transcriptional modules across several species ([4]). For software see
http://barkai-serv.weizmann.ac.il/GroupPage/.
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ISA(U , V , E, Vin, TG, TC , m, �):U : conditions.V : genes.E : Gene expression matrix.Vin : Initial gene set.TG; TC : gene and conditionz-score thresholds.m; �: stopping criteria.
Construct a column standardized matrixEC .
Construct a row standardized matrixEG.
Initialize countersn = 0; n0 = 0.
Initialize the current genes setV 0 = Vin
Initialize an empty condition setU 0.
While (n� n0 < m) do

ComputeeCuV 0 = 1jV 0jPv2V 0 eCuv for u 2 U .U 0 = fu 2 U : jeCuV 0 j > TCpjV 0jg
ComputeeGU 0v = 1jU 0jPu2U 0 eGuv for v 2 V .V 00 = V 0V 0 = fv 2 V : jeGU 0vj > TGpU 0 g
if ( jV 0nV 00jjV 0[V 00j < �) thenn0 = nn = n+ 1

ReportU 0; V 0
Figure 4: The ISA algorithm for finding a single bicluster.

5 The SAMBA Algorithm

The SAMBA algorithm (Statistical-Algorithmic Method for Bicluster Analysis) [24, 20] uses prob-
abilistic modeling of the data and graph theoretic techniques to identify subsets of genes thatjointly
respondacross a subset of conditions, where a gene is termedrespondingin some condition if its
expression level changes significantly at that condition w.r.t. its normal level. Within the SAMBA
framework, the expression data are modeled as a bipartite graph whose two parts correspond to
conditions and genes, respectively, with edges for significant expression changes. The vertex pairs
in the graph are assigned weights according to a probabilistic model, so that heavy subgraphs
correspond to biclusters with high likelihood. Discovering the most significant biclusters in the
data reduces under this weighting scheme to finding the heaviest subgraphs in the model bipartite
graph. SAMBA employs a practical heuristic to search for heavy subgraphs. The search algorithm
is motivated by a combinatorial algorithm for finding heavy bicliques that is exponential in the
maximum gene degree in the graph.

In the following we describe the probabilistic model used bySAMBA and the theoretical algo-
rithm on which the search method is based. Finally, the full SAMBA algorithm is presented.

Applications of SAMBA for gene expression data are described in [25]. SAMBA was also
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applied to highly heterogeneous data, including expression, phenotype growth sensitivity, protein-
protein interaction and ChIP-chip data [24]. The software is available as part of the Expander
package [20, 21].

5.1 Statistical Data Modeling

The SAMBA algorithm is based on representing the input expression data as a bipartite graphG = (U; V; E). In this graph,U is the set of conditions,V is the set of genes, and(u; v) 2 E iff v
responds in conditionu, that is, if the expression level ofv changes significantly inu. A bicluster
corresponds to a subgraphH = (U 0; V 0; E 0) of G, and represents a subsetV 0 of genes that are
co-regulated under a subset of conditionsU 0. Theweightof a subgraph (or bicluster) is the sum of
the weights of gene-condition pairs in it, including edges and non-edges.

Coupled with the graph representation is a likelihood ratiomodel for the data. LetH =(U 0; V 0; E 0) be a subgraph ofG and denoteE 0 = (U 0 � V 0) n E 0. For a vertexw 2 U 0 [ V 0
let dw denote its degree inG. The null model assumes that the occurrence of each edge(u; v) is an
independent Bernoulli variable with parameterpu;v. The probabilitypu;v is the fraction of bipartite
graphs with degree sequence identical toG that contain the edge(u; v). In practice, one estimatespu;v using a Monte-Carlo process. This model tries to capture thecharacteristics of the different
genes and conditions in the data.

