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Abstract

Analysis of large scale geonomics data, notably gene esiorgshas initially focused on
clustering methods. Recently, biclustering techniqueewweoposed for revealing submatrices
showing unique patterns. We review some of the algorithrpjgr@aches to biclustering and
discuss their properties.

1 Introduction

Gene expression profiling has been established over theléaside as a standard technique for
obtaining a molecular fingerprint of tissues or cells ingliént biological conditions [18, 7]. Based
on the availability of whole genome sequences, the teclgyotd DNA chips (or microarrays)
allows the measurement of mMRNA levels simultaneously fouiands of genes. The set (or vector)
of measured gene expression levels under one conditiorafoplg) are called thprofile of that
condition. Gene expression profiles are powerful sourcesfofmation and have revolutionized
the way we study and understand function in biological systfl].

Given a set of gene expression profiles, organized togethaigane expression matrixith
rows corresponding to genes and columns correspondingnditians, a common analysis goal
is to group conditions and genes into subsets that convdgdial significance. In its most
common form, this task translates to the computationallpralknown asclustering Formally,
given a set of elements with a vector of attributes for eaeimeht, clustering aims to partition
the elements into (possibly hierarchically ordered) digjeets, called clusters, so that within each
set the attribute vectors are similar, while vectors ofaligj clusters are dissimilar. For example,
when analyzing a gene expression matrix we may apply ciagtéw the genes (as elements) given
the matrix rows (as attributes) or cluster the conditiorssdl@ments) given the matrix columns (as
attributes). For reviews on clustering see an earlier @raptthis book. Analysis via clustering
makes several a-priori assumptions that may not be peyfadédquate in all circumstances. First,
clustering can be applied to either genes or samples, iitipliirecting the analysis to a particular
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Figure 1: Clustering and biclustering of a gene expressiatrima Clusters correspond to disjoint
strips in the matrix. A gene cluster must contain all colupam a condition cluster must contain
all rows. Biclusters correspond to arbitrary subsets ofsyawd columns, shown here as rectangles.
Note that since gene (condition) clusters are disjoint,rtves (columns) of the matrix can be
reordered so that each cluster is a contiguous strip. Simatardering of rows and columns that
shows all the biclusters as rectangles is usually impassibl

aspect of the system under study (e.g., groups of patiegt®aps of co-regulated genes). Second,
clustering algorithms usually seek a disjoint cover of ted elements, requiring that no gene or
sample belongs to more than one cluster.

The notion of a bicluster gives rise to a more flexible compaoteal framework. Abiclusteris
defined as a submatrix spanned by a set of genes and a set désdogmpare Figure 1). Alter-
natively, a bicluster may be defined as the corresponding gad sample subsets. Given a gene
expression matrix, we can characterize the biological phema it embodies by a collection of
biclusters, each representing a different type of jointawétr of a set of genes in a corresponding
set of samples. Note that there are no a-priori constraimthie organization of biclusters and in
particular, genes or samples can be part of more than oneskeclor of no bicluster. The lack
of structural constrains on biclustering solutions allaymsater freedom but is consequently more
vulnerable to overfitting. Hence, biclustering algorithmast guarantee that the output biclusters
are meaningful. This is usually done by an accompanyingstitatl model or a heuristic scor-
ing method that define which of the many possible submatriggiesent a significant biological
behavior. Thebiclustering problems to find a set of significant biclusters in a matrix.

In clinical applications, gene expression analysis is doméissues taken from patients with
a medical condition. Using such assays, biologists havstifted molecular fingerprints that can
help in the classification and diagnosis of the patient statd guide treatment protocols [2, 16].
In these studies, the focus is primarily on identifying desfiof expression over a subset of the
genes that can be associated with clinical conditions agatrtrent outcomes, where ideally, the
set of samples is equal in all but the subtype or the stagedafifease. However, a patient may be a
part of more than one clinical group, e.g., may suffer fromdspme A, have a genetic background
B and be exposed to environment C. Biclustering analyskuis highly appropriate for identifying



and distinguishing the biological factors affecting theigrats along with the corresponding gene
subsets.

In functional genomics applications, the goal is to underdtthe functions of each of the genes
operating in a biological system. The rationale is that gemih similar expression patterns are
likely to be regulated by the same factors and therefore nhayesfunction. By collecting ex-
pression profiles from many different biological conditsoand identifying joint patterns of gene
expression among them, researchers have characterimasdriional programs and assigned pu-
tative function to thousands of genes [23, 11, 8]. Since géwe multiple functions, and since
transcriptional programs are often based on combinataallation, biclustering is highly appro-
priate for these applications as well.

An important aspect of gene expression data is their higbeleivels. DNA chips provide only
rough approximation of expression levels, and are subjeetrbrs of up to two-fold the measured
value [1]. Any analysis method, and biclustering algorighim particular, should therefore be
robust enough to cope with significant levels of noise.

