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Outline

• Overview of cluster analysis.

• Clustering gene expression data.

• Clustering methods

– Partitioning methods.

– Hierarchical methods.

• Estimating the number of clusters.

• Other topics

– Inference.

– Outliers.

– Hybrid methods.

– Bagged clustering.
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Supervised vs. unsupervised learning

Task. Assign objects to classes on the basis of measurements made
on these objects.

Unsupervised learning. The classes are unknown a priori and
need to be “discovered” from the data.
a.k.a. cluster analysis; class discovery; unsupervised pattern recognition.

Supervised learning. The classes are predefined and the task is
to understand the basis for the classification from a set of labeled
objects. This information is then used to classify future
observations.
a.k.a. classification; discriminant analysis; class prediction; supervised

pattern recognition.
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Cluster analysis

Associated with each object is a set of G measurements which form
the feature vector, X = (X1, . . . , XG). The feature vector X
belongs to a feature space X (e.g., �G).

The task is to identify groups, or clusters, of similar objects on
the basis of a set of feature vectors, X1 = x1, . . . ,Xn = xn.
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Cluster analysis

Clustering is in some sense a more difficult problem than
classification. In general, all the issues that must be addressed for
classification must also be addressed for clustering. In addition,
with clustering,

• there is no learning set of labeled observations;

• the number of groups is usually unknown;

• implicitly, one must have already selected both the relevant features

and distance measure;

• the goals can be quite vague: “Find some interesting and important

clusters in my data”;

• most of the algorithms that are appealing are computationally too

complex to have exact solutions; approximate solutions are used

instead and reproducibility becomes an issue.
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Cluster analysis

Clustering involves several distinct steps.

First, a suitable distance between objects must be defined, based
on relevant features.

Then, a clustering algorithm must be selected and applied.

The results of a clustering procedure can include both the number
of clusters K (if not prespecified) and a set of n cluster labels
∈ {1, . . . , K} for the n objects to be clustered.

Appropriate choices will depend on the questions being asked and
available data.
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Cluster analysis

Clustering procedures fall into two broad categories.

• Hierarchical methods, either divisive or agglomerative.
These methods provide a hierarchy of clusters, from the
smallest, where all objects are in one cluster, through to the
largest set, where each observation is in its own cluster.

• Partitioning methods. These usually require the
specification of the number of clusters. Then, a mechanism for
apportioning objects to clusters must be determined.

Most methods used in practice are agglomerative hierarchical
methods. In large part, this is due to the availability of efficient
exact algorithms.
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Distance

The feature data are often transformed to an n × n distance or
similarity matrix, D = (dij), for the n objects to be clustered.

Once a distance measure between individual observations has been
chosen, one must often also define a distance measure between
clusters, or groups of observations (e.g., average, single, and
complete linkage agglomeration).

Different choices here can greatly affect the outcome.

More details in the lecture Distances and Expression Measures.
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R clustering software

• class package: Self Organizing Maps (SOM).

• cluster package:

– AGglomerative NESting (agnes),

– Clustering LARe Applications (clara),

– DIvisive ANAlysis (diana),

– Fuzzy Analysis (fanny),

– MONothetic Analysis (mona),

– Partitioning Around Medoids (pam).

• e1071 package:

– Fuzzy C-means clustering (cmeans),

– Bagged clustering (bclust).

• mva package:

– Hierarchical clustering (hclust, cophenetic),

– k-means (kmeans).

Specialized summary, plot, and print methods for clustering results.

9



Gene expression data

Gene expression data on G genes (features) for n mRNA samples
(observations)

mRNA samples

XG×n =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xG1 xG2 . . . xGn




Genes

xgi = expression measure for gene g in mRNA sample i.

An array of conormalized arrays.
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Gene expression data

Features correspond to expression levels of different genes; possible
classes include tumor types (e.g., ALL, AML), clinical outcomes
(survival, non-survival), and are labeled by {1, 2, . . . ,K}.

Gene expression data on G genes (features) for n mRNA samples
(observations)

xi =
(
xi1, xi2, . . . , xiG

)

– gene expression profile / feature vector for sample i

yi = class for sample i, i = 1, . . . , n.

Other covariates such as age, sex may also be important and could be

included in the analysis.
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Gene expression data

Most efforts to date have involved clustering only the expression
measures collected on a number of different genes and samples.

However, there is likely to be a need for incorporating other data
into the analysis, such as sample level covariates and biological
metadata.