The alternative model assumes that each edge of a bicluster occurs with constant, high prob-
ability p
. This model reflects the belief that biclusters represent approximately uniform relations
between their elements. The log likelihood ratio forH is therefore:logL(H) = X(u;v)2E0 log p
pu;v + X(u;v)2E0 log 1� p
1� pu;v
Setting the weight of each edge(u; v) to log p
pu;v > 0 and the weight of each non-edge(u; v) tolog 1�p
1�pu;v < 0, one concludes that the score ofH is simply its weight.

5.2 Finding Heavy Subgraphs

Under the above additive scoring scheme, discovering the most significant biclusters in the data
reduces under this scoring scheme to finding the heaviest subgraphs in the bipartite graph. Since
the latter problem is NP-hard, SAMBA employs a heuristic search for such subgraphs. The search
uses as seeds heavy bicliques and we now present the underlying algorithm to find good seeds. In
the rest of the section it will be convenient to assume that the degree of every gene is bounded byd.

Let G = (U; V; E) be a bipartite graph withn = jV j genes. Letw : U � V ! R be a weight
function. For a pair of subsetsU 0 � U; V 0 � V we denote byw(U 0; V 0) the weight of the subgraph
induced onU 0 [ V 0, i.e., w(U 0; V 0) = Pu2U 0;v2V 0 w((u; v)). The neighborhoodof a vertexv,
denotedN(v), is the set of vertices adjacent tov in G.
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The Maximum Bounded Bicliqueproblem calls for identifying a maximum weight complete
subgraph of a given weighted bipartite graphG, such that the vertices on one side ofG have
degrees bounded byd. This problem can be solved inO(n2d) time (and space) as we show next.

Observe that a maximum bounded bicliqueH� = (U�; V �; E�) in G must havejU�j � d.
Figure 5 describes a hash-table based algorithm that for each vertexv 2 V scans allO(2d) subsets
of its neighbors, thereby identifying the heaviest biclique. Each hash entry corresponds to a subset
of conditions and records the total weight of edges from adjacent gene vertices. The algorithm can
be shown to spendO(n2d) time on the hashing and findingUbest. ComputingVbest can be done inO(nd) time, so the total running time isO(n2d).

MaxBoundBiClique(U , V , E, d):
Initialize a hash tableweight; weightbest  0
For all v 2 V do

For all S � N(v) doweight[S℄ weight[S℄+maxf0; w(S; fvg)g
If (weight[S℄ > weightbest)Ubest  Sweightbest  weight[S℄

ComputeVbest = \u2UbestN(u)
Output (Ubest, Vbest)

Figure 5: An algorithm for the maximum bounded biclique problem.

Note that the algorithm can be adapted to give thek condition subsets that induce solutions of
highest weight inO(n2d log k) time using a priority queue data structure.

5.3 The Full Algorithm

Having described the two main components of SAMBA, we are nowready to present the full
algorithm, which is given in Figure 6. SAMBA proceeds in two phases. First, the model bipartite
graph is formed and the weights of vertex pairs are computed.Second, several heavy subgraphs
are sought around each vertex of the graph. This is done by starting with good seeds around the
vertex and expanding them using local search. The seeds are found using the hashing technique
of the algorithm in Figure 5. To save on time and space the algorithm ignores genes with degree
exceeding some thresholdD, and hash for each gene only subsets of its neighbors of size ranging
from N1 to N2. The local improvement procedure iteratively applies the best modification to the
current bicluster (addition or deletion of a single vertex)until no score improvement is possible.
The greedy process is restricted to search around the biclique without performing changes that
would eliminate vertices in it or make vertices in it redundant (having a total negative contribution
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to the bicluster score). To avoid similar biclusters whose vertex sets differ only slightly, a final step
greedily filters similar biclusters with more thanL% overlap.

SAMBA(U , V , E, w, d, N1, N2, k):U : conditions.V : genes.E : graph edges.w : edge/non-edge weights.N1; N2 : condition set hashed set size limits.k : max biclusters per gene/condition.
Initialize a hash tableweight
For all v 2 V with jN(v)j � d do

For all S � N(v) with N1 � jSj � N2 doweight[S℄  weight[S℄ + w(S; fvg)
For eachv 2 V setbest[v℄[1 : : : k℄ to thek heaviest setsS such thatv 2 S
For eachv 2 V and each of thek setsS = best[v℄[i℄V 0  \u2SN(u).B  S [ V 0.