Below we survey some of the biclustering models and algarstthat were developed for gene
expression analysis. Our coverage is not exhaustive, andssd toward what we believe are the
more practical methods. We attempt to cover at least oneaddtbm each class of algorithms
under development. We do not review methods that are basexitended biological models (e.g.,
inferring regulation or integrating data types [19, 24]ut iocus on algorithms for biclustering
per-se. Throughout, we assume that we are given a set of gémeset of conditiond/, and a
gene expression matrik = (e,,) wheree,, is the expression level of genein sampleu. We
assume that the matrix is normalized, though some of theitigos below perform additional
normalization. AbiclusterB = (U’, V') is defined by a subset of gen€$ C 1V and a subset of
conditions (or sampleg)’ C U. Different algorithmic approaches to the biclusteringlgem use
different measures for the quality of a given biclusteringution. We therefore define the goal
function of each algorithm as part of its description.

2 Chengand Church’sAlgorithm

Cheng and Church were the first to introduce biclusteringetioegexpression analysis [6]. Their
algorithmic framework represents the biclustering prabkes an optimization problem, defining a
score for each candidate bicluster and developing hecsii solve the constrained optimization
problem defined by this score function. In short, the comstisdorce the uniformity of the matrix,
the procedure gives preference to larger submatrices a&tuktlhistic is a relaxed greedy algorithm.
Cheng and Church implicitly assume that (gene, conditi@amsgn a “good” bicluster have a
constant expression level, plus possibly additive row asidran specific effects. After removing
row, column and submatrix averages, the residual level lshbe as small as possible. More
formally, given the gene expression matfix a subset of genesand a subset of conditions

we definee;; = Liies % (row subset average); = Lses % (column subset average) ang, =

1] [J]
. . €ij . . . . .
% (submatrix average). We define tresidue scoref an element;; in a submatrixt;;
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asRS;,(i,7) = e;; — erj — e;y + €7, and themean square residue scavéthe entire submatrix as

H(I,J)=Ycrjes % The intuition behind this definition can be understood wia examples:

a completely uniform matrix will have score zero. More geligr any submatrix in which all
entries have the form;; = b; + ¢; would also have score zero. Given the score definition, the
maximum bicluster probleseeks a bicluster of maximum size among all biclusters vaitihesnot
exceeding a thresholl The size can be defined in several ways, for example as théemoh
cells in the matrix (7||.7]) or the number of rows plus number of columng ¢ |.7|).

The maximum bicluster problem is NP-hard if we force all $iwins to be square matrices
(II| = |.J]) or if we use the total number of submatrix cells as our opation goal (Reductions
are from Maximum Balanced Biclique or Maximum Edge Bicliju€heng and Church suggested
a greedy heuristic to rapidly converge to a locally maximabreatrix with score smaller than
the threshold. The algorithm (presented in Figure 2) canib&ed as a local search algorithm
starting from the full matrix. Given the threshold parameiethe algorithm runs in two phases.
In the first phase, the algorithm removes rows and columns fitee full matrix. At each step,
where the current submatrix has row geand column set/, the algorithm examines the set of
possible moves. For rows it calculatég) = ﬁ Y jes RS1.s(1, j) and for columns it calculates
e(j) = ‘17‘ Yicr RS15(4, 7). It then selects the highest scoring row or column and resdve
from the current submatrix, as long &5(7,.J) > §. The idea is that rows/columns with large
contribution to the score can be removed with guaranteedawgmnent (decrease) in the total mean
square residue score. A possible variation of this hearistinoves at each step all rows/columns
with a contribution to the residue score that is higher th@me threshold.

In the second phase of the algorithm, rows and columns ang laeided, using the same scoring
scheme, but this time looking for the lowest square resid@gse(;) at each move, and terminat-
ing where none of the possible moves increases the matexvgihout crossing the threshodd
Upon convergence, the algorithm outputs a submatrix withrteean residue and locally maximal
size.

To discover more than one bicluster, Cheng and Church stegjespeated application of
the biclustering algorithm on modified matrices. The modiien includes randomization of the
values in the cells of the previously discovered biclustersventing the correlative signal in them
to be beneficial for any other bicluster in the matrix. This bi@e obvious effect of precluding the
identification of biclusters with significant overlaps.

An application of the algorithm to yeast and human data isrilesd in [6]. The software is
available at http://arep.med.harvard.edu/biclustering



Cheng-Churct(, V, FE, 9):

U : conditions.V : genes.

FE . Gene expression matrix.

0: maximal mean square residue score.

. €]
Definee;; = Zf[" :

. . €ij
Definee;; = fo,f !

) . . €;i
Definee;; = 726‘;‘1‘%’ !

