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Determining structural similarities between proteins is an important problem since it
can help identify functional and evolutionary relationships. In this paper, an algorithm
is proposed to align two protein structures. Given the protein backbones, the algorithm

finds a rigid motion of one backbone onto the other such that large substructures are
matched. The algorithm uses a representation of the backbones that is independent of
their relative orientations in space and applies dynamic programming to this represen-
tation to compute an initial alignment, which is then refined iteratively. Experiments
indicate that the algorithm is competitive with two well-known algorithms, namely DALI
and LOCK.
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1. Introduction

Three-dimensional (3D) structure plays a central role in research directed towards
understanding evolutionary and functional relationships among proteins. It is well-
known that structural information is better conserved than sequence information
in the evolution of proteins,14 hence it can be used in the construction of phyloge-
netic trees.16 Protein-protein interactions are governed in large part by the shape,
location, and composition of the so-called active sites.2 The assignment of proteins
to fold families is accomplished via structural analysis.15,18 The need for effective
structural analysis techniques has increased with the rapid growth in the number
of 3D structures available now in the Protein Data Bank (PDB).1

A key problem in protein structure analysis is pairwise protein structure align-
ment: Given the Cα backbones of two proteins, the goal is to find a rigid motion of
one backbone onto the other such that large, contiguous regions of the backbones
are matched. (A formal definition is given later in Sec. 2.) Besides the applications
mentioned above, pairwise structural alignment is also a key component of algo-
rithms that seek to align multiple protein structures in order to find a core structure
that captures essential structural information for the whole set.4

Pairwise alignment of protein structures has been a subject of much research.
Holm and Sander13,14 propose an algorithm, called DALI, which works with the dis-
tance matrices obtained from the interatomic (Cα-Cα) distances on each backbone.
The algorithm decomposes each matrix into submatrices that represent so-called
elementary contact patterns, aligns a pair of patterns from the two matrices, and
iteratively builds a connected chain of such pairwise aligned patterns using a
Monte Carlo method to optimize the similarity score. Singh and Brutlag20 give
an algorithm, called LOCK, which represents the secondary structure elements
(α-helices and β-strands) as vectors and computes a local alignment of these via
dynamic programming. A suite of seven different scoring functions is used to score
the alignment. This yields an initial superposition, which is then improved itera-
tively by operating at the atomic level, on the 3D coordinates of the Cα atoms,
until the root-mean squared deviation (RMSD)6 of the aligned atoms converges.
Chew et al.3 propose an approach which represents the backbone by a chain of
unit-vectors. These vectors are then translated to the origin, yielding a representa-
tion of the protein as a set of points on the unit-sphere. To compute a structural
alignment, they first compute a small set of shifts in sequence space that are likely
to bring 3D structures into correspondence. For each such shift, they compute sub-
structures that are contiguous on the backbone and for which there is a 3D align-
ment, and then combine such substructures into large (possibly non-contiguous)
substructures called domains. They use a variant of the RMSD measure, called
unit-vector RMSD, which is robust to outliers.

A non-exhaustive list of other related work includes the combinatorial extension
(CE) method of Shindyalov and Bourne,19 a method based on geometric hashing by
Fischer, Nussinov, and Wolfson,9 the method of Falicov and Cohen7 which attempts
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to minimize the so-called soap-bubble surface area between the backbones, and the
double-dynamic programming technique of Orengo and Taylor.21,22

In this paper, we propose a new approach to the pairwise structural alignment
problem. Our algorithm computes a representation of each backbone in terms of
certain angles defined by consecutive Cα-Cα bonds. The resulting backbone repre-
sentation, which consists of a sequence of triples of angles, is independent of the
relative orientation of the two proteins in space. We apply dynamic programming
on this representation (not on the protein sequence) and compute an initial align-
ment of the two proteins. We then refine this alignment iteratively. Our algorithm
takes time that is quadratic in the sum of the lengths of the two proteins. We have
implemented this alignment and tested it against LOCK and DALI, on various pro-
tein data sets. We have found that our algorithm is quite competitive with these
algorithms, as discussed in detail in Sec. 4.

We note that our angle-based representation is related to the pseudodihedral
angle used by Dewitte and Shakhnovich.5 The pseudodihedral angle is the tor-
sion angle between planes defined by four consecutive Cα atoms. Indeed, as stated
by Dewitte and Shakhnovich,5 the pseudodihedral angle provides a simplified back-
bone representation that manifests information about secondary structure elements.
Moreover, the distribution of pseudodihedral angles is highly correlated to the iden-
tity of the central pair of amino acids. These observations provide empirical sup-
port for our use of a local angle-based representation of the backbone to compute
pairwise alignments. The efficacy of this representation is also borne out by our
experimental results.

The rest of the paper is organized as follows. Section 2 gives an overview of our
method. Section 3 describes in detail the five steps that comprise our algorithm.
We report on experimental results in Sec. 4 and conclude in Sec. 5.

2. Overview of the Approach

Let A and B be the two proteins under consideration, each represented by a chain
of Cα atoms (the backbone) in R3. (As is customary,13,20 we consider only the
backbone, not the amino acid residues themselves.) Assuming B is fixed in space,
we would like to find a rigid motion (translation and rotation) of A that aligns large
substructures of A and B. Specifically, we would like to find substructures A′ of A

and B′ of B, a bijection between atoms of A′ and B′, which preserves their order
on the backbones, and a rigid motion of A onto B such that |A′| = |B′| is as large
as possible and the Euclidean distance between atom pairs in the bijection is at
most a user-specified threshold ε. We present a heuristic for this problem which is
very competitive with other known methods.

