1026

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

Probabilistic Finite-State Machines—Part I

Enrique Vidal, Member, IEEE Computer Society, Frank Thollard, Colin de la Higuera,
Francisco Casacuberta, Member, IEEE Computer Society, and Rafael C. Carrasco

Abstract—Probabilistic finite-state machines are used today in a variety of areas in pattern recognition or in fields to which pattern
recognition is linked. In Part | of this paper, we surveyed these objects and studied their properties. In this Part Il, we study the relations
between probabilistic finite-state automata and other well-known devices that generate strings like hidden Markov models and n-grams
and provide theorems, algorithms, and properties that represent a current state of the art of these objects.

Index Terms—Automata, classes defined by grammars or automata, machine learning, language acquisition, language models,
language parsing and understanding, machine translation, speech recognition and synthesis, structural pattern recognition, syntactic

pattern recognition.

1 INTRODUCTION

IN the first part [1] of this survey, we introduced
probabilistic finite-state automata (PFA), their determi-
nistic counterparts (DPFA), and the properties of the
distributions these objects can generate. Topology was also
discussed, as were consistency and equivalence issues.

In this second part, we will describe additional features
that are of use to those wishing to work with PFA or DPFA.
As mentioned before, there are many other finite-state
machines that describe distributions. Section 2 is entirely
devoted to compareing them with PFA and DPFA. The
comparison will be algorithmic: Techniques (when existing)
allowing to transform one model into another equivalent, in
the sense that the same distribution is represented, will be
provided. We will study n-grams along with stochastic local
languages in Section 2.1 and HMMs in Section 2.3. In
addition, in Section 2.2, we will present a probabilistic
extension of the classical morphism theorem that relates local
languages with regular languages in general.

Once most of the issues concerning the task of dealing
with existing PFA have been examined, we turn to the
problem of building these models, presumably from
samples. First, we address the case where the underlying
automaton structure is known; then, we deal (Section 3.1)
with the one of estimating the parameters of the model [2],
[3], [4], [5], [6], [7]. The case where the model structure is not
known enters the field of machine learning and a variety of
learning algorithms has been used. Their description,
proofs, and a comparison of their qualities and drawbacks

e E. Vidal and F. Casacuberta are with the Departamento de Sistemas
Informdticos y Computacion and Instituto Tecnologico de Informadtica,
Universidad Politécnica de Valencia, Camino dr Vera s/n, E-46071
Valencia, Spain. E-mail: {evidal, fcn}@iti.upuv.es.

o C. de la Higuera and F. Thollard are with EURISE—Faculté des Sciences
et Techniques, FR-42023 Saint-Etienne Cedex 2, France.

E-mail: {Franck.Thollard, Colin.Delahiguera}@univ-st-etienne.fr.

e R.C. Carrasco is with the Departamento de Lenguajes y Sistemas
Informdticos, Universidad de Alicante, E-03071 Alicante, Spain.

E-mail: carrasco@dlsi.ua.es.

Manuscript received 12 Jan. 2004; revised 3 Aug. 2004; accepted 20 Sept.
2004; published online 12 May 2005.

Recommended for acceptance by M. Basu.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org and reference IEEECS Log Number TPAMISI-0032-0104.

0162-8828/05/$20.00 © 2005 IEEE

would deserve a detailed survey in itself. We provide, in
Section 3.2, an overview of the main methods, but we do not
describe them thoroughly. We hope the bibliographical
entries we provide, including the recent review which
appears in [8], will be of use for the investigator who
requires further reading in this subject. Smoothing [9], [10],
[11] (in Section 3.3) is also becoming a standard issue.

A number of results do not fall into any of these main
questions. Section 4 will be a pot-pourri, presenting alter-
native results, open problems, and new trends. Among
these, more complex models such as stochastic transducers
(in Section 4.1), probabilistic context-free grammars [12] (in
Section 4.2), or probabilistic tree automata [13], [14], [15] (in
Section 4.3) are taking importance when coping with
increasingly structured data.

The proofs of some of the propositions and theorems are
left to the corresponding appendices.

As all surveys, this one is incomplete. In our particular
case, the completeness is particularly difficult to achieve
due to the enormous and increasing amount of very
different fields where these objects have been used. We
would like to apologize in advance to all those whose work
on this subject that we have not recalled.