DefineRS[,;(i,j) =€jj — €15 — €5y +ery

2
DefineH (I,.J) = Zie,’je, ‘RTTJJ‘
Initialize a bicluster(I, J) with I = U, J = V.
Deletion phase:
While (H (1, J) > ) do
Compute fori € I, d(i) = ‘]7‘ Y jes BRSr (i, 7).
Compute forj € J,e(j) = ‘17‘ Sicr RS1,(i, 7).
If maxicid(i) > maxjcse(j) assignl = I\ {argmaz;(d(i))}.
ElseJ = J \ {argmaz;(e(j))}
Addition phase:
assignl’ =1,J" =
While (H (', J') < 6) do
Assignl =1',J =.J
Compute fori € U \ I, d(i) = ‘]7‘ Y jes BRSr (i, 7).
Compute forj € V' \ J, e(j) = ﬁ Sicr BSr.a(i, ).
If mazicrd(i) < maz;cye(j) assignl’ = I U {argmax;(d(i))}.
ElseJ' = JU {argmaz;(e(j))}
Report/, J

Figure 2: The Cheng-Church algorithm for finding a singlduster.

3 Coupled Two-way Clustering

Coupled two-way clustering (CTWC), introduced by Getz, inbevand Domany [9], defines a
generic scheme for transforming a one-dimensional clugeaigorithm into a biclustering algo-
rithm. The algorithm relies on having a one-dimensionar{dard) clustering algorithm that can
discover significant (termestablein [9]) clusters. Given such an algorithm, the coupled twayw
clustering procedure will recursively apply the one-dirsienal algorithm to submatrices, aiming
to find subsets of genes giving rise to significant clustersooiditions and subsets of conditions
giving rise to significant gene clusters. The submatricémee by such pairings are calletable
submatricesand correspond to biclusters. The algorithm, which is showFigure 3, operates on
a set of gene subsetsand a set of condition subséts Initially V = {V'} andi/ = {U}. The



algorithm then iteratively selects a gene suliSet V and a condition subsét’ € ¢/ and applies
the one dimensional clustering algorithm twice, to clusteandU’ on the submatrix)’ x V'. If
stable clusters are detected, their gene/condition ssibsetadded to the respective sgi$/. The
process is repeated until no new stable clusters can be fdlneimplementation makes sure that
each pair of subsets is not encountered more than once.

Note that the procedure avoids the consideration of all rameg column subsets, by starting
from an established row subset when forming subclusterstabéshed column subsets, and vice
versa. The success of the coupled two-way clustering giyatepends on the performance of the
given one-dimensional clustering algorithm. We note thabhypopular clustering algorithms (e.g.
K-means, Hierarchical, SOM) cannot be plugged "as is” iht® ¢oupled two-way machinery, as
they do not readily distinguish significant clusters frornsgignificant clusters or make a-priori
assumption on the number of clusters. Getz et al. have epgvod results using the SPC
hierarchical clustering algorithm [10]. The results of #igorithm can be viewed in a hierarchical
form: each stable gene (condition) cluster is generategingivcondition (resp. gene) subset. This
hierarchical relation is important when trying to undergtéhe context of joint genes or conditions
behavior. For example, when analyzing clinical data, Getal.e have focused on gene subsets
giving rise to stable tissue clusters that are correlatMeniown clinical attributes. Such gene sets
may have an important biological role in the disease undetyst

The CTWC algorithm has been applied to a variety of clinicatladsets (see, e.g., [17]), the
software can be downloaded via the site http://ctwc.weiamec.il.



TWOWAY (U, V, E, ALG):
U : conditions.V : genes.
FE . Gene expression matrix.
ALG : one-dimensional clustering algorithm. Inputs a matrid antputs significant (stable)
clusters of columns or rows
Initialize a hash tableveight
Initialize Uy = {U}, V1 = {V}
Initializetd =0,V =0
Initialize the sets hierarchy tablgy storing for gene clusters the condition subsets used torgtntem.
Initialize the sets hierarchy tablg;; storing for condition clusters the gene subsets used torgenthem.
While (U # 0 orv, # @) do
Initialize empty setéfs, Vs.
For all (U',V') € (Uh x V1)U (Uy x V)U (U x Vy) do
Run ALG(Eyy) to cluster the genes ivi’:
Add the stable gene setsta
SetHy [V"] = U’ for all new clusterd’".
Run ALG(Eyy) to cluster the conditions it':
Add the stable condition sets 6
SetH[U"] = V' for all new clusterd/”.
Assignld =UUU, YV =V UV,
Assignif; = U, Vi1 = Vs
Reportl/, V and their hierarchieély;, Hy, .

Figure 3: Coupled two-way clustering.

4 Thelterative Signature Algorithm

In the Iterative Signature Algorithm (ISA) [12, 5] the nati@f a significant bicluster is defined
intrinsically on the bicluster genes and samples — the sesnpl a bicluster uniquely define the
genes and vice versa. The intuition is that the genes in adi@l are co-regulated and, thus,
for each sample the average gene expression over all theutecks genes should be surprising
(unusually high or low) and for each gene the average genegsion over all biclusters samples
should be surprising. This intuition is formalized usingmle linear model for gene expression
assuming normally distributed expression levels for eaategr sample as shown below.