The key to our approach is a geometric representation of the backbone structure
that is independent of the relative orientations of the proteins A and B. Let the Cα

atoms of A and B be numbered 1 through n and 1 through m, respectively, in order
along the backbone. In effect, the geometric representation of A (respectively B)
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may be viewed as a collection {Ai}n−2
i=2 (respectively {Bi}m−2

i=2 ) of points in R3,
where each point Ai (respectively Bi) captures the local geometry of the (virtual)
bond joining the ith and (i + 1)th Cα atoms of A (respectively B) in relation to
the preceding and succeeding bond on the backbone. A major advantage of this
representation is that it is independent of the relative positions and orientations of
the backbones. Indeed, as we will see in Sec. 3, the question of whether there exists
a rigid motion of A that aligns it to B can be framed as the question of determining
the similarity of the (static) point-sets representing A and B. In particular, A can
be aligned exactly with B if and only if the sets {Ai}n−2

i=2 and {Bi}m−2
i=2 are identical.

In practice, of course, an exact alignment is unlikely to exist; instead the goal
is to align approximately one or more substructures of A to substructures of B.
Towards this end, we use dynamic programming to compute an optimal global
alignment of the sequences A2, . . . , An−2 and B2, . . . , Bm−2, using the Euclidean
distance between the Ai’s and Bj ’s as the scoring function. The resulting alignment
consists of runs of matches between elements of the two sequences, with gaps in
between. (See Fig. 1.)

However, it may not be possible to simultaneously align, in 3D, all of the sub-
structures corresponding to the different runs of matches found in the sequence
alignment. This is because the transformation matrix that aligns the structures
corresponding to one run may not be consistent with the matrix for another run.
For instance, in Fig. 1, the matrix that aligns atoms 1–5 in A with atoms 1–5 in B

may be different from the one that aligns atoms 9–13 in A with atoms 5–9 in B.
To overcome this problem, we compute a subset of the runs such that the trans-

formation matrices for any two runs in the subset are similar (as measured by the

Fig. 1. A local alignment of the sequences A2, . . . , A19 and B2, . . . , B13 and the corresponding
matched substructures of proteins A and B, shown in solid lines of varying thickness. Dashed lines
denote unmatched substructures.
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Frobenius norm11) and the total number of atoms in the runs is large. We show how
this can be reduced to the problem of finding a large weighted clique in an undi-
rected graph and solve this using a greedy heuristic. For the subset of consistent
runs thus found, we compute a transformation matrix that aligns the corresponding
substructures. This alignment is further improved via dynamic programming on the
coordinates of the Cα atoms, during which pairs that are not within the threshold
of ε are discarded. This yields an initial alignment of the proteins. The closeness of
the overall alignment is measured by the RMSD.6

The algorithm then enters an iterative refinement phase. From the matches in
the initial alignment, a new transformation matrix is derived. This is used to re-
align the proteins via dynamic programming, as above. The process is repeated
until the difference in the RMSD values of two successive alignments drops below
a preset threshold.

3. Details of the Algorithm

3.1. Step 1: Computing a local geometric representation

Recall that protein A consists of n Cα atoms, numbered 1, . . . , n along the backbone.
We define a sequence of vectors �ai, 1 ≤ i ≤ n − 1 on the backbone, where �ai is
the vector from the ith Cα atom to the (i + 1)th Cα atom. Each �ai has the same
length as the corresponding (virtual) bond; this is about 3.8 Å. We represent the
geometry of the backbone in the vicinity of �ai, 2 ≤ i ≤ n − 2 by a triple of
angles Ai = (αA

i , βA
i , γA

i ). Here αA
i ∈ [0, π] is the angle between −�ai−1 and �ai and

βA
i ∈ [0, π] is the angle between −�ai and �ai+1. Both of these angles can be computed

via dot products of the corresponding vectors. We define γA
i as follows: Consider

the vectors �ni = −�ai−1 × �ai and �ni+1 = −�ai × �ai+1. Note that �ai is perpendicular
to both �ni and �ni+1. Let θ ∈ [0, 2π] be the angle between �ni and �ni+1. Then γA

i = θ

if �ni × �ni+1 has the same direction as �ai; otherwise γA
i = 2π − θ. In other words,

γA
i is the dihedral angle between the plane containing −�ai−1 and �ai and the plane

containing −�ai and �ai+1 (Fig. 2 illustrates these angles). Thus, Ai = (αA
i , βA

i , γA
i )

captures the orientation of �ai relative to its predecessor �ai−1 and its successor �ai+1.
The set {Ai}n−2

i=2 is the local geometric representation of the backbone A. We can
define similarly a sequence of vectors �bi, 2 ≤ i ≤ m− 2, for the backbone of protein
B, and a triple Bi = (αB

i , βB
i , γB

i ) for �bi. The local geometric representation of B

is then the set {Bi}m−2
i=2 .

The following lemma establishes the orientation independence of this
representation.