Do f a = argmaxx2V [U (w(B [ x))b = argmaxx2B(w(B n x))
If w(B [ a) > w(B n b) thenB = B [ a elseB = B n bg while improving

StoreB.
Post process to filter overlapping biclusters.

Figure 6: The SAMBA biclustering algorithm.

6 Spectral Biclustering

Spectral biclustering approaches use techniques from linear algebra to identify bicluster structures
in the input data. Here we review the biclustering techniquepresented in Kluger et al. [13]. In
this model, it is assumed that the expression matrix has a hidden checkerboard-like structure that
we try to identify using eigenvector computations. The structure assumption is argued to hold for
clinical data, where tissues cluster to cancer types and genes cluster to groups, each distinguishing
a particular tissue type from the other types.

To describe the algorithm, suppose at first that the matrixE has a checkerboard-like structure
(see Figure 7). Obviously we could discover it directly, butwe could also infer it using a technique
from linear algebra that will be useful in case the structureis hidden due to row and column
shufflings. The technique is based on a relation between the block structure ofE and the block
structure of pairs of eigenvectors forEET andETE, which we describe next. First, observe that
the eigenvalues ofEET andETE are the same. Now, consider a vectorx that isstepwise, i.e.,
piecewise constant, and whose block structure matches thatof the rows ofE. ApplyingE to x we
get a stepwise vectory. If we now applyET to y we get a vector with the same block structure
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asx. The same relation is observed when applying firstET and thenE (see Figure 7). Hence,
vectors of the stepwise pattern ofx form a subspace that is closed underETE. This subspace is
spanned by eigenvectors of this matrix. Similarly, eigenvectors ofEET span the subspace formed
by vectors of the form ofy. More importantly, taking nowx to be an eigenvector ofETE with an
eigenvalue�, we observe thaty = Ex is an eigenvector ofEET with the same eigenvalue.

Ex = 266664 8 8 7 7 3 38 8 7 7 3 36 6 4 4 5 56 6 4 4 5 5 377775
266666666664
aabb


377777777775 = 266664 ddee 377775 = y; ETy = 266666666664

8 8 6 68 8 6 67 7 4 47 7 4 43 3 5 53 3 5 5
377777777775 266664 ddee 377775 = 266666666664

a0a0b0b0
0
0
377777777775 = x0

Figure 7: An example of a checkerboard-like matrixE and the eigenvectors ofEET andETE.
The vectorx satisfies the relationETEx = ETy = x0 = �x. Similarly, y satisfies the equationEETy = E�x = �y.

In conclusion, the checkerboard-like structure ofE is reflected in the stepwise structures of
pairs ofEET andETE eigenvectors that correspond to the same eigenvalue. One can find these
eigenvector pairs by computing a singular value decomposition of E. Singular value decom-
position is a standard algebraic technique (cf. [15]) that expresses a real matrixE as a productE = A�BT , where� is a diagonal matrix andA andB are orthonormal matrices. The columns
of A andB are the eigenvectors ofEET andETE, respectively. The entries of� are square roots
of the corresponding eigenvalues, sorted in a non-increasing order. Hence the eigenvector pairs are
obtained by taking for eachi theith columns ofA andB, and the corresponding eigenvalue is the�2ii.

For any eigenvector pair, one can check whether each of the vectors can be approximated using
a piecewise constant vector. Kluger et al. use a one-dimensionalk-means algorithm to test this fit.
The block structures of the eigenvectors indicate the blockstructures of the rows and columns ofE.