The algorithm, presented in Figure 4, uses two normalizgulesoof the original gene expres-
sion matrix. The matrix2“ has rows normalized to mean 0 and variance 1 and the matrix
has columns normalized similarly. We denotedjy., the mean expression of genes frdmin
the samples and bye{,, the mean expression of the gemen samples froml/’. A bicluster
B = (U', V") is required to have:

U'={uelU: \efv,| >Teoch, V' ={veV: \eﬁ,v

> T(;O'(;} (1)



Here T is the threshold parameter ang is the standard deviation of the meas, wherew
ranges over all possible genes drilds fixed. Similarly,7¢, o are the corresponding parameters
forthe column set’. The idea is that if the genes ¥ are up- or down-regulated in the conditions
U’ then their average expression should be significantly far, (I; standard deviations) from
its expected value on random matrices (which is 0 since theixria standardized). A similar
argument holds for the conditions ifi. The standard deviations can be predicte s ﬁ

being a linear sum ofU’| (or |V'|) independent standard random variables. Alternativélg, t
standard deviations can be estimated directly from the, dat@ecting for possible biases in the
statistics of the specific condition and gene sets used hier @tords, in a bicluster, thescore of
each gene, measured w.r.t. the bicluster’'s samples, andgdbere of each sample, measured w.r.t.
the bicluster's samples, should exceed a threshold. As i ste below, ISA will not discover
biclusters for which the conditions (1) hold strictly, builvase a relaxed version.

The algorithm starts from an arbitrary set of gefgs= V;,,. The set may be randomly gener-
ated or selected based on some prior knowledge. The algotiten repeatedly applies the update
eguations:

U={uelU: ‘efv,;| > Teoct, Vipn={veV: |e§w| > Tgog} (2)
The iterations are terminated at stegatisfying:

|Vn7i \ anz?] |
< €
|Vn7i U anz?] |

3)

for all i smaller than some:. The ISA thus converges to an approximated fixed point that is
considered to be a bicluster. The actual fixed point dependsoth the initial set;, and the
threshold parameteff., T;. To generate a representative set of biclusters, it is plestd run
ISA with many different initial conditions, including knawsets of associated genes or random
sets, and to vary the thresholds. After eliminating reduegss (fixed points that were encountered
several times), the set of fixed points can be analyzed ascd Befusters.

The ISA algorithm can be generalized by assigning weightseézh gene/sample such that
genes/samples with a significant behavior (highsrcore) will have larger weights. In this case,
the simple means used in (1) and (2) are replaced by weightedsn

The signature algorithm has been applied for finding cisHatgry modules in yeast ([12])
and for detecting conserved transcriptional modules acseseral species ([4]). For software see
http://barkai-serv.weizmann.ac.il/GroupPage/.



|SA(U, V,FE, Vm, Ta, Tc, m, 6)2
U : conditions.V : genes.
E : Gene expression matrix.
Vin & Initial gene set.
Ta, Te: gene and condition-score thresholds.
m, €. stopping criteria.
Construct a column standardized matfi% .
Construct a row standardized mati’.
Initialize countersy = 0,n' = 0.
Initialize the current genes s&t = V,,
Initialize an empty condition séf’.
While (n — n’ < m) do
Computee,,, = “}—,‘ Spevr €5, foru € U.
U'={uecU: e, |> 1}

VIV

Computeef:, = mm Yyer €4, forv € V.
VII — VI

— . |,G Ta
V! _,{U”e Vi lep,| > S5}
if (% <€) thenn' =n
n=n+1

ReportU’, V'

Figure 4: The ISA algorithm for finding a single bicluster.

5 TheSAMBA Algorithm

The SAMBA algorithm (Statistical-Algorithmic Method fori@uster Analysis) [24, 20] uses prob-
abilistic modeling of the data and graph theoretic techesio identify subsets of genes tiantly
respondacross a subset of conditions, where a gene is teresgabndingn some condition if its
expression level changes significantly at that conditiart.vits normal level. Within the SAMBA
framework, the expression data are modeled as a bipartghgvhose two parts correspond to
conditions and genes, respectively, with edges for sigmitiexpression changes. The vertex pairs
in the graph are assigned weights according to a probabihsbdel, so that heavy subgraphs
correspond to biclusters with high likelihood. Discoveyithe most significant biclusters in the
data reduces under this weighting scheme to finding the éssiibgraphs in the model bipartite
graph. SAMBA employs a practical heuristic to search foiMyesubgraphs. The search algorithm
is motivated by a combinatorial algorithm for finding heavigligjues that is exponential in the
maximum gene degree in the graph.

In the following we describe the probabilistic model usedB&yMBA and the theoretical algo-
rithm on which the search method is based. Finally, the fAMBA algorithm is presented.

Applications of SAMBA for gene expression data are desdiime[25]. SAMBA was also



applied to highly heterogeneous data, including expresgibenotype growth sensitivity, protein-
protein interaction and ChIP-chip data [24]. The softwaravailable as part of the Expander
package [20, 21].

51 Statistical Data Modeling

The SAMBA algorithm is based on representing the input esgion data as a bipartite graph
G = (U,V, E). In this graph[U is the set of conditiond/ is the set of genes, anld, v) € E iff v
responds in condition, that is, if the expression level efchanges significantly in. A bicluster
corresponds to a subgragh = (U, V', E') of GG, and represents a subdét of genes that are
co-regulated under a subset of conditiéfis Theweightof a subgraph (or bicluster) is the sum of
the weights of gene-condition pairs in it, including edged aon-edges.

