Background Information for the Pumping Lemma for Context-Free Languages

• **Definition:** Let \(G = (V, T, P, S) \) be a CFL. If every production in \(P \) is of the form

\[
A \rightarrow BC \\
\text{or} \\
A \rightarrow a
\]

where \(A, B \) and \(C \) are all in \(V \) and \(a \) is in \(T \), then \(G \) is in Chomsky Normal Form (CNF).

• **Example:** (not quite!)

\[
S \rightarrow AB | BA | aSb \\
A \rightarrow a \\
B \rightarrow b
\]

• **Theorem:** Let \(L \) be a CFL. Then \(L - \{\varepsilon\} \) is a CFL.

• **Theorem:** Let \(L \) be a CFL not containing \(\{\varepsilon\} \). Then there exists a CNF grammar \(G \) such that \(L = L(G) \).
• CNF:
 \[A \rightarrow BC \]
 \[A \rightarrow a \]

• **Definition:** Let \(T \) be a tree. Then the **height** of \(T \), denoted \(h(T) \), is defined as follows:
 - If \(T \) consists of a single vertex then \(h(T) = 0 \)
 - If \(T \) consists of a root \(r \) and subtrees \(T_1, T_2, \ldots, T_k \), then \(h(T) = \max_i \{ h(T_i) \} + 1 \)

• **Lemma:** Let \(G \) be a CFG in CNF. In addition, let \(w \) be a string of terminals where \(A \Rightarrow^* w \) and \(w \) has a derivation tree \(T \). If \(T \) has height \(h(T) \geq 1 \), then \(|w| \leq 2^{h(T)-1} \).

• **Proof:** By induction on \(h(T) \) (exercise: \(T \) is a binary tree).

• **Corollary:** Let \(G \) be a CFG in CNF, and let \(w \) be a string in \(L(G) \). If \(|w| \geq 2^k \), where \(k \geq 0 \), then any derivation tree for \(w \) using \(G \) has height at least \(k+1 \).

• **Proof:** Follows from the lemma.
• **Lemma:** Let G be a CFG in CNF. In addition, let w be a string of terminals where $A \Rightarrow^* w$ and w has a derivation tree T. If T has height $h(T) \geq 1$, then $|w| \leq 2^{h(T) - 1}$.

- Internal nodes are non-terminals
- Leaves are terminals constituting the string

$h(T) = 5$

$|w| = 6$ in this case, maximum possible = 2^4

last branch is always single $A \Rightarrow a$

$|w| \leq 2^{h(T) - 1}$
Pumping Lemma
for Context-Free Languages

• **Pumping Lemma:**
 Let $G = (V, T, P, S)$ be a CFG in **CNF**, and let $n = 2^{|V|}$. If z is a string in $L(G)$ and $|z| \geq n$, then there exist substrings u, v, w, x and y in T^* such that $z = uvwxy$ and:

 - $|vx| \geq 1$ (i.e., $|v| + |x| \geq 1$, or, non-null)
 - $|vwx| \leq n$ (the loop in generating this substring)
 - uv^iwx^iy are in $L(G)$, for all $i \geq 0$

- **Note:** u or y could be of any length, may be ε
- vwx is in the middle, of size >0
- **Note the difference with Regular Language pumping lemma**
• **Proof:**
Since \(|z| \geq n = 2^k\), where \(k = |V|\), it follows from the corollary that any derivation tree for \(z\) has height at least \(k+1\).

By definition such a tree contains a path of length at least \(k+1\).

Consider the longest such path in the tree \(T\):

```
S
   \(t\)

yield of this tree \(T\) is string \(z\)
```

Such a path has:
- Length of path \(t\) is \(|t| \geq k+1\) (i.e., number of edges in the path \(t\) is \(\geq k+1\))
- At least \(k+2\) nodes on the path \(t\)
- 1 terminal, at the end of the path \(t\)
- At least \(k+1\) non-terminals
• Since there are only k non-terminals in the grammar, and since $k+1$ or more non-terminals appear on this long path, it follows that some non-terminal (and perhaps many) appears at least twice on this path.

• Consider the first non-terminal (from bottom) that is repeated, when traversing the path from the leaf to the root.