2 OTHER FINITE-STATE MODELS

Apart from the various types of PFA, a variety of alternative
models have been proposed in the literature to generate or
model probability distributions on the strings over an
alphabet.

Many different definitions of probabilistic automata
exist. Some assume probabilities on states, others on
transitions. But the deep question is “which is the
distinctive feature of the probability distribution defined?”
All the models describe discrete probability distributions.
Many of them aim at predicting the next symbol in a string,
thereby describing probability distributions over each 37",
Vn>0. We will concentrate here on models where parsing
will be done from left to right, one symbol at a time. As a
consequence, the term predicting history will correspond to
the amount of information one needs from the prefix to
compute the next-symbol probability. Multiplying these

Published by the IEEE Computer Society

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

next-symbol probabilities is called the chain rule which will
be discussed in Section 2.1.

Among the models proposed so far, some are based on
acyclic automata [1], [16], [17], [18], [19]. Therefore, the
corresponding probability distributions are defined on finite
sets of strings, rather than on >*. In [18], automata that define
probability distributions over X", for some fixed n > 0 are
introduced. This kind of model can be used to represent, for
instance, logic circuits, where the value of n can be defined in
advance. A main restriction of this model is that it cannot be
used to compare probabilities of strings of different lengths.
Ron et al. [19] define other probabilistic acyclic deterministic
automata and apply them to optical character recognition.

Another kind of model describes a probability distribu-
tion over ¥*; that is, over an infinite number of strings.
Stolcke and Omohundro [20] use other types of automata
that are equivalent to our definition of DPFA. Many
probabilistic automata, such as those discussed here, the
HMM and the Markov chain (also known as the n-gram
model), also belong to this class.

We give here an overview of some of the most relevant of
these models. In all cases, we will present them in
comparison with the probabilistic finite-state automata.
The comparison will be algorithmic: Techniques (when
existing) allowing the transformation of one model into
another, equivalent in the sense that the same distribution is
represented, will be provided. From the simpler to the more
complex objects, we will study n-grams and stochastic
k-testable languages (in Section 2.1) and HMMs (in
Section 2.3). In Section 2.2, we will include a probabilistic
extension of an important result in the classical theory of
formal languages, known as the morphism theorem.

2.1 N-Grams and Stochastic k-Testable Automata

N-grams have been the most widely used models in natural
language processing, speech recognition, continuous hand-
written text recognition, etc. As will be seen below, under
certain assumptions, n-grams are equivalent to a class of
DPFA known as stochastic k-testable automata. Despite the
popularity and success of these models, we shall prove that
they cannot model all distributions that can be modeled by
DPFA.

2.1.1 N-Gram Models

N-grams are traditionally presented as an approximation to
a distribution of strings of fixed length. For a string = of
length m, the chain rule is used to (exactly) decompose the
probability of = as [21]:

m

Pr(z) = Pr(z1) - [[Pr(a | 1, ..., 219). (1)
1=2
The n-gram approximation makes the assumption that
the probability of a symbol depends only on the n —1
previous symbols; that is:!

m
Pr(z) =~ HPI‘(CL’l | Ti—pi1y .o Ti1)-
=1

1. For the sake of simplifying the notation, if i <1, the expression
Pr(zj|a;, ..., xj-1) is assumed to denote Pr(z;|x1, ..., x;—1). If j =1, it is just
Pr(z;|)), interpreted as Pr(z;).

1027

As (1), this approximation also defines a probability
distribution over ¥". Nevertheless, for practical reasons, it is
often interesting to extend it to define a probability
distribution over X*. To this end, the set of events, 33, which
are predicted by the n — 1 previous symbols, is extended by
considering an additional end-of-string event (denoted by
“#"), with probability Pr(#|z,,—n+2, ..., Zn). As a result, the
probability of any string « € ¥* is approximated as:

Pr(z) ~

|z| (2)
(H Pr(z | ©1—pi1, .- ~,$11)> - Pr(# | L|z|—nt2s - - - 7$\x|)~
=1

By making use of our convention that a string such as
zi...x; denotes X if i > j, this approximation accounts for
the empty string. In fact, if 2 = A, the right-hand side of (2)
is 1-Pr(#|\), which may take values greater than 0. The
resulting approximation will be referred to as “extended
n-gram model.” The parameters of this model are estimates
of Pr(alz), a € XU {#}, z € ¥<", which will ferred to
as P,(a|z). The model assigns a probability) for any
string = € ¥* as:

Pr,(z) =

|| 3
<Hpn(ml ‘ mln+17"'7$ll)> PTI(# |.’13‘1‘,n+2,...,$‘z‘))- ()
=1

Note that (unlike the classical n-gram model for fixed-
length strings) Pr,(x) can be deficient. This may happen for
certain “degenerate” values of P, (a|z), a € S U {#},z € <",
which may lead to infinite-length strings with nonnull
probability. Disregarding these degenerate cases and pro-
vided that

S Pu(als) + Pu(#l2) =1 Vze ",

acx

this model is comsistent, i.e., it defines a probability
distribution, D,,, over X*.