Coupled with the graph representation is a likelihood raiodel for the data. LeH =
(U', V', E') be a subgraph of: and denotel” = (U’ x V') \ E'. For a vertexw € U' UV’
let d,, denote its degree i¥. The null model assumes that the occurrence of each edggis an
independent Bernoulli variable with paramegegr,. The probabilityp,, , is the fraction of bipartite
graphs with degree sequence identicaltthat contain the edge:, v). In practice, one estimates
puw USINg a Monte-Carlo process. This model tries to capturehizgacteristics of the different
genes and conditions in the data.

The alternative model assumes that each edge of a biclustarowith constant, high prob-
ability p.. This model reflects the belief that biclusters represept@pmately uniform relations
between their elements. The log likelihood ratio fdiis therefore:

logL(H)= > log £& + Z log

(71,,’1))€E/ p?l v ( p?l v

Setting the weight of each eddge, v) to log = > 0 and the weight of each non-edge v) to
log 11 = < 0, one concludes that the scoreffis simply its weight.

5.2 Finding Heavy Subgraphs

Under the above additive scoring scheme, discovering th&t significant biclusters in the data
reduces under this scoring scheme to finding the heaviegtapibs in the bipartite graph. Since
the latter problem is NP-hard, SAMBA employs a heuristiaslkedor such subgraphs. The search
uses as seeds heavy bicliques and we now present the undealgorithm to find good seeds. In
the rest of the section it will be convenient to assume thatdiggree of every gene is bounded by
d.

Let G = (U,V, E) be a bipartite graph with. = |V'| genes. Letv : U x V' — R be a weight
function. For a pair of subset§ C U, V' C V we denote bys(U’, V') the weight of the subgraph
induced onU’" U V', i.e., w(U", V') = Y ,corvev w((u,v)). The neighborhoodof a vertexw,
denotedV(v), is the set of vertices adjacentdon G.
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The Maximum Bounded Bicliqueroblem calls for identifying a maximum weight complete
subgraph of a given weighted bipartite gragh such that the vertices on one side®fhave
degrees bounded ki This problem can be solved i(n2¢) time (and space) as we show next.

Observe that a maximum bounded bicligié = (U*,V*, E*) in G must havelU*| < d.
Figure 5 describes a hash-table based algorithm that forestexy € V' scans allD(2¢) subsets
of its neighbors, thereby identifying the heaviest bickg&ach hash entry corresponds to a subset
of conditions and records the total weight of edges froma@at)agene vertices. The algorithm can
be shown to spen@(n2¢) time on the hashing and findirig,.;. ComputingV;.,, can be done in
O(nd) time, so the total running time i8(n24).

MaxBoundBiCliqueU, V', F, d):
Initialize a hash tableveight; weightp,s < 0
For allv € V do
For all S C N(v) do
weight]S] <weight[S]+
max{0,w(S, {v})}
If (weight[S] > weightyest)
Ubest < S
weightpes < weight[S]
ComputeVyesr = Nuer,,,, N (1)
Output Upests Viest)

Figure 5: An algorithm for the maximum bounded biclique pgesb.

Note that the algorithm can be adapted to givektuondition subsets that induce solutions of
highest weight ir0(n2% log k) time using a priority queue data structure.

5.3 TheFull Algorithm

Having described the two main components of SAMBA, we are neady to present the full
algorithm, which is given in Figure 6. SAMBA proceeds in twogses. First, the model bipartite
graph is formed and the weights of vertex pairs are compusstond, several heavy subgraphs
are sought around each vertex of the graph. This is done ynsfavith good seeds around the
vertex and expanding them using local search. The seedsuane tising the hashing technique
of the algorithm in Figure 5. To save on time and space therigihgo ignores genes with degree
exceeding some threshold, and hash for each gene only subsets of its neighbors of azgngy
from N; to N,. The local improvement procedure iteratively applies testimodification to the
current bicluster (addition or deletion of a single vertaxr}il no score improvement is possible.
The greedy process is restricted to search around the behgthout performing changes that
would eliminate vertices in it or make vertices in it reduntighaving a total negative contribution

11



to the bicluster score). To avoid similar biclusters whoseex sets differ only slightly, a final step
greedily filters similar biclusters with more thd¥. overlap.

SAMBA(U,V, E, w, d, N1, No, k):
U . conditions.V : genes.
E : graph edgesw : edge/non-edge weights.
N1, Ny : condition set hashed set size limits: max biclusters per gene/conditio
Initialize a hash tableveight
For all v € V with |[N(v)| < ddo

For all S C N(v) with Ny < |S| < N, do

weight[S] < weight[S] + w(S, {v})

For eachw € V setbest[v][1... k] to thek heaviest set§ such thaw € S
For eachw € V and each of thé setsS = best[v][i]

V!« ﬁuesN(U)-

B+ SuUV'.