In the general case, the rows and columns ofE are ordered arbitrarily, and the checkerboard-
like structure, ifE has one, is hidden. To reveal such structure one computes thesingular value
decomposition ofE and analyzes the eigenvectors ofEET andETE. A hidden checkboard struc-
ture will manifest itself by the existence of a pair of eigenvectors (one for each matrix) with the
same eigenvalue, that are approximately piecewise constant. One can determine if this is the case
by sorting the vectors or by clustering their values, as donein [13].

Kluger et al. further discuss the problem of normalizing thegene expression matrix to reveal
checkerboard structures that are obscured, e.g., due to differences in the mean expression levels
of genes or conditions. The assumed model for the data is a multiplicative model, in which the
expression level of a genei in a conditionj is its base level times a gene term, which corresponds to
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the gene’s tendency of expression under different conditions, times a condition term, that represents
the tendency of genes to be expressed under conditionj. The normalization is done using two
normalizing matrices:R, a diagonal matrix with the mean of rowi at theith position; andC,
a diagonal matrix with the mean of columnj at thejth position. The block structure ofE is
now reflected in the stepwise structure of pairs of eigenvectors with the same eigenvalue of the
normalized matricesM = R�1EC�1ET andMT . These eigenvector pairs can be deduced by
computing a singular value decomposition ofR�1=2EC�1=2. Due to the normalization, the first
eigenvector pair (corresponding to an eigenvalue of 1) is constant and can be discarded. A summary
of the biclustering algorithm is given in Figure 8.

The spectral algorithm was applied to human cancer data and its results were used for classifi-
cation of tumor type and identification of marker genes [13].

Spectral(U , V , E):U : conditions.V : genes.En�m : Gene expression matrix.
ComputeR = diag(E � 1m) andC = diag(1Tn � E).
Compute a singular value decomposition ofR�1=2EC�1=2.
Discard the pair of eigenvectors corresponding to the largest eigenvalue.
For each pair of eigenvectorsu; v of R�1EC�1ET andC�1ETR�1E with the same eigenvalue do:

Apply k-means to check the fit ofu andv to stepwise vectors.
Report the block structure of the pu; v with the best stepwise fit.

Figure 8: The spectral biclustering algorithm.

7 Plaid Models

The Plaid model [14] is a statistically inspired modeling approach developed by Lazzeroni and
Owen for the analysis of gene expression data. The basic ideais to represent the genes-conditions
matrix as a superposition oflayers, corresponding to biclusters in our terminology, where each
layer is a subset of rows and columns on which a particular setof values takes place. Different
values in the expression matrix are thought of as different colors, as in (false colored) “heat maps”
of chips. This metaphor also leads to referring to “color intensity” in lieu of “expression level”.
The horizontal and vertical color lines in the matrix corresponding to a layer give the method its
name.

The model assumes that the level of matrix entries is the sum of a uniform background (“grey”)
and of k biclusters each coloring a particular submatrix in a certain way. More precisely, the
expression matrix is represented asAij = �0 + KXk=1 �ijk�ik�jk
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where�0 is a general matrix background color, and�ijk = �k + �ik + �jk where�k describes
the added background color in biclusterk, � and� are row and column specific additive constants
in biclusterk. �ik 2 f0; 1g is a gene-bicluster membership indicator variable, i.e.,�ik = 1 iff
genei belongs to the gene set of thek-th bicluster. Similarly,�jk 2 f0; 1g is a sample-bicluster
membership indicator variable. Hence, similar to Cheng andChurch [6], a bicluster is assumed to
be the sum of bicluster background level plus row-specific and column-specific constants.

When the biclusters form ak-partition of the genes and a correspondingk-partition of the
samples, thedisjointness constraintsthat biclusters cannot overlap can be formulated as

Pk �jk �1 for all j, Pk �ik � 1 for all i. Replacing� by = would require assignment of each row or
column toexactlyone bicluster. Generalizing to allow bicluster overlap simply means removing
the disjointness constraints.