For example, a common task is to determine whether or not gene
expression data can reliably identify or classify different types of a
disease. However, one might ask as well whether such data improve
our ability to classify over already available sample level covariate
data.
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Clustering gene expression data

• One can cluster genes and/or samples (arrays).

• Clustering leads to readily interpretable figures.

• Clustering strengthens the signal when averages are taken
within clusters of genes (Eisen et al., 1998).

• Clustering can be helpful for identifying gene expression
patterns in time or space.

• Clustering is useful, perhaps essential, when seeking new
subclasses of cell samples (tumors, etc).

• Clustering can be used for quality control: compare array/gene
clustering results to experimental variables such as array batch,
mRNA amplification method, lab, experimenter, etc.
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Clustering gene expression data

Cluster genes (rows)

• to identify groups of co-regulated genes, e.g., using a large
number of yeast experiments;

• to identify spatial or temporal expression patterns;

• to reduce redundancy (cf. feature selection) in prediction;

• to detect experimental artifacts;

• for display purposes.

Transformations of the expression data matrix using linear
modeling may be useful in this context:

genes × arrays =⇒ genes × estimated effects.

Cf. Microarray Experimental Design and Analysis, Summer 2002.
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Clustering gene expression data

Cluster samples or arrays (columns)

• to identify new classes of biological samples, e.g., new tumor
classes, new cell types;

• to detect experimental artifacts;

• for display purposes.

Cluster both rows and columns at once.
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Clustering gene expression data

Clustering can be employed for quality control purposes. The
clusters that obtain from clustering arrays/genes should be
compared with different experimental conditions such as:

• batch or production order of the arrays;

• batch of reagents;

• mRNA amplification procedure;

• technician;

• plate origin of clones, etc.

Any relationships observed here should be considered as a
potentially serious source of bias.
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Tumor classification using gene expression data

A reliable and precise classification of tumors is essential for
successful diagnosis and treatment of cancer.

Current methods for classifying human malignancies rely on a
variety of morphological, clinical, and molecular variables.

In spite of recent progress, there are still uncertainties in diagnosis.

Also, it is likely that the existing classes are heterogeneous and
comprise diseases which are molecularly distinct and follow
different clinical courses.
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Tumor classification using gene expression data

DNA microarrays may be used to characterize the molecular
variations among tumors by monitoring gene expression profiles on
a genomic scale.

This may lead to a finer and more reliable classification of tumors,
and to the identification of marker genes that distinguish among
these classes.

Eventual clinical implications include an improved ability to
understand and predict cancer survival.
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Tumor classification using gene expression data

There are three main types of statistical problems associated with
tumor classification:

1. the identification of new tumor classes using gene expression
profiles – unsupervised learning;

2. the classification of malignancies into known classes –
supervised learning;

3. the identification of marker genes that characterize the
different tumor classes – feature selection.
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Example: Row and column clustering

Figure 1: Alizadeh et al. (2000). Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature.
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Clustering gene expression data

Preliminary questions

• Which genes / arrays to use?

• Which transformation/standardization?

• Which distance function?

• Which clustering algorithm?

Answers will depend on the biological problem.
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Clustering gene expression data

Important questions (which are generic)

• How many clusters?

• How reliable are the clustering results?

– Statistical inference: distributional properties of clustering
results.

– Assessing the strength/confidence of cluster assignments for
individual observations;

– Assessing cluster homogeneity.
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Partitioning methods

• Partition the data into a prespecified number K of mutually
exclusive and exhaustive groups.

• Iteratively reallocate the observations to clusters until some
criterion is met, e.g., minimize within-cluster sums-of-squares.

• Examples:

– k-means; extension to fuzzy k-means;

– Partitioning Around Medoids – PAM (Kaufman &
Rousseeuw, 1990);

– Self-Organizing Maps – SOM (Kohonen, 2001);

– model-based clustering,
e.g., Gaussian mixtures in Fraley & Raftery (1998, 2000)
and McLachlan et al. (2001).
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Partitioning around medoids

Partitioning around medoids or PAM of Kaufman and
Rousseeuw (1990) is a partitioning method which operates on a
distance matrix, e.g., Euclidean distance matrix.

For a prespecified number of clusters K, the PAM procedure is
based on the search for K representative objects, or medoids,
among the observations to be clustered.

After finding a set of K medoids, K clusters are constructed by
assigning each observation to the nearest medoid.
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Partitioning around medoids

The goal is to find K medoids, M = (m1, . . . ,mK), which
minimize the sum of the distances of the observations to their
closest medoid, that is,

M∗ = argminM

∑
i

min
k

d(xi,mk).