Do {

a = argmazzevuy(w(B Uz))

=)

b= argmazyep(w(B \ z))
If w(BUa)>w(B\b)thenB =B UaelseB=DB\b
} whileimproving
StoreB.
Post process to filter overlapping biclusters.

Figure 6: The SAMBA biclustering algorithm.

6 Spectral Biclustering

Spectral biclustering approaches use techniques frorari@gebra to identify bicluster structures
in the input data. Here we review the biclustering technigresented in Kluger et al. [13]. In
this model, it is assumed that the expression matrix hasd@ehidheckerboard-like structure that
we try to identify using eigenvector computations. The&nre assumption is argued to hold for
clinical data, where tissues cluster to cancer types andgyelnster to groups, each distinguishing
a particular tissue type from the other types.

To describe the algorithm, suppose at first that the mdirhas a checkerboard-like structure
(see Figure 7). Obviously we could discover it directly, imat could also infer it using a technique
from linear algebra that will be useful in case the structisrénidden due to row and column
shufflings. The technique is based on a relation betweenltdwok Istructure ofE’ and the block
structure of pairs of eigenvectors f&rE? and E* £/, which we describe next. First, observe that
the eigenvalues of E7 and ET E are the same. Now, consider a veciothat isstepwisei.e.,
piecewise constant, and whose block structure matchesfttia rows of . Applying F to = we
get a stepwise vectay. If we now applyE” to y we get a vector with the same block structure
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asz. The same relation is observed when applying fi¥étand thenE (see Figure 7). Hence,
vectors of the stepwise pattern ofform a subspace that is closed und€rE. This subspace is
spanned by eigenvectors of this matrix. Similarly, eigetwes of EE” span the subspace formed
by vectors of the form of). More importantly, taking now: to be an eigenvector df’ £ with an
eigenvalue\, we observe thaj = Ez is an eigenvector off E? with the same eigenvalue.

=y, E'y=

&
Q
Il
S O 00 0o
S O 00 0o
N NN
=~ s 1~
ol Ot W W
ol Ot W W
o D QL
W W =1 =1 o oo
W W =1 =1 0o oo
L U Oy O
L U Oy O
o 0O [
=

o o oS Q2

Figure 7: An example of a checkerboard-like matfixand the eigenvectors df£” and E™ E.
The vectorr satisfies the relatio” Ex = ETy = 2’ = \z. Similarly, y satisfies the equation
EETy = EXz = \y.

In conclusion, the checkerboard-like structurefis reflected in the stepwise structures of
pairs of EET and ET E eigenvectors that correspond to the same eigenvalue. @rfincethese
eigenvector pairs by computing a singular value decomipositf £. Singular value decom-
position is a standard algebraic technique (cf. [15]) thairesses a real matrik as a product
E = AABT, whereA is a diagonal matrix and and B are orthonormal matrices. The columns
of A andB are the eigenvectors & E? andE’ E, respectively. The entries df are square roots
of the corresponding eigenvalues, sorted in a non-inangamider. Hence the eigenvector pairs are
obtained by taking for eachtheith columns of4 and B, and the corresponding eigenvalue is the
AZ.

For any eigenvector pair, one can check whether each of tttengecan be approximated using
a piecewise constant vector. Kluger et al. use a one-dirmeabli-means algorithm to test this fit.
The block structures of the eigenvectors indicate the bkiakctures of the rows and columns of
FE.

In the general case, the rows and columng adre ordered arbitrarily, and the checkerboard-
like structure, if ' has one, is hidden. To reveal such structure one computesrelar value
decomposition of2 and analyzes the eigenvectorsfof’ and E” E. A hidden checkboard struc-
ture will manifest itself by the existence of a pair of eigeators (one for each matrix) with the
same eigenvalue, that are approximately piecewise cansere can determine if this is the case
by sorting the vectors or by clustering their values, as dor&3].

Kluger et al. further discuss the problem of normalizing ¢feme expression matrix to reveal
checkerboard structures that are obscured, e.g., duefevafites in the mean expression levels
of genes or conditions. The assumed model for the data is @iphizdtive model, in which the
expression level of a genén a conditiony is its base level times a gene term, which corresponds to
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the gene’s tendency of expression under different conttibmes a condition term, that represents
the tendency of genes to be expressed under conditiorhe normalization is done using two
normalizing matrices:R, a diagonal matrix with the mean of rowat the:th position; andC,
a diagonal matrix with the mean of columnat the jth position. The block structure df is
now reflected in the stepwise structure of pairs of eigemrsalvith the same eigenvalue of the
normalized matrices/ = R'EC—'ET and M”. These eigenvector pairs can be deduced by
computing a singular value decomposition®f'/? EC~'/2. Due to the normalization, the first
eigenvector pair (corresponding to an eigenvalue of 1)mstant and can be discarded. A summary
of the biclustering algorithm is given in Figure 8.

The spectral algorithm was applied to human cancer datatanelsults were used for classifi-
cation of tumor type and identification of marker genes [13].

Spectraly/, V, E):

U : conditions.V : genes.