Lemma 1. Let A′ and B′ be substructures of A and B, respectively, where A′

contains the pth through (p + �)th Cα atoms of A and B′ contains the qth through
(q + �)th Cα atoms of B, � ≥ 3, 1 ≤ p ≤ n− �, and 1 ≤ q ≤ m− �. Then there is a
rigid motion (translation and rotation) of A to B which aligns exactly the (p + j)th
Cα atom of A with the (q + j)th Cα atom of B if and only if ||Ap+i − Bq+i||2 = 0,
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Fig. 2. Vector representation of backbone of protein A and associated angles. The triple
Ai = (αA

i , βA
i , γA

i ) is associated with the vector �ai, 2 ≤ i ≤ n − 2.

where 0 ≤ j ≤ � and 1 ≤ i ≤ �− 2. (Here ||Ap+i −Bq+i||2 is the Euclidean distance
between Ap+i and Bq+i when they are viewed as points in R3.)

Proof. (⇒) Obvious.
(⇐) Consider first the case � = 3. W.l.o.g., we may assume that the qth, (q+1)th,

and (q + 2)th Cα atoms of B lie in the xy-plane, with the (q + 1)th atom at the
origin, and the qth atom on the positive x-axis. Clearly, we can transform A so that
the pth, (p + 1)th, and (p + 2)th Cα atoms of A also lie on the xy-plane, with the
(p + 1)th atom at the origin and the pth atom on the positive x-axis. Since �ap and
�bq have the same length, �ap+1 and �bq+1 have the same length, and αA

p+1 = αB
q+1,

it follows that the pth and qth Cα atoms coincide and (p + 2)th and (q + 2)th Cα

atoms coincide.
Now, γA

p+1 = γB
q+1 implies that the (p + 3)th and (q + 3)th Cα atoms of A and

B, respectively, lie in a common half-plane. (This half-plane makes an angle of γA
p+1

with the xy-plane and its intersection with the xy-plane is the line containing the
(coincident) vectors �ap+1 and �bq+1.) Then since βA

p+1 = βB
q+1 and �ap+2 and �bq+2

have the same length, it follows that the (p+3)th and (q +3)th Cα atoms coincide.
This completes the proof for the case � = 3.

Next, let � > 3. The argument above shows that once the first three pairs of
atoms of A′ and B′ coincide, then the fourth pair also coincides. But now since the
second through fourth pairs of atoms of A′ and B′ coincide, by a similar argument,
the fifth pair must also coincide. This argument can be repeated until the (p + �)th
and (q + �)th atoms are shown to coincide.

3.2. Step 2: Aligning the local representation

As mentioned in Sec. 2, a perfect alignment between A and B (Lemma 1) is unlikely
to exist. Instead we try to align substructures of A and B. Towards this end, we treat
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the sets {Ai}n−2
i=2 and {Bi}m−2

i=2 as sequences A2, . . . , An−2 and B2, . . . , Bm−2 and
compute an optimal global alignment for them using dynamic programming.12 This
alignment is produced using a global alignment method with zero end-gap penalties.
Internal gaps are penalized using an affine gap penalty of the form: h(k) = a + bk,
where k is the length of the gap, and a and b are gap opening and extension penal-
ties, respectively. We score the alignment using a scoring function S0, defined as:

S0(Ai, Bj) = K − d(Ai, Bj). (1)

Here d(Ai, Bj) is the Euclidean distance between the points Ai = (αA
i , βA

i , γA
i ) and

Bj = (αB
j , βB

j , γB
j ). (A similar function is used in DALI.13) Our goal is to compute

a global alignment whose total score is maximum. It is tempting to write

d(Ai, Bj) =
(
(αA

i − αB
j )2 + (βA

i − βB
j )2 + (γA

i − γB
j )2

)1/2
. (2)

However, if one of the angles γA
i and γB

j is close to zero and the other one is close
to 2π, then Ai and Bj are actually close to each other in the γ-dimension, even
though |γA

i − γB
j | is large (i.e. close to 2π). Thus we modify d(Ai, Bj) as follows:

d(Ai, Bj) =
(
(αA

i − αB
j )2 + (βA

i − βB
j )2 + g(|γA

i − γB
j |)2)1/2

(3)

where g(x) = min(2π − x, x).
What about the term K in the definition of S0 and the gap opening and exten-

sion penalties a and b? We have done several experiments and found that K = 1.4,
a = 0.2, and b = 0.2 work very well, and this is what we use throughout.

3.3. Step 3: Computing consistent runs of alignments

The alignment computed in step 2 yields runs of matched elements of A2, . . . , An−2

and B2, . . . , Bm−2, interspersed with gaps (see Fig. 1). Let R1, . . . , Rk be the runs
and let N1, . . . , Nk be their lengths. For each Ri, we can compute a transformation
matrix Ti = (T t

i , T r
i ) that aligns the substructures of A and B corresponding to

Ri such that the RMSD is minimized. Here T t
i is the translation matrix and T r

i is
the rotation matrix. Ti can be computed using the Singular Value Decomposition
(SVD).11 ,17 However, the matrices T1, T2, . . . , Tk will not necessarily be mutually
consistent, in the sense that the transformation specified by one matrix Ti may
“interfere” with that specified by another matrix Tj, so that it may not be possible
to align simultaneously the structures corresponding to all the runs R1, . . . , Rk.