PAM can be applied to general data types and tends to be more
robust than k-means.
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Silhouette plots

Rousseeuw (1987) suggested a graphical display, the silhouette
plot, which can be used to: (i) select the number of clusters and
(ii) assess how well individual observations are clustered.

The silhouette width of observation i is defined as

sili = (bi − ai)/max(ai, bi),

where ai denotes the average distance between i and all other
observations in the cluster to which i belongs, and bi denotes the
minimum average distance of i to objects in other clusters.

Intuitively, objects with large silhouette width sili are
well-clustered, those with small sili tend to lie between clusters.
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Silhouette plots

For a given number of clusters K, the overall average silhouette
width for the clustering is simply the average of sili over all
observations i, s̄il =

∑
i sili/n.

Kaufman & Rousseeuw suggest estimating the number of clusters
K by that which gives the largest average silhouette width, s̄il.

Note that silhouette widths may be computed for the results of any
partitioning clustering algorithm.
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Partitioning around medoids
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Figure 2: Golub et al. (1999) ALL AML data. Silhouette plot for
PAM, red=ALL, blue=AML.
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PAMSIL

PAMSIL. van der Laan, Pollard, & Bryan (2001).

Replace PAM criteria function with average silhouette.

PAM PAMSIL

Criteria −∑
i mink d(xi,mk)

∑
i sili

Algorithm Steepest ascent Steepest ascent

Starting values Build PAM, random

K Given or data-adaptive Given or data-adaptive

Overall performance ”Robust” ”Efficient”

Splitting large clusters Yes No

Outliers Ignore Identify
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Hierarchical methods

• Hierarchical clustering methods produce a tree or
dendrogram.

• They avoid specifying how many clusters are appropriate by
providing a partition for each K. The partitions are obtained
from cutting the tree at different levels.

• The tree can be built in two distinct ways

– bottom-up: agglomerative clustering;

– top-down: divisive clustering.
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Hierarchical methods
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Hierachical clustering dengrogram for ALL AML data
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Figure 3: Golub et al. (1999) ALL AML data. Dendrogram for
agglomerative hierarchical clustering.
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Agglomerative methods

• Start with n mRNA sample (or G gene) clusters.

• At each step, merge the two closest clusters using a measure of
between-cluster distance which reflects the shape of the
clusters.

• Between-cluster distance measures:

– Average linkage: average of pairwise distances;

– Single linkage: minimum of pairwise distances;

– Complete linkage: maximum of pairwise distances.

More details are given in the lecture Distances and Expression
Measures.
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Divisive methods

• Start with only one cluster.

• At each step, split clusters into two parts.

• Advantages: Obtain the main structure of the data, i.e., focus
on upper levels of dendrogram.

• Disadvantages: Computational difficulties when considering all
possible divisions into two groups.

• Examples

– Self-Organizing Tree Algorithm – SOTA (Dopazo & Carazo,
1997);

– DIvisive ANAlysis – DIANA (Kaufman & Rousseeuw,
1990).
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Dendrograms

Dendrograms are often used to visualize the nested sequence of
clusters resulting from hierarchical clustering.

While dendrograms are quite appealing because of their
apparent ease of interpretation, they can be misleading.

First, the dendrogram corresponding to a given hierarchical
clustering is not unique, since for each merge one needs to specify
which subtree should go on the left and which on the right – there
are 2(n−1) different dendrograms.

The default in the R function hclust (cluster package) is to order
the subtrees so that the tighter cluster is on the left.
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Dendrograms

A second, and perhaps less recognized shortcoming of dendrograms,
is that they impose structure on the data, instead of revealing
structure in these data.

Such a representation will be valid only to the extent that the
pairwise distances possess the hierarchical structure imposed by the
clustering algorithm.
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Dendrograms

The cophenetic correlation coefficient can be used to measure
how well the hierarchical structure from the dendrogram represents
the actual distances.

This measure is defined as the correlation between the n(n − 1)/2
pairwise dissimilarities between observations and their cophenetic
distances from the dendrogram, i.e., the between cluster
dissimilarities at which two observations are first joined together.

The cophenetic distances have a great deal of structure, e.g., there
are many ties.

Function cophenetic in mva package.
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Partitioning vs. hierarchical

• Partitioning

– Advantages: Provides clusters that satisfy an optimality
criterion (approximately).

– Disadvantages: Need initial K, long computation time.

• Hierarchical

– Advantages: Fast computation (for agglomerative
clustering).