E,«m . Gene expression matrix.

ComputeR = diag(E - 1,,) andC = diag(1L - E).

Compute a singular value decompositionfdf!/2 EC—1/2,

Discard the pair of eigenvectors corresponding to the Erggenvalue.

For each pair of eigenvectors, v of R-'EC~'ET andC~'E” R~' E with the same eigenvalue d
Apply k-means to check the fit ef andv to stepwise vectors.

Report the block structure of theip v with the best stepwise fit.

O

Figure 8: The spectral biclustering algorithm.

7 Plaid Models

The Plaid model [14] is a statistically inspired modelingpagach developed by Lazzeroni and
Owen for the analysis of gene expression data. The basidsdeaepresent the genes-conditions
matrix as a superposition ddéyers corresponding to biclusters in our terminology, whereheac
layer is a subset of rows and columns on which a particulaosealues takes place. Different
values in the expression matrix are thought of as differetdrs, as in (false colored) “heat maps”
of chips. This metaphor also leads to referring to “coloengity” in lieu of “expression level”.
The horizontal and vertical color lines in the matrix copesding to a layer give the method its
name.

The model assumes that the level of matrix entries is the ununiform background (“grey”)
and of k£ biclusters each coloring a particular submatrix in a cartaay. More precisely, the
expression matrix is represented as

K
Aij = po+ Y bijpirkijn
=1
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where, is a general matrix background color, aé\g, = s + a,, + 55, Where,, describes
the added background color in bicluster and are row and column specific additive constants
in biclusterk. p;x € {0,1} is a gene-bicluster membership indicator variable, jpg.,= 1 iff
genei belongs to the gene set of tketh bicluster. Similarlyx,, € {0,1} is a sample-bicluster
membership indicator variable. Hence, similar to Cheng@hdrch [6], a bicluster is assumed to
be the sum of bicluster background level plus row-specifet @lumn-specific constants.

When the biclusters form &-partition of the genes and a correspondingartition of the
samples, théisjointness constrainthiat biclusters cannot overlap can be formulatef as: ;;, <
1 for all 7, >, pir < 1 for all i. Replacing< by = would require assignment of each row or
column toexactlyone bicluster. Generalizing to allow bicluster overlap giyrmeans removing
the disjointness constraints.

The general biclustering problem is now formulated as figgiarameter values so that the re-
sulting matrix would fit the original data as much as possibmmally, the problem is minimizing

K
S TAG = Oijrpickijn]? (4)
ij k=0
where iy = 0;j0. If yy, oOr 3, are used, then the constrains piycix = 0 0r 35 k3B, = 0
are added to reduce the number of parameters. Note that thearwf parameters is at most
k + 1+ kn + km for thef variables, andn + km for the x andp variables. This is substantially
smaller than thexm variables in the original data, if << max(n, m).

7.1 Estimating Parameters

Lazzeroni and Owen propose to solve problem (4) using aatiter heuristic. New layers are
added to the model one at a time. Suppose we have fixed th&Tirst layers and we are seeking
for the K -th layer to minimize the sum of squared errors. Let

K—-1
ZHED = Ay Y Oiepiikgn (5)
k=0

be theresidual matrixafter removing the effect of the firgt — 1 layers. In iteration’ we wish to
solve the following quadratic integer program.

min QW) =1y" ?:1(21'(,7[(7]) — 01k Pik KK )
st X pigoik =0, XKk =0 (6)
Pik € {0, 1}, Kjx € {0, 1}

The proposed heuristic method to solve (6) is again itezatio avoid confusion we call the
iterations for fixedK cycles and indicate the cycle number by a superscript in pareathesg.
6. The integrality constraints are ignored throughout, amel goal is to solve corresponding
relaxation of it. A cycle is done as follows: Compute the bedties of thed parameters given
fixed p andx values; Compute the best values of thearameters given netvand the old: values;
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Compute the best values of thgparameters given the neédand the ol values. In order to avoid
“locking in” of the membership variables to 0 or 1, their veduare changed only modestly on the
first cycle, and they are allowed to become integral only affitmal cycle.

The following optimal parameter values in the relaxed \@rnf (6) are obtained by using
Lagrange multipliers:

i piKﬁjKZin(il
M S (S k)
i — 552" — pwepini) i ®)

2
PiK YojK KiK

(7)

zi(Zi(jKil) - MKPiKKjK)PiK
RiK DK P?K
So, in cycles, we use these equations to updéte using the old valueg® ") andx*~1. The
values forp;x ands; that minimize Q are:

Bix =

(9)

2 ginlinZin(fl
35 07k
ik = i ik pin Zh
' > 91‘2_7';(0@2;(
At cycle s, we use these equations to updgte from #¢*) andx*~1, and update:*) from #¢*) and
p~1. The complete updating process is repeated a prescribedaenohcycles.

(10)

PiKk =

(11)

7.2 Initialization and Stopping Rule

The search for a new layéf in the residual matrixz;; = Zﬁf() requires initial values op andx.
These values are obtained by finding vectomsndv and a real valué\ so that\uv” is the best
rank one approximation of. We refer the readers to the original paper for details.