Therefore, in this step, we compute a subset of the runs such that the total
number of atoms in the runs is as large as possible and the transformation matrices
for all the runs are “similar”. Formally, we wish to compute a subset I of {1, . . . , k}
such that

∑
i∈I |Ri| is as large as possible and for all i, j ∈ I, ||T t

i − T t
j ||F < τ t

and ||T r
i − T r

j ||F < τr. Here τ t and τr are similarity thresholds and ||C||F =
(
∑3

i=1

∑3
j=1 c2

ij)
1/2 is the Frobenius norm of matrix C = (cij).11
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To compute I, we first build an undirected graph G = (V, E), where V =
{1, 2, . . . , k} and E = {(i, j) ∈ V × V : ||T t

i − T t
j ||F < τ t and ||T r

i − T r
j ||F < τr}.

With each vertex i of G, we associate a weight wi = |Ri|. Clearly, our problem
now is equivalent to finding a clique (complete subgraph) of G whose total vertex
weight is maximum. This problem is NP-hard,10 so we solve it approximately via a
greedy heuristic, as follows. Among all the vertices of G, we find a vertex, v, such
that the total weight of v and all its neighbors in G is maximum. We add v to
an initially empty list L, which accumulates the growing clique. We then repeat
the above step on the subgraph, G′, of G induced by the neighbors of v. That is,
among the vertices of G′, we find a vertex, v′, such that the total weight of v′ and
its neighbors in G′ is maximum, and add v′ to L. And so on, until at some point
the current induced subgraph becomes empty. At this point, the vertices in L form
a clique of G of large (but not necessarily maximum) total weight.

What should be the values of the similarity thresholds τ t and τr? If τ t and τr

are very small, the matrix Ti and Tj are required to be very similar; this yields
a subset of runs of small total size. If τ t and τr are large then the matrices can
be quite different, so the quality of the structural alignment is poor. We found via
experiments that choosing τ t between 10 and 40, and τr between 1 and 1.5 works
very well. Our experiments also show that τr is much more sensitive than τ t. The
degree of similarity of two rotation matrices is determined by the threshold τr . As
shown in Lemma 2 below, the expected value of the Frobenius norm of the difference
of two rotation matrices whose elements are chosen randomly is about 2.4. Thus
our choice of τr ∈ [1, 1.5] ensures that the associated matrices are all quite similar
and not random.

Lemma 2. The expected value of the Frobenius norm of the matrix that is the
difference of two rotation matrices whose elements are chosen randomly is about 2.4.

Proof. Let C and D be two rotation matrices. Assume C = MzMyMx, where
Mx rotates by an angle cx about the x-axis, My rotates by an angle cy about the
y-axis, and Mz rotates by an angle cz about the z-axis. Similarly, let D = NzNyNx,
where Nx, Ny, and Nz rotate by angles dx, dy, and dz about the x-, y-, and z-axes,
respectively.

It follows that

C − D

=


cos(cz) − sin(cz) 0

sin(cz) cos(cz) 0
0 0 1





 cos(cy) 0 sin(cy)

0 1 0
− sin(cy) 0 cos(cy)





1 0 0

0 cos(cx) − sin(cx)
0 sin(cx) cos(cx)




−

cos(dz) − sin(dz) 0

sin(dz) cos(dz) 0
0 0 1





 cos(dy) 0 sin(dy)

0 1 0
− sin(dy) 0 cos(dy)





1 0 0

0 cos(dx) − sin(dx)
0 sin(dx) cos(dx)


.
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Since each of the six rotation angles is chosen at random from [0, 2π], the expected
value of ||C − D||F then is∫∫∫∫∫∫

0≤cx,cy,cz,dx,dy,dz≤2π

‖C − D‖F
1

(2π)6
d(cx)d(cy)d(cz)d(dx)d(dy)d(dz).

Performing this calculation, via numerical integration in MATLAB, yields an
expected value of about 2.3958.

We also computed the expected value experimentally using MATLAB, by pick-
ing 40,000 pairs of rotation matrices whose elements are chosen at random and com-
puting the Frobenius norm of the difference of each pair. This yielded an expected
value of 2.3982.

3.4. Step 4: Computing an initial structural alignment

The previous step yields a subset of runs with pairwise similar transformation
matrices. This means that there is now a single transformation matrix T , which
can simultaneously align well the substructures corresponding to all runs in the
subset. We compute T by SVD and use this to transform protein A and obtain an
initial alignment with protein B.

Recall that we also require that each aligned pair of atoms from A and B to be
within distance ε of each other. One possibility is to take the alignment provided by
T and simply discard any pairs that do not meet the ε threshold. However, a large
number of pairs that are close to the threshold could get discarded. A better strategy
is to first re-align A and B by using dynamic programming on the coordinates just
computed by the application of T . In the process, we also enforce the ε threshold
automatically by choosing the gap penalty suitably.

Specifically, we compute a minimum-score global alignment of A and B.12

We score the alignment of atom i ∈ A and atom j ∈ B using the Euclidean
distance d(i, j) between them. The score for matching a gap with an atom (i.e., the
gap penalty) is a constant equal to ε/2. (In the experiments reported in Sec. 4, we
used ε = 8 Å.) At the end of this step, we get an initial structural alignment, I, of
A and B such that its score s(I) is minimum. We then compute its RMSD.

We argue now that I satisfies the ε threshold. Suppose, for a contradiction,
that, in I, atoms i ∈ A and j ∈ B are aligned but that d(i, j) > ε. We modify I
locally by inserting two gaps as shown in Fig. 3 to get a new alignment I ′. Since

Fig. 3. Local insertion of gaps in I.
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the gap penalty is ε/2, s(I ′) = s(I)− d(i, j) + ε/2 + ε/2 < s(I), which contradicts
the optimality of I.