– Disadvantages: Rigid, cannot correct later for erroneous
decisions made earlier.
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Estimating the number of clusters

• Internal indices. Statistics based on within- and
between-clusters matrices of sums-of-squares and
cross-products (30 methods reviewed in Milligan & Cooper
(1985)). Estimate is the number of clusters K which minimizes
or maximizes one of these indices.

• Average silhouette width. (Kaufman & Rousseeuw, 1990).

• Model-based methods. EM algorithm for Gaussian
mixtures, Fraley & Raftery (1998, 2000) and McLachlan et al.
(2001).

• Gap statistic. (Tibshirani et al., 2001). Resampling method,
for each K compare an observed internal index to its expected
value under a reference distribution and look for K which
maximizes the difference.
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MSS

Mean Silhouette Split – MSS. (Pollard & van der Laan, 2002).

Given K clusters, consider each cluster k = 1, . . . , K separately

• Apply the clustering algorithm to the elements of cluster k.

• Choose the number of child clusters that maximizes the
average silhouette width. Call this maximum the split
silhouette, SSk.

Define the mean split silhouette as a measure of average cluster
heterogeneity.

MSS(K) =
1
K

K∑
k=1

SSk.

Choose the number of clusters K which minimizes MSS(K).
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MSS

• Identifies finer structure in gene expression data. When
clustering genes, existing criteria tend to identify global
structure only.

• Provides a measure of cluster heterogeneity.

• Computationally easy.
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Clest

Clest. (Dudoit & Fridlyand, 2002). Resampling method which
estimates the number of clusters based on prediction accuracy.

• For each number of clusters k, repeatedly randomly divide the
original dataset into two non-overlapping sets, a learning set Lb

and a test set T b, b = 1, . . . , B.

– Apply the clustering algorithm to observations in the learning set

Lb.

– Build a classifier using the class labels from the clustering.

– Apply the classifier to the test set T b.

– Compute a similarity score sk,b comparing the test set class

labels from prediction and clustering.
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Clest

• The similarity score for k clusters is the median of the B

similarity scores: tk = median(sk,1, · · · , sk,B).

• The number of clusters K is estimated by comparing the
observed similarity score tk for each k to its expected value
under a suitable reference distribution with K = 1.

Applies to any partitioning algorithm and any classifier.

Better suited for clustering samples than clustering genes.
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Inference

van der Laan & Bryan (2001).

General framework for statistical inference in cluster analysis.

View clustering as a deterministic rule that can be applied to
parameters (or estimates thereof) of the distribution of gene
expression measures.

Parameters of interest include covariances between the expression
measures of different genes.

The parametric bootstrap can be used to study distributional
properties (bias, variance) of the clustering results.
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Outliers

In classification it has often been found useful to define a class of
outliers.

This does not seem to have been extended to clustering. However,
outlier detection is an important issue since outliers can greatly
affect the between-cluster distances.

Simple tests for outliers, such as identifying observations that are
responsible for a disproportionate amount of the within-cluster
sum-of-squares seems prudent.
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Hybrid method – HOPACH

Hierarchical Ordered Partitioning And Collapsing Hybrid
– HOPACH (van der Laan & Pollard, 2001)

• Apply a partitioning algorithm iteratively to produce a
hierarchical tree of clusters.

• At each node, a cluster is partitioned into two or more smaller
clusters. Splits are not restricted to be binary. E.g., choose K

based on average silhouette.
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Hybrid method – HOPACH

• Hierarchical. Can look at clusters at increasing levels of detail.

• Ordered. Ordering of the clusters and elements within clusters is

data-adaptive and unique, performing better than other hierarchical

algorithms. Clustering and ordering are based on the same distance

function. The ordering of elements in any level can be used to

reorder the data or distance matrices, and visualize the clustering

structure.

• Partitioning. At each node, a cluster is split into two or more

smaller clusters.

• Collapsing. Clusters can be collapsed at any level of the tree to join

similar clusters and correct for errors made in the partitioning steps.

• Hybrid. Combines the strengths of both partitioning and

hierarchical clustering methods.
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Bagged clustering

Leisch (1999). Hybrid method combining partitioning and
hierarchical methods. A partitioning method is applied to
bootstrap learning sets and the resulting partitions are combined
by performing hierarchical clustering of the cluster centers.

Dudoit & Fridlyand (2002). Apply a partitioning clustering
method to bootstrap samples of the learning set. Combine the
resulting partitions by (i) voting or (ii) the creation of a new
distance matrix. Assess confidence in the clustering results using
cluster votes.
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