Intuitively, each iteration “peels off” another signal &xyand one should stop aftar — 1 it-
erations if the residual matriX;; = ZZ%-K) contains almost only noise. Lazzeroni and Owen define
theimportanceof layerk by op = >7_, >, pikmjkefjk. The algorithm accepts a layer if it has
significantly larger importance than in noise. To evalugten noise, repeat the following pro-
cess!’ times: Randomly permute each row #hindependently, and then randomly permute each
column in the resulting matrix independently. Apply thedafinding algorithm on the resulting
matrix, and compute the importance of that layerifexceeds the importance obtained for all the
T randomized matrices, add the new lay€éto the model.

The complete algorithm is outlined in figure 9.

Plaid models have been applied to yeast gene expressioflddtarhe software is available
at http://www-stat.stanford.edubwen/plaid.
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PladU, V, E, S):
U : conditions.V : genes.
E : Gene expression matrix.
S: maximum cycles per iteration.
SetK =0
adding a new layer:
K=K+1
Compute initial values oﬁg(}%,pgg. Sets =1
While (s < S) do:
Computeugﬁ), af;) ﬁﬁz using equations (7)- (9).
Computeﬁgj) using equations (11)
Computep(,ﬁ) using equations (10)
If pgj) > 0.5 setpgﬁ) = 0.5+ s5/25, else sebgj) =0.5—-15/28
If £ > 0.5 sets's) = 0.5+ 5/29, else set'y) = 0.5 — 5/28
If the importance of layekK is non random then record the layer and repeat
Else exit.
Report layerd, ..., K — 1.

Figure 9: The Plaid model algorithm.

8 Discussion

The algorithms presented above demonstrate some of theaagyes developed for the identifica-
tion of bicluster patterns in large matrices, and in gena&sgion matrices in particular. One can
roughly classify the different methods a) by their model andring schemes and b) by the type of
algorithm used for detecting biclusters. Here we brieflyeavhow different methods tackle these
issues.

8.1 Modd and score

To ensure that the biclusters are statistically significaath of the biclustering methods defines a
scoring scheme to assess the quality of candidate bichstea constraint that determines which
submatrices represent significant bicluster behavior.sGamt based method include the iterative
signature algorithm, the coupled two-way clustering mdtaod the spectral algorithm of Kluger
et al. In the first two, we search for gene (property) sets dedine "stable” subsets of proper-
ties (genes). In the last, the requirement is for compdijbilf certain eigenvectors to a hidden
checkboard-like matrix structure.

Scoring based methods typically rely on a background mautethfe data. The basic model
assumes that biclusters are essentially uniform subreatand scores them according to their
deviation from such uniform behavior. More elaborate mea@ébw different distributions for each
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condition and gene, usually in a linear way. Such are, fonrg{a, the Cheng-Church algorithm
and the Plaid model and the alternative formulation in [Z2nore formal statistical model for an
extended formulation of the biclustering problem was usgd 9, 3]. In this family of algorithms
a complete generative model including a set of biclustedsthair regulation model is optimized
for maximum likelihood given the data. Another approachtfe@ modeling of the data is used in
SAMBA, where a degree-preserving random graph model argdiliiod ratio score are used to
ensure biclusters significance.

8.2 Algorithmic approaches

The algorithmic approaches for detecting biclusters gihendata are greatly affected by the type
of score/constraint model in use. Several of the algorithiteynate between phases of gene sets
and condition sets optimization. Such are, for examplejtdrative signature algorithm and the
coupled two-way clustering algorithm. Other methods uaadsrd linear algebra or optimization
algorithms to solve key subproblems. Such is the case foPkaie model and the Spectral algo-
rithm. A heuristic hill climbing algorithm is used in the Qmg-Church algorithm and is combined
with a graph hashing algorithm in SAMBA. Finally, EM or sanmg methods are used for for-
mulations introducing a generative statistical model fiofusters [19, 3, 22]. The overall picture
seems to support a view stressing the importance of staistiodels and scoring scheme and re-
stricting the role of the search/optimization algorithndiscovering relatively bold structures. A
current important goal for the research community is to iowerour understanding of the pros and
cons of the various modeling approaches described hergpasmthble more focused algorithmic
efforts on the models that prove most effective.

8.3 Quo vadisbiclustering?

Biclustering is a relatively young area, in contrast to itggnt discipline, clustering, that has a
very long history going back all the way to Aristo. It has grgatential to make significant
contributions to biology and to other fields. Still, some loé difficulties that haunt clustering are
present and are even exacerbated in biclustering: Multgelaulations and objective functions,
lack of theoretical and complexity analysis for many altfons, and few criteria for comparing
the quality of candidate solutions. Still, the great patdmf the paradigm of biclustering, as
demonstrated in studies over the last five years, guaratitaethe challenge will continue to be
addressed. In time, the concrete advantages and disageardbeach formulation and algorithm
will be made clearer. We anticipate an exciting and fruitfekt decade in biclustering research.
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