It follows from the above definition that, if D, is
described by an extended n-gram, for any n' > n, there is
an extended n/-gram which describes a distribution D, such
that D,, = D,,. In other words, there is a natural hierarchy of
classes of m-grams, where the classes with more expressive
power are those with larger n. The simplest interesting class
in this hierarchy is the class for n = 2, or bigrams. This class
is interesting for its generative power in the sense discussed
later (Section 2.2).

On the other hand, perhaps the most interesting feature
of n-grams is that they are easily learnable from training
data. All the parameters of an n-gram model can be
maximume-likelihood estimated by just counting the relative
frequency of the relevant events in the training strings [21].
If S is a training sample, P, (a| z) is estimated as f(za) / f(2),
a € XU {#},z € X", where f(y) is the number of times the
substring y appears” in the strings of S. Interestingly, the
degenerate cases mentioned above can never happen for

2. For substrings shorter than n, f(y) is the number of times that y
appears as a prefix of some string in S.

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Sticky Note
for every n sized prefix of string of length l, where n<l

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

1028

n-grams trained in this way and the resulting trained
models are always consistent.

The n-grams estimated in this way from a fixed S exhibit
an interesting hierarchy for decreasing values of n. Let Dg
be the empirical distribution associated with S and let L,, =
[L.cs Prp,(z) be the likelihood with which an extended
n-gram generates S. Then, for m = maz,cs|x|, Ds = Dy,
and for all m” <m/' <m, L,» < L,,. In other words,
starting with n = m, the sample S is increasingly general-
ized for decreasing values of n.

2.1.2 Stochastic k-Testable Automata

N-grams are closely related to a family of regular models
called k-testable stochastic automata (k-TSA) [22].2 In fact, we
shall see that, for every extended k-gram model, there is a k-
TSA which generates the same distribution.

In the traditional literature, a k-testable language is
characterized by two sets of strings, corresponding to
permitted prefixes and suffixes of length less than k, and
a set of permitted substrings of length k [22], [23], [24]. A
straightforward probabilistic extension adequately assigns
probabilities to these substrings, thereby establishing a
direct relation with n-grams. For the sake of brevity, we will
only present the details for 2-testable distributions, also
called stochastic local languages.

Definition 1. A stochastic local language (or 2-testable
stochastic language) is defined by a four-tuple Z =
(3, Pr, Pr, Pr), where ¥ is the alphabet, and Pr,Prp:%¥ —
[0,1] and Pp: ¥ x X — [0,1] are, respectively, initial, final,
and symbol transition probability functions. Pr(a) is the
probability that a € ¥ is a starting symbol of the strings in the
language and, Ya € ¥, Pr(d/,a) is the probability that a
follows o, while Pr(a') is the probability that no other symbol
follows a' (i.e., a' is the last symbol) in the strings of the
language.

As in the case of n-grams, this model can be easily
extended to allow the generation of empty strings. To this
end, Pr can be redefined as Pr : ¥ U {A\} — [0, 1], interpret-
ing Pp(\) as the probability of the empty string, according
to the following normalization conditions:

ZPI)+ Pr(A) =1,

a€Y
ZPT(a/,a) + Pp(d)=1 Vd € X.
a€Y

Disregarding possible “degenerate” cases (similar to those
of extended n-grams discussed above), the model Z is con-
sistent; i.e., it defines a probability distribution D on £* as:

Pr()) ifx=A\

B o
Prz(e) = Pi(z1) - [[Pr(@io1,2) - Pr(ay) i x € SF. W

=2

3. In the traditional literature, a k-testable automaton (k-TA) is (more
properly) referred to as a k-testable automaton in the strict sense (k-TSA) [23],
[24]. In these references, the name k-testable automaton is reserved for more
powerful models which are defined as Boolean compositions of k-TSA. A
stochastic extension of k-TSA would lead to models which, in some cases,
can be seen as mixtures of stochastic k-TSA.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

Comparing (3) and (4), the equivalence of local language
and extended bigram distributions can be easily established
by letting:

P](a) = P)Q(CL)7 Yae ¥,
Pr(a) = Po(#] a), Yag U {\},
Pr(d';a) = Py(a| d),Va,d € Z.

Therefore, the following proposition holds:

Proposition 1. For any extended bigram distribution D, there
exists a local language model Z such that Dy = D, and vice
versa.

A stochastic 2-testable model Z = (X, P;, Pr, Pr) can
be straightforwardly represented by a 2-testable stochas-
tic automaton (2-TSA). This automaton is a DPFA A=
(Q,T,6,q0, F, P) built as follows:

=%, Q@=XU{A}, =2
6={(\a,a) | a€X, Pa) >0}
U{ d' a,a) | a,d’ € 2, Pr(a’,a) > 0)},

" (5)
Ya,a" € ¥ :

P(d",a,a) = Pr(a’,a), P()\ a,a)= Pr(a),

F(a) = Pp(a), F(\) = Pr(N).

An example of this construction is shown in Fig. 3
(middle) corresponding to Example 2 below. Definition 1,
Proposition 1, and (5) can be easily extended to show the
equivalence of extended k-grams and k-TSA for any finite &.

As in the case of n-grams, k-TSA can be easily learned
from training data [22]. Given the equivalence with
extended n-grams, k-TSA exhibit the same properties for
varying values of k. In particular, in this case, the m-TSA
obtained from a training sample S for m = maz,eg|z| is an
acyclic DPFA which is identical to the probabilistic prefix tree
automaton representation of S.

2.1.3 N-Grams and k-TSA Are Less Powerful than DPFA

We now show that extended n-grams or stochastic k-testable
automata do not have as many modeling capabilities as
DPFA have.

Proposition 2. There are reqular deterministic distributions that
cannot be modeled by a k-TSA or extended k-gram, for any
finite k.

This is a direct consequence of the fact that every regular
language is the support of at least one stochastic regular
language, and there are regular languages which are not
k-testable. The following example illustrates this lack of
modeling power of extended n-grams or k-TSA.

Example 1. Let ¥ = {a,b,c,d} and let D be a probability
distribution over X* defined as:

Prp(z) = {(1)/2i+1

This distribution can be exactly generated by the DPFA of
Fig. 1, but it cannot be properly approached by any k-TSA
for any given k. The best k-TSA approximation of D, Dy, is:

if x = ablcVa =dbe,i>0,
otherwise.

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

b (0.5)

b (0.5) ¢ (0.5)

d (0.5)

(17 a(0.5)

b (1)

Fig. 1. A DPFA which generates a regular deterministic distribution that
cannot be modeled by any k-TSA or n-gram.

Prp,(z) =1/2"', Prp () =0 Vi<k-—2,
Prp, (z) = Prp,(a/) = 1/2'*? Vi>k—2,

for any string « of the form abic or db'e, and 2’ of the form
dbic or able.

In other words, using probabilistic k-testable auto-
mata or extended k-grams, only the probabilities of the
strings up to length k can be approached while, in this
example, the error ratio* for longer strings will be at least
1/2 (or larger if k-TSA probabilities are estimated from a
finite set of training data). As a result, for all finite values
of k, the logarithmic distance dios(D, Dy;) is infinite.

This can be seen as a probabilistic manifestation of the
well-known over/undergeneralization behavior of con-
ventional k-testable automata [25].

2.2 Stochastic Morphism Theorem

In classical formal language theory, the morphism theorem
[26] is a useful tool to overcome the intrinsic limitations of
k-testable models and to effectively achieve the full
modelling capabilities of regular languages in general.
Thanks to this theorem, the simple class of 2-testable
languages becomes a “base set” from which all the regular
languages can be generated.

However, no similar tool existed so far for the corre-
sponding stochastic distributions. This section extends the
standard construction used in the proof of the morphism
theorem so that a similar proposition can be proved for
stochastic regular languages.

Theorem 3 (Stochastic morphism theorem). Let X be a finite
alphabet and D a stochastic regular language on ¥*. There
exists then a finite alphabet X', a letter-to-letter morphism
h: ¥ — ¥* and a stochastic local language over X', Dy,
such that D = h(Dy), i.e.,

Vo € ¥ Prp(z) =Prp,(h'(x)) = > Prp,(y), (6)
yeh~!(z)

where h1(z) = {y € X | 2 = h(y)}.

The proof of this proposition is in the Appendix.

The following example illustrates the construction used
in this proof and how to obtain exact 2-TSA-based models
for given, possibly nondeterministic stochastic regular
languages.

Example 2. Consider the following distribution D over
Y ={a,b}:

Pr(z) = {(lir(i)

4. The error-ratio for a string x is the quotient between the true and the
approximated probabilities for z.

if £ =ab’, >0,
otherwise,

1029
s | origin:al — |
k=3, o
4 k=4
S 3 =
g v
5 -
g 2
83}
1
0 10 20 30 40 50 60

String length

Fig. 2. Error-ratio of the probabilities provided by different k-testable
automata that best approach the stochastic language of Example 2, with
respect to the true probability of strings in this language.

with Pr(i) =p1 - (1 —p2) -po' + (L —p1) - (1 — p3) - ps* and
P11 = 05, P2 = 07, and pP3 = 0.9.

This distribution (which is similar to that used in Part I
[1] to prove that the mean of two deterministic dis-
tributions may not be deterministic) is exactly generated
by the PFA shown in Fig. 3 (left). From a purely
structural point of view, the strings from the language
underlying this distribution constitute a very simple
local language that can be exactly generated by a trivial
2-testable automaton. However, from a probabilistic
point of view, D is not regular deterministic, nor by
any means local. In fact, it cannot be approached with
arbitrary precision by any k-TSA, for any finite value of .
The best approximations for k = 2,3,4,5 produce error-
ratios greater than 2 for strings longer than 35, 40, 45, and
52, respectively, as is shown in Fig. 2. In fact, the
logarithmic distance between the true and k-TSA-approxi-
mated distributions is infinite for any finite k. Never-
theless, the construction given by the stochastic
morphism theorem yields a stochastic finite-state auto-
maton that exactly generates D.

Using the construction of the proof of the stochastic
morphism theorem, a 2-TSA, Z = (¥', P;, Pr, Pr), is built
from the DPFA A, = (Q, %, 4, q, F, P) shown in Fig. 3
(left) as follows:

Y = {as, a3, bo, b3},
Pr(az) = Pr(a3) = P(1,a,2) = P(1,a,3) = 0.5,

Pr(as) = Pr(by) = F(2) = 0.3, -
Pp(az) = Prp(bs) = F(3) =0.1,

Pr(as,bs) = Pr(bs,bs) = P(2,b,2) = 0.7,

Pr(as,bs) = Pr(bs,b3) = P(3,b,3) = 0.9,

all the other values of P;, Pr, and Pr are zero.

The corresponding 2-TSA is shown in Fig. 3 (middle).
Applying the morphism & (i.e., dropping subindexes) to
this automaton yields the PFA A shown in Fig. 3 (right).
For any string x of the form ab’, we have:

Pry(z) =0.5-0.3-0.7° +0.5-0.1-0.9° Vi > 0.

which is exactly the original distribution, D.

1030

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

Fig. 3. Left: Finite-state stochastic automaton which generates the stochastic language of Example 2. Middle and right: Automata obtained through

the construction used in the proof of the stochastic morphism theorem.

2.3 Hidden Markov Models

Nowadays, hidden Markov models (HMMs) are basic
components of the most successful natural language
processing tasks, including speech [21], [27], [28] and
handwritten text recognition [29], [30], speech translation
[31], [32], and shallow parsing [33], to name but a few.
HMMs have also proved useful in many other pattern
recognition and computer vision tasks, including shape
recognition, face and gesture recognition, tracking, image
database retrieval and medical image analysis [34], [35] and
other less conventional applications such as financial
returns modeling [36].

There exist many variants of Markov models, including
differences as to whether the symbols are emitted at the states
or at the transitions. See, for example, [21], [27], [28], [37].

Definition 2. An HMM is a 6-tuple M ={(Q,%,L,F,T,E),
where

e Q is a finite set of states,

e 3l is a finite alphabet of symbols,

e T:(Q—{q})xQ—IR" is a state to state transi-
tion probability function,

o 1:Q—{ar} — R" is an initial state probability
function,

o E:(Q—{q})xX—TR" is a state-based symbol
emission probability function,

e qr € Q is a special (final) state,

subject to the following normalization conditions:

I(q) =1,
q€Q—{ar}
> T(g.q)=1, YgeQ—{a},
q€Q
ZE(Q, CL) =1, Vq € Q - {Qf}'
aex

We will say that the model M generates (or emits) a
sequence x = x;...x; with probability Pry(z). This is
defined in two steps. First, let 6 be a valid path of length
k, i.e., a sequence (s, 2, ...,s;) of states, with s, = q. The
probability of 6 is:

Pry(0) = 1(s1) - [T T(sj1585)

2<j<k

and the probability of generating « through 0 is:

Proy(z | 0) = [E(sjra))-

1<j<k

Then, if ©p(z) is the set of all valid paths for z, the
probability that M generates x is:

Pry(z)= Y Pru(z|6)-Prau(6).
0€O ()

It should be noticed that the above model cannot emit the
empty string. Moreover, as in the case of PFA, some HMMs
can be deficient. Discarding these degenerate cases, it can
easily be seen that >~ . Pry(z) = 1. Correspondingly, an
HMM M defines a probability distribution Dy on X,

In some definitions, states are allowed to remain silent
or the final state ¢f is not included in the definition of an
HMM. As in the case of n-grams, this latter type of model
defines a probability distribution on X" for each n, rather
than on X" [37].

Some relations betwe]:“ MMs and PFA are established
by the following proposi Q

D.

Proposition 4. Given a PFA A with m transitions and
Pr4(\) = 0, there exists an HMM M with at most m states,
such that Dyy = Dy.

Proposition 5. Given an HMM M with n states, there exists a
PFA A with at most n states such that D4 = Dyy.

In order to have a self-contained article, the proofs of
Propositions 4 and 5 are given in the Appendix (Sections A.1
and A.3). They nonetheless also appear in [8] using a
slightly different method regarding Proposition 4.

3 LEARNING PROBABILISTIC AUTOMATA

Over the years, researchers have attempted to learn, infer,
identify, or approximate PFA from a given set of data. This
task, often called language modeling [38], is seen as
essential when considering pattern recognition [27], ma-
chine learning [39], computational linguistics [40], or
biology [14]. The general goal is to construct a PFA (or
some alternative device) given data assumed to have been
generated from this device, and perhaps the partial knowl-
edge of the underlying structure of the PFA. A recent review
on probabilistic automata learning appears in [8]. Here,
only a quick, in most cases complementary, review, along
with a set of relevant references, will be presented. We will
distinguish here between the estimation of the probabilities
given an automaton structure and the identification of the
structure and probabilities altogether.

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Sticky Note
1. Any state other than final one can be start state, total prob = 1
2. Total state transition prob = 1
3. Emission prob of all symbols, from each state, total =1

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Highlight

dmitra
Sticky Note
HMM = PFA

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

3.1 Estimating PFA Probabilities

The simplest setting of this problem arises when the
underlying structure corresponds to an n-gram or a k-TSA.
In this case, the estimation of the parameters is as simple as
the identification of the structure [21], [22].

We assume more generally that the structural components,
¥, @, and ¢, of a PFA A, are given. Let S be a finite sample of
training strings drawn from a regular distribution D. The
problem is to estimate the probability parameters I, P, F' of
A in such a way that D4 approaches D.

Maximum likelihood (ML) is one of the most widely
adopted criteria for this estimation:

(I,P,F) = argmaxHPrA(ac). (8)
LPF ,Zg

Maximizing the likelihood is equivalent to minimizing the
empirical cross entropy X(S, D) (see Section 6 of [1]). It can
be seen that, if D is generated by some PFA A’ with the same
structural components of A, optimizing this criterion guaran-
tees that D 4 approaches D as the size of S goes to infinity [41].

The optimization problem (8) is quite simple if the given
automaton is deterministic [42]. Let (Q, %, 6, o, F', P) be the
given DPFA whose parameters I’ and P are to be estimated.
For all ¢ € Q, a ML estimation of the probability of the
transition P(q, a, ¢) is obtained by just counting the number
of times this transition is used in the deterministic deriva-
tions of the strings in S and normalizing this count by the
frequency of use of the state ¢. Similarly, the final state
probability F(q) is obtained as the relative frequency of
state ¢ being final through the parsing of S. Probabilistic
parameters of nonambiguous PFA or A-PFA can also be easily
ML-estimated in the same way.

However, for general (nondeterministic, ambiguous)
PFA or A-PFA, multiple derivations are possible for each
string in S and things become more complicated. If the
values of I, P, and F of A are constrained to be in @, the
decisional version of this problem is clearly in NP and the
conjecture is that this problem is at least NP-Hard. In
practice, only locally optimal solutions to the optimization
(8) are possible.

As discussed in [5], the most widely used algorithmic
solution to (8) is the well-known expectation-maximization
(EM) Baum-Welch algorithm [2], [3], [6]. It iteratively updates
the probabilistic parameters (I, F', and P) in such a way that
the likelihood of the sample is guaranteed not to decrease
after each iteration. The parameter updating is based on the
forward and backward dynamic programming recurrences
to compute the probability of a string discussed in Section 3
of [1]. Therefore, the method is often referred to as backward-
forward reestimation. The time and space complexities of
each Baum-Welch iteration are O(M - N) and O(K - L + M),
respectively, where M = |6] (number of transitions), K =
|Q| (number of states), N = ||S|| (number of symbols in the
sample), and L = max,cg |z| (length of the longest training
string) [5].

Using the optimal path (Viterbi) approximation rather
than the true (forward) probability (see [1], Section 3.2, and
Section 3.1, respectively) in the function to be optimized (8),
a simpler algorithm is obtained, called the Viterbi reestima-
tion algorithm. This is discussed in [5], while reestimation

1031

algorithms for other criteria different from ML can be found
in [7], [43], [44], [45].

Baum-Welch and Viterbi reestimation techniques ade-
quately cope with the multiple-derivations problem of
ambiguous PFA. Nevertheless, they can also be applied to
the simpler case of nonambiguous PFA and, in particular, the
deterministic PFA discussed above. In these cases, the
following properties hold:

Proposition 6. For nonambiguous PFA (and for DPFA in
particular),

1. the Baum-Welch and the Viterbi reestimation algo-
rithms produce the same solution,

2. the Viterbi reestimation algorithm stops after only one
iteration, and

3. the solution is unique (global maximum of (8)).

3.2 Learning the Structure

We will first informally present the most classic learning
paradigms and discuss their advantages and drawbacks.
We will then present the different results of learning.

3.2.1 Learning Paradigms

In the first learning paradigm, proposed by Gold [46], [47],
there is an infinite source of examples that are generated
following the distribution induced by a hidden target. The
learning algorithm is expected to return some hypothesis
after each new example, and we will say that the class is
identifiable in the limit with probability one if whatever
target the algorithm identifies is the target (i.e., there is a
point from which the hypothesis is equivalent to the target)
with probability one.

The main drawbacks of this paradigm are:

e it does not entail complexity constraints,

e we usually do not know if the amount of data

needed by the algorithm is reached, and

e an algorithm can be proven to identify in the limit

and might return arbitrary bad answers if the
required amount of data is not provided.

Despite these drawbacks, the identification in the limit
paradigm can be seen as a necessary condition for learning
a given class of model. If this condition is not met, that
means that some target is not learnable.

A second learning paradigm was proposed by Valiant
and extended later [48], [49], [50], [51], [52]. This paradigm,
called probably approximately correct (PAC) learning,
requires that the learner returns a good approximation of
the target with high probability. The words good and high are
formalized in a probabilistic framework and are a function
of the amount of data provided.

These frameworks have been adapted to the cases where
the target concept is a probabilistic model [19], [53], [54],
[55], [56], [57], [58].

Finally, another framework comes from traditional
methods for HMM estimation. In this framework, the
structure of the model is somehow parameterized and
learning is seen as a problem of parameter estimation. In the
most general statement of this problem for PFA, only the
alphabet (of size n) and the number of states (m) are given
and the problem is to estimate the probabilities of all the

dmitra
Highlight

1032

n - m? possible transitions. As discussed in Section 3.1, the
Baum-Welch (or the Viterbi) algorithm can be used for a
locally optimal estimation of these parameters. However,
given the very large amount of parameters, this general
method has seldom proved useful in practice. Related
approaches where the amount of parameters to estimate is
explicitly constrained are discussed in [8].

3.2.2 What Can Be Learned?

This section addresses previous works related to the
learning of probabilistic finite-state automata. The first
results came