The general biclustering problem is now formulated as finding parameter values so that the re-
sulting matrix would fit the original data as much as possible. Formally, the problem is minimizingXij [Aij � KXk=0 �ijk�ik�jk℄2 (4)

where�0 = �ij0. If �ik or �jk are used, then the constraints
Pi �ik�ik = 0 or

Pj �jk�jk = 0
are added to reduce the number of parameters. Note that the number of parameters is at mostk + 1 + kn+ km for the� variables, andkn + km for the� and� variables. This is substantially
smaller than thenm variables in the original data, ifk << max(n;m).
7.1 Estimating Parameters

Lazzeroni and Owen propose to solve problem (4) using an iterative heuristic. New layers are
added to the model one at a time. Suppose we have fixed the firstK � 1 layers and we are seeking
for theK-th layer to minimize the sum of squared errors. LetZ(K�1)ij = Aij � K�1Xk=0 �ijk�ij�jk (5)

be theresidual matrixafter removing the effect of the firstK � 1 layers. In iterationK we wish to
solve the following quadratic integer program.min Q(K) = 12 Pni=1Ppj=1(Z(K�1)ij � �ijK�iK�jK)2s:t: Pi �2iK�iK = 0; Pj �2jK�jK = 0�iK 2 f0; 1g; �jK 2 f0; 1g (6)

The proposed heuristic method to solve (6) is again iterative. To avoid confusion we call the
iterations for fixedK cycles, and indicate the cycle number by a superscript in parentheses, e.g.�(i). The integrality constraints are ignored throughout, and the goal is to solve corresponding
relaxation of it. A cycle is done as follows: Compute the bestvalues of the� parameters given
fixed� and� values; Compute the best values of the� parameters given new� and the old� values;
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Compute the best values of the� parameters given the new� and the old� values. In order to avoid
“locking in” of the membership variables to 0 or 1, their values are changed only modestly on the
first cycle, and they are allowed to become integral only at the final cycle.

The following optimal parameter values in the relaxed version of (6) are obtained by using
Lagrange multipliers: �K = PiPj �iK�jKZK�1ij(Pi �2iK)(Pj �2jK) (7)�iK = Pj(Z(K�1)ij � �K�iK�jK)�jK�iKPjK �2jK (8)�jK = Pi(Z(K�1)ij � �K�iK�jK)�iK�jKPiK �2iK (9)

So, in cycles, we use these equations to update�(s) using the old values�(s�1) and�(s�1). The
values for�iK and�jK that minimize Q are:�iK = Pj �ijK�jKZK�1ijPj �2ijK�2jK (10)�jK = Pi �ijK�iKZK�1ijPi �2ijK�2iK (11)

At cycles, we use these equations to update�(s) from �(s) and�(s�1), and update�(s) from �(s) and�(s�1). The complete updating process is repeated a prescribed number of cycles.

7.2 Initialization and Stopping Rule

The search for a new layerK in the residual matrixZij = Z(K)ij requires initial values of� and�.
These values are obtained by finding vectorsu andv and a real value� so that�uvT is the best
rank one approximation ofZ. We refer the readers to the original paper for details.

Intuitively, each iteration “peels off” another signal layer, and one should stop afterK � 1 it-
erations if the residual matrixZij = Z(K)ij contains almost only noise. Lazzeroni and Owen define
the importanceof layerk by �2k = Pni=1Ppj=1 �ik�jk�2ijk. The algorithm accepts a layer if it has
significantly larger importance than in noise. To evaluate�2k on noise, repeat the following pro-
cessT times: Randomly permute each row inZ independently, and then randomly permute each
column in the resulting matrix independently. Apply the layer-finding algorithm on the resulting
matrix, and compute the importance of that layer. If�2k exceeds the importance obtained for all theT randomized matrices, add the new layerK to the model.

The complete algorithm is outlined in figure 9.
Plaid models have been applied to yeast gene expression data[14]. The software is available

at http://www-stat.stanford.edu/�owen/plaid.
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Plaid(U , V , E, S):U : conditions.V : genes.E : Gene expression matrix.S: maximum cycles per iteration.
SetK = 0
adding a new layer:

K=K+1

Compute initial values of�(0)jK ; �(0)iK . Sets = 1
While (s � S) do:

Compute�(s)K , �(s)iK , �(s)jK using equations (7)- (9).

Compute�(s)K using equations (11)

Compute�(s)K using equations (10)

If �(s)K > 0:5 set�(s)K = 0:5 + s=2S, else set�(s)K = 0:5� s=2S
If �(s)K > 0:5 set�(s)K = 0:5 + s=2S, else set�(s)K = 0:5� s=2S

If the importance of layerK is non random then record the layer and repeat
Else exit.

Report layers1; : : : ;K � 1.

Figure 9: The Plaid model algorithm.

8 Discussion

The algorithms presented above demonstrate some of the approaches developed for the identifica-
tion of bicluster patterns in large matrices, and in gene expression matrices in particular. One can
roughly classify the different methods a) by their model andscoring schemes and b) by the type of
algorithm used for detecting biclusters. Here we briefly review how different methods tackle these
issues.

8.1 Model and score

To ensure that the biclusters are statistically significant, each of the biclustering methods defines a
scoring scheme to assess the quality of candidate biclusters, or a constraint that determines which
submatrices represent significant bicluster behavior. Constraint based method include the iterative
signature algorithm, the coupled two-way clustering method and the spectral algorithm of Kluger
et al. In the first two, we search for gene (property) sets thatdefine ”stable” subsets of proper-
ties (genes). In the last, the requirement is for compatibility of certain eigenvectors to a hidden
checkboard-like matrix structure.

Scoring based methods typically rely on a background model for the data. The basic model
assumes that biclusters are essentially uniform submatrices and scores them according to their
deviation from such uniform behavior. More elaborate models allow different distributions for each
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condition and gene, usually in a linear way. Such are, for example, the Cheng-Church algorithm
and the Plaid model and the alternative formulation in [22].A more formal statistical model for an
extended formulation of the biclustering problem was used in [19, 3]. In this family of algorithms
a complete generative model including a set of biclusters and their regulation model is optimized
for maximum likelihood given the data. Another approach forthe modeling of the data is used in
SAMBA, where a degree-preserving random graph model and likelihood ratio score are used to
ensure biclusters significance.

8.2 Algorithmic approaches

The algorithmic approaches for detecting biclusters giventhe data are greatly affected by the type
of score/constraint model in use. Several of the algorithmsalternate between phases of gene sets
and condition sets optimization. Such are, for example, theiterative signature algorithm and the
coupled two-way clustering algorithm. Other methods use standard linear algebra or optimization
algorithms to solve key subproblems. Such is the case for thePlaid model and the Spectral algo-
rithm. A heuristic hill climbing algorithm is used in the Cheng-Church algorithm and is combined
with a graph hashing algorithm in SAMBA. Finally, EM or sampling methods are used for for-
mulations introducing a generative statistical model for biclusters [19, 3, 22]. The overall picture
seems to support a view stressing the importance of statistical models and scoring scheme and re-
stricting the role of the search/optimization algorithm todiscovering relatively bold structures. A
current important goal for the research community is to improve our understanding of the pros and
cons of the various modeling approaches described here, andto enable more focused algorithmic
efforts on the models that prove most effective.

8.3 Quo vadis biclustering?

Biclustering is a relatively young area, in contrast to its parent discipline, clustering, that has a
very long history going back all the way to Aristo. It has great potential to make significant
contributions to biology and to other fields. Still, some of the difficulties that haunt clustering are
present and are even exacerbated in biclustering: Multipleformulations and objective functions,
lack of theoretical and complexity analysis for many algorithms, and few criteria for comparing
the quality of candidate solutions. Still, the great potential of the paradigm of biclustering, as
demonstrated in studies over the last five years, guaranteesthat the challenge will continue to be
addressed. In time, the concrete advantages and disadvantages of each formulation and algorithm
will be made clearer. We anticipate an exciting and fruitfulnext decade in biclustering research.
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