3.5. Step 5: Refining the alignment iteratively

Our experiments have shown that the size of the alignment (i.e. the number of
matched pairs) can be increased as follows. For the initial alignment computed in
step 4, we recompute a new transformation matrix T ′ corresponding to all of the
matched pairs in the initial alignment, again using SVD. We then use dynamic
programming as in step 4 to obtain a new alignment, with a new RMSD value.

We iterate on the above transform-and-realign process until one of the following
two conditions is met: Either the number of iterations exceeds a specified limit or
the absolute value of the difference in RMSD values of two successive alignments
drops below a preset threshold η.

(
Recall that the RMSD of an alignment I con-

taining matched pairs (i, j) of atoms, where i ∈ A and j ∈ B have coordinates
(xi, yi, zi) and (xj , yj , zj), respectively, is

(
1
|I|

∑
(i,j)∈I((xi − xj)2 + (yi − yj)2 +

(zi − zj)2)
)1/2

.
)

In our experiments, we limited the number of iterations to ten and
chose η = 0.1 Å.

Complexity analysis: Step 1 clearly takes O(m + n) time. Step 2 takes O(mn)
time, and produces an alignment of length at most m + n. In step 3, the compu-
tation of Ti, using the SVD, takes time O(Ni), so the total time for all the Ti’s
is O

( ∑k
i=1 Ni

)
= O(m + n). Computing the clique takes the time proportional to

the size of the graph G, which is O((m + n)2), since G has at most m + n vertices.
In step 4, the computation of the transformation matrix T , via the SVD, takes
O(m + n) time, and the dynamic programming takes an additional O((m + n)2)
time. In step 5, each iteration takes O((m + n)2) time, similar to step 4. Since the
number of iterations is bounded by a constant (ten in our experiments), the total
time for step 5 is O((m + n)2). Thus, the overall running time of the algorithm is
O((m + n)2).

4. Experimental Results

We implemented our algorithm (using MATLAB) and tested it against two well-
known structural alignment algorithms, namely LOCK20 and DALI13. The code
for our algorithm, all the test datasets, and color versions of all the figures in this
paper may be accessed at http://www.cs.umn.edu/∼jieping/Research.html.

Our first experiment was similar to that done for LOCK,20 in that we aligned
a query protein with each member of a set of proteins identified from the FSSP14

and SCOP18 databases as structural neighbors of the query.
The first query protein was the protein Sperm whale myoglobin (PDB ID: 1mbc),

from the Globin family. The results of the alignment (i.e., the number of matched
atoms and the RMSD value) are shown in Table 1. Note that the upper half of
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Table 1. Query protein: 1mbc (Sperm whale myoglobin).

NEW LOCK DALI
Protein
PDB ID PDB Header (partial) # RMSD # RMSD # RMSD

5mbn MYOGLOBIN (DEOXY) 153 0.48 152 0.30 153 0.50
1mbn MYOGLOBIN (FERRIC IRON) 153 0.48 152 0.47 151 0.50
1myh-A MYOGLOBIN (AQUOMET, PH 7.1) 153 0.56 153 0.56 139 0.50
1hds-B HEMOGLOBIN (SICKLE CELL) 145 1.62 130 1.26 145 1.70
2dhb-A HEMOGLOBIN (HORSE,DEOXY) 141 1.53 133 1.34 140 1.60
1mba MYOGLOBIN (MET) 143 1.86 124 1.49 142 1.90
1dm1 MYOGLOBIN 143 1.90 130 1.54 143 2.00
1hlm HEMOGLOBIN (CYANO-MET) 144 2.05 124 1.50 144 2.20
2lhb HEMOGLOBIN V (CYANO,MET) 137 1.49 129 1.10 135 1.40
2fal MYOGLOBIN (FERRIC) 143 1.85 122 1.43 143 2.00
1hbg HEMOGLOBIN (CARBON MONOXY) 139 1.83 125 1.41 140 2.10
1ith-A HEMOGLOBIN (CYANOMET) 139 1.66 126 1.30 139 1.70
1flp HEMOGLOBIN I (MONOMERIC) 138 1.63 129 1.35 137 1.70
1eca HEMOGLOBIN (ERYTHROCRUORIN) 136 1.62 131 1.50 136 1.70
2hbg HEMOGLOBIN (DEOXY) 139 1.84 125 1.42 138 2.00

1ash HEMOGLOBIN (DOMAIN ONE) 138 1.86 122 1.43 138 1.90
1hbi-B HEMOGLOBIN I (OXYGENATED) 135 1.77 122 1.46 141 2.20
1gdi LEGHEMOGLOBIN 144 2.14 115 1.53 144 2.60
1hlb HEMOGLOBIN (SEA CUCUMBER) 142 2.18 121 1.48 145 2.50
1lh2 LEGHEMOGLOBIN (AQUO,MET) 143 2.23 120 1.49 144 2.40
1h97-A HEMOGLOBIN 141 2.18 110 1.48 141 2.20
1dly-A HEMOGLOBIN 111 2.68 86 1.69 110 2.70
1idr-A HEMOGLOBIN HBN 107 2.63 84 1.74 106 2.70
1dlw-A HEMOGLOBIN 107 2.90 80 1.72 106 2.70

1all-A ALLOPHYCOCYANIN 117 2.95 79 1.69 121 3.50
1phn-A PHYCOCYANIN 117 3.01 82 1.78 119 3.30
1cpc-A C-PHYCOCYANIN 113 3.19 80 1.79 117 3.20
1lia-A R-PHYCOERYTHRIN 117 3.10 73 1.73 120 3.30
1cpc-B C-PHYCOCYANIN 118 3.29 73 1.70 120 3.80
1qgw-C CRYPTOPHYTAN PHYCOERYTHRIN 110 3.59 66 1.95 125 4.00
1lia-B R-PHYCOERYTHRIN 113 3.54 59 1.71 121 3.90
1col-A COLICIN *A (C-TERMINAL) 88 3.69 61 1.82 113 3.20
2cp4 CYTOCHROME P450CAM 62 4.31 50 1.95 83 4.40
1eum-A FERRITIN 1 75 4.13 32 1.76 83 7.00
1fpo-A CHAPERONE PROTEIN HSCB 71 3.74 18 1.72 80 4.20
1oxa CYTOCHROME P450 ERYF 70 4.01 57 1.85 79 4.60
1le2 APOLIPOPROTEIN-*E2 75 4.13 46 1.71 71 4.90
2fha FERRITIN 70 3.48 22 1.36 84 6.80
1nfn APOLIPOPROTEIN E3 FRAG 60 2.88 48 1.59 75 7.90
1grj GREA TRANSCRIPT CLEAVAGE 55 4.37 27 0.92 62 6.20

Table 1 contains proteins that are in the same family as the query, hence closely-
related, whereas the lower half contains proteins that are in different families, but
still related. (Nearly the same set was used for LOCK20 also.) The results of Table 1
are shown graphically in Fig. 4. Note that here the proteins are listed on the x-axis
in non-increasing order of the matches found by our method. The alignment of
1mbc with each of the proteins 5mbn, 2fal, and 1lia-A is shown in Fig. 6 (left half).



November 5, 2004 10:50 WSPC/185-JBCB 00082

710 J. P. Ye, R. Janardan & S. T. Liu

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

Proteins

N
um

be
r 

of
 M

at
ch

es

NEW
LOCK
DALI

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Proteins

R
M

S
D

Fig. 4. Comparison between the proposed method (NEW), LOCK, and DALI using query protein
1mbc. (Data used is from Table 1.) The proteins on the x-axis are ordered by non-increasing
number of matches in the NEW method.

The second query protein that we used was Thioredoxin-Reduced Form (PDB
ID: 3trx), from the Thioltransferase family. The results for this are shown in Table 2
and Fig. 5, and sample alignments are illustrated in Fig. 6 (right half).

These results show that when the proteins in question are closely related, then all
three methods (ours, LOCK, and DALI) are able to detect large structural matches.

Table 2. Query protein: 3trx (Thioredoxin-Reduced Form).

NEW LOCK DALI
Protein
PDB ID PDB Header (partial) # RMSD # RMSD # RMSD

4trx THIOREDOXIN (REDUCED FORM) 105 0.40 105 0.41 105 0.40
1mdi-A THIOREDOXIN MUTANT 105 0.73 105 0.73 105 1.70
1aiu HUMAN THIOREDOXIN (MUTANT) 104 1.11 102 0.96 105 1.30
1erv THIOREDOXIN 104 1.11 103 0.97 105 1.30
1f9m-B THIOREDOXIN F 103 1.36 101 1.28 104 1.50
1f9m-A THIOREDOXIN F 103 1.38 100 1.25 104 1.50
1gh2-A THIOREDOXIN-LIKE PROTEIN 104 1.27 101 1.14 105 1.50
1ep7-A THIOREDOXIN CH1, H-TYPE 104 1.35 101 1.66 105 1.60
1ep7-B THIOREDOXIN CH1, H-TYPE 104 1.39 98 1.15 105 1.60
1faa THIOREDOXIN F 103 1.43 100 1.28 104 1.60
1tof THIOREDOXIN H 105 1.71 96 1.37 104 1.70
2tir THIOREDOXIN MUTANT 101 1.44 96 1.26 103 1.80
1thx THIOREDOXIN-2 101 1.56 95 1.30 103 1.80
1fb6-B THIOREDOXIN M 100 1.37 97 1.20 102 1.70
1quw THIOREDOXIN 101 1.94 89 1.47 102 2.10
1kte THIOLTRANSFERASE 86 3.54 47 1.94 87 3.20
1jhb GLUTAREDOXIN 80 3.67 40 2.01 86 3.40
3grx GLUTAREDOXIN 3 74 2.21 50 1.73 73 2.20
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Table 2. (Continued)

NEW LOCK DALI
Protein
PDB ID PDB Header (partial) # RMSD # RMSD # RMSD

1h75-A GLUTAREDOXIN-LIKE PROTEIN 72 2.63 48 1.80 70 2.50
1ego GLUTAREDOXIN (OXIDIZED) 73 2.66 42 1.31 72 2.80
1ilo HYPOTHETICAL PROTEIN MTH895 71 3.04 43 1.51 71 3.10
1aba GLUTAREDOXIN MUTANT 72 2.65 51 1.80 67 2.90
1fo5-A THIOREDOXIN 77 3.01 53 1.56 74 3.40

1mek PROTEIN DISULFIDE ISOMERASE 102 2.48 82 1.44 101 2.50
1a8y CALSEQUESTRIN 100 2.96 80 1.58 95 2.20
1e2y-A TRYPAREDOXIN PEROXIDASE 96 2.10 82 1.53 96 2.30
1e2y-C TRYPAREDOXIN PEROXIDASE 96 2.10 82 1.54 96 2.30
1qmv-A HUMAN THIOREDOXIN PEROXID. 93 2.78 79 1.60 97 2.40
1bjx PROTEIN DISULFIDE ISOMERASE 95 2.19 80 1.53 93 2.20
1gp1-B GLUTATHIONE PEROXIDASE 92 2.82 81 1.57 95 2.40
1qq2-A THIOREDOXIN PEROXIDASE 2 93 2.86 73 1.59 94 2.60
1ezk-A TRYPAREDOXIN I 96 2.77 69 1.60 90 2.50
1ewx-A TRYPAREDOXIN I 95 2.73 70 1.59 87 2.70
1qk8-A TRYPAREDOXIN-I 95 2.82 70 1.58 89 2.80
1fg4-A TRYPAREDOXIN II 96 2.89 67 1.55 87 2.50
1a8l PROTEIN DISULFIDE OXIDORED. 91 2.11 72 1.36 92 2.30
1fg4-B TRYPAREDOXIN II 91 2.60 67 1.51 87 2.60
1fvk-A DISULFIDE BOND FORMATION 80 2.79 58 1.54 78 2.90
1f37A FERREDOXIN [2FE-2S] 73 2.56 46 1.59 74 3.00
1f37B FERREDOXIN [2FE-2S] 73 2.60 50 1.57 73 3.10
1ghh-A DNA-DAMAGE-INDUCIBLE PROTEIN 45 3.38 30 1.44 50 4.00
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Fig. 5. Comparison between the proposed method (NEW), LOCK, and DALI using query protein
3trx (Data used is from Table 2.) The proteins on the x-axis are ordered by non-increasing number
of matches in the NEW method.
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Fig. 6. Left side: Query protein 1mbc aligned with 5mbn, 2fal, and 1lia-A. Right side: Query
protein 3trx aligned with 1erv, 1quw, and 1a8l.

In most cases, the number of matches found by our method is close to that found
by DALI and fairly larger than that found by LOCK. Correspondingly, the RMSD
value of our method is quite a bit smaller than that of DALI and larger than that
of LOCK. When the proteins in question are distantly-related or unrelated, then
the number of matches is much smaller (as is to be expected) and none of these
methods perform consistently better than the others. Overall, our method appears
to be competitive with LOCK and DALI.
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Table 3. Comparison of our algorithm with LOCK and DALI on the Fischer benchmark. A

“—” indicates that the method (LOCK or DALI) did not return an answer.

Protein Pair NEW LOCK DALI

PDB ID Length PDB ID Length # RMSD # RMSD # RMSD

1mdc 133 1ifc 131 128 1.84 33 1.91 — —
1npx 447 3grs 461 384 2.65 32 1.62 395 3.50
1onc 104 7rsa 124 98 1.90 88 1.22 97 1.90
1osa 148 4cpv 108 68 1.69 11 2.01 67 1.40
1pfc 111 3hla-B 99 90 2.61 49 1.35 79 2.90
2cmd 312 6ldh 329 287 2.47 46 2.30 286 2.50
2pna 104 1sha-A 103 91 2.35 52 1.61 91 2.50
1bbh-A 131 2ccy-A 127 124 1.88 101 1.44 125 2.00
1c2r-A 116 1ycc 108 98 1.77 80 1.24 96 1.60
1chr-A 370 2mnr 357 347 1.83 302 1.48 347 1.90
1dxt-B 147 1hbg 147 136 1.70 119 1.36 135 2.00
2fbj-L 213 8fab-B 214 194 2.10 152 1.43 194 2.30
1gky 186 3adk 194 151 2.63 85 1.74 154 3.00
1hip 85 2hip-A 71 69 2.05 15 1.72 67 1.80
2sas 185 2scp-A 174 160 3.02 95 1.45 167 3.50
1fc1-A 206 2fb4-H 229 128 2.72 95 1.30 127 3.00
2hpd-A 457 2cpp 405 361 2.88 217 1.75 367 3.30
1aba 87 1ego 85 73 2.08 64 1.52 72 2.20

1eaf 243 4cla 213 177 2.63 132 1.55 176 2.90
2sga 181 5ptp 222 149 2.44 92 1.32 145 2.70
2hhm-A 278 1fbp-A 316 225 2.56 161 1.73 219 2.90
1aaj 105 1paz 120 83 2.04 72 1.19 80 1.70
5fd1 106 1iqz 81 44 2.87 46 1.48 57 2.60
1isu-A 62 2hip-A 71 58 2.37 — — 58 2.30
1gal 581 3cox 500 400 2.65 260 1.53 402 3.10
1cau-B 184 1cau-A 181 162 2.01 120 1.35 161 2.20
1hom 68 1lfb 77 56 1.80 48 1.11 56 1.90
1tlk 103 2rhe 114 91 1.89 60 1.17 89 2.00
2omf 340 2por 301 264 2.54 207 1.60 261 2.80
1lga-A 343 2cyp 293 259 2.20 210 1.54 262 2.50
1mio-C 525 2min-B 522 396 2.86 260 1.85 412 3.60
4sbv-A 199 2tbv-A 287 163 1.98 49 2.10 162 2.10
8i1b 146 4fgf 124 115 2.42 88 1.26 118 2.50
1hrh-A 125 1rnh 148 114 1.92 99 1.23 110 1.90
1mup 157 1rbp 174 141 2.69 88 1.55 140 2.90
1cpc-L 172 1col-A 197 118 3.35 75 1.65 116 3.40
2ak3-A 226 1gky 186 150 2.71 10 1.51 150 3.10
1atn-A 373 1atr 383 289 2.61 193 1.58 291 3.00
1arb 263 5ptp 222 191 2.68 128 1.43 187 2.80
2pia 321 1fnb 296 215 2.31 173 1.52 216 2.50
3rub-L 441 6xia 387 159 3.68 81 1.82 206 4.10
2sar-A 96 9rnt 104 75 3.01 41 1.66 72 3.20
3cd4 178 2rhe 114 95 2.00 65 1.07 94 2.60
1aep 153 256b-A 106 55 2.28 49 1.74 74 1.80
2mnr 357 4enl 436 285 3.13 189 1.96 284 3.40
1lts-D 103 1bov-A 69 69 2.16 51 1.36 68 2.10
2gbp 309 2liv 344 216 3.46 88 1.91 260 6.70
1bbt 186 2plv 288 170 2.58 96 1.56 168 2.60
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Table 3. (Continued)

Protein pair NEW LOCK DALI

PDB ID Length PDB ID Length # RMSD # RMSD # RMSD

2mta-C 147 1ycc 108 83 2.11 53 1.30 81 2.20
1tah-A 318 1tca 317 191 2.37 119 1.57 187 2.40
1rcb 129 2gmf-A 121 98 3.52 63 1.44 82 3.30
1sac-A 204 2ayh 214 97 4.48 94 1.86 134 3.30
1dsb-A 188 2trx-A 109 85 2.56 19 2.14 83 2.90
1stf-I 98 1mol-A 94 85 1.90 65 1.26 85 1.90
2afn-A 331 1aoz-A 552 128 2.41 161 1.77 248 2.60
1fxi-A 96 1ubq 76 63 2.62 40 1.48 61 2.70
1bge-B 159 2gmf-A 121 101 3.09 59 1.90 94 3.30
3hla-B 99 2rhe 114 82 3.13 32 1.64 71 3.30
3chy 128 2fox 138 107 2.90 57 1.96 103 3.00
2aza-A 129 1paz 120 83 2.36 63 1.65 81 2.50
1cew 108 1mol-A 94 81 2.12 46 1.72 81 2.30
1cid 177 2rhe 114 98 2.61 35 1.79 97 3.20
1crl 534 1ede 310 208 2.99 133 1.87 211 3.50
2sim 381 1nsb-A 390 292 2.97 154 1.78 291 3.30
1ten 89 3hhr-B 195 87 1.82 29 1.87 86 2.00
1tie 166 4fgf 124 90 3.85 86 1.51 114 3.10
2snv 151 5ptp 222 132 2.87 82 1.79 130 3.10
1gp1-A 183 2trx-A 109 97 2.40 25 2.08 97 2.60
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Fig. 7. Comparison between the proposed method (NEW), LOCK, and DALI using the Fischer
benchmark. (Data used is from Table 3.) The proteins on the x-axis are ordered by non-increasing
number of matches in the NEW method.

Our second experiment was to compare our method with LOCK and DALI
using the well-known Fischer benchmark,8 which contains 68 pairs of proteins. The
proteins in each pair are known to be structurally similar, but have low sequence
identity, ranging from 8% to 31% with an average of 18.6% and a standard deviation
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Fig. 8. Left side: Protein 1onc aligned with 7rsa. Right side: Protein 2fbj-L with 8fab-B.

of 4.4. The results of the alignment (i.e. the number of matched atoms and the
RMSD value) are summarized in Table 3 and shown graphically in Fig. 7, where
the protein pairs are listed on the x-axis in non-increasing order of the matches
found by our method. The alignment of protein 1onc with 7rsa is shown in Fig. 8
(left side), and the alignment of protein 2fbj-L with 8fab-B is shown in Fig. 8 (right
side). We observe the same trend as before with this dataset also, i.e., the number
of matches found by our method is close to that found by DALI and much larger
than that found by LOCK, while the RMSD value of our method is quite a bit
smaller than that of DALI and larger than that of LOCK.

5. Conclusions

We have presented an iterative refinement algorithm for pairwise protein structure
alignment. The algorithm uses an angle-based representation of the protein back-
bones, which is independent of the relative orientation of the proteins in space. An
initial alignment is found using dynamic programming (on the backbone representa-
tion) and a graph-based method and then refined iteratively, such that the number
of matched Cα atoms is large and the distance between matched atoms is within a
prescribed threshold. The heuristic has been implemented and found to be compet-
itive with two other algorithms (LOCK and DALI), especially for closely-related
proteins.

The algorithm proposed in this paper uses protein backbone geometry alone for
comparison. However, other information, such as chemical properties of residues
and secondary structure information could be used to improve the quality of the
alignment further, by using a suitable scoring function in Eq. (1). We plan to study
the effect of including this additional information in our algorithm.
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