This path, and the non-terminal A will be used to break up the string z.
• Generic Description:

• Example:

In this case $u = cd$ and $y = f$

Where are v, w, and x?
• Cut out the subtree rooted at A:

\[
S \Rightarrow^* uAy \quad (1)
\]

• Example:

\[
S \Rightarrow^* cdAf
\]
Consider the subtree rooted at A:

\[A \Rightarrow^* vAx \quad (2) \]

Cut out the subtree rooted at the first occurrence of A:

\[A \Rightarrow^* fAg \]
Consider the smallest subtree rooted at A:

Collectively (1), (2) and (3) give us:

\[
S \Rightarrow^* uAy \\
\Rightarrow^* uvAxy \\
\Rightarrow^* uvwxxy \\
\Rightarrow^* z
\]

since \(z = uvwxxy \)
• In addition, (2) also tells us:

\[S \Rightarrow^* uAy \] (1)

\[\Rightarrow^* uvAxy \] (2)

\[\Rightarrow^* u(vA)x y \] // by using the rules that make A \(\Rightarrow^* vAx \)

\[\Rightarrow^* uv^2Ax^2y \] (2)

\[\Rightarrow^* uv^2wx^2y \] (3)

• More generally:

\[S \Rightarrow^* uv^iwx^iy \] for all \(i \geq 1 \),

• And also:

\[S \Rightarrow^* uAy \] (1)

\[\Rightarrow^* uwy \] (3) // by A \(\Rightarrow^* w \)

here, \(i=0 \)

• Hence:

\[S \Rightarrow^* uv^iwx^iy \] for all \(i \geq 0 \)
Consider the statement of the Pumping Lemma:

- What is n?

\[n = 2^k, \text{ where } k \text{ is the number of non-terminals in the grammar.} \]

- Why is $|v| + |x| \geq 1$?

Since the height of this subtree is ≥ 2, the first production is $A \rightarrow V_1 V_2$. Since no non-terminal derives the empty string (in CNF), either V_1 or V_2 must derive a non-empty v or x. More specifically, if w is generated by V_1, then x contains at least one symbol, and if w is generated by V_2, then v contains at least one symbol.

- At least, $A \rightarrow AV$, or $A \rightarrow VA$, and $V \rightarrow a$
Why is $|vwx| \leq n$?

- Remember, $n = 2^k$, k #non-terminals

Observations:

- The repeated variable was the first repeated variable on the path from the bottom, and therefore (by the pigeon-hole principle) the path from the leaf to the second occurrence of the non-terminal has length at most $k+1$.

- Since the path was the largest in the entire tree, this path is the longest in the subtree rooted at the second occurrence of the non-terminal. Therefore the subtree has height $\leq (k+1)$. From the lemma, the yield of the subtree has length $\leq 2^k = n$.
Use of CFL Pumping Lemma
Closure Properties for Context-Free Languages

- **Theorem:** The CFLs are closed with respect to the union, concatenation and Kleene star operations.

- **Proof:** (details left as an exercise) Let L_1 and L_2 be CFLs. By definition there exist CFGs G_1 and G_2 such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$.

 - For union, show how to construct a grammar G_3 such that $L(G_3) = L(G_1) \cup L(G_2)$.
 - For concatenation, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)L(G_2)$.
 - For Kleene star, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)^*$.
• **Theorem:** The CFLs are not closed with respect to intersection.

• **Proof:** (counter example) Let

\[
L_1 = \{ a^i b^i c^j | i, j \geq 0 \}
\]

and

\[
L_2 = \{ a^i b^i c^j | i, j \geq 0 \}
\]

Note that both of the above languages are CFLs. If the CFLs were closed with respect to intersection then

\[
L_1 \cap L_2
\]

would have to be a CFL. But this is equal to:

\[
\{ a^i b^i c^i | i \geq 0 \}
\]

which is not a CFL.
• **Theorem:** The CFLs are NOT closed with respect to complementation.

• **Lemma:** Let \(L_1 \) and \(L_2 \) be subsets of \(\Sigma^* \). Then \(\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2} \).

• **Proof:** (by contradiction) Suppose that the CFLs were closed with respect to complementation, and let \(L_1 \) and \(L_2 \) be CFLs. Then:

\[
\overline{L_1} \quad \text{would be a CFL}
\]
\[
\overline{L_2} \quad \text{would be a CFL}
\]
\[
\overline{L_1 \cup L_2} \quad \text{would be a CFL}
\]
\[
\overline{L_1} \cap \overline{L_2} \quad \text{would be a CFL}
\]

But by the lemma:
\[
\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2} = L_1 \cap L_2 \quad \text{a contradiction.}
\]
• **Theorem:** Let L be a CFL and let R be a regular language. Then $L \cap R$ is a CFL.

• **Proof:** (exercise – sort of)

• **Question:** Is $L \cap R$ regular?

• **Answer:** Not always. Let $L = \{a^i b^i \mid i \geq 0\}$ and $R = \{a^i b^j \mid i, j \geq 0\}$, then $L \cap R = L$ which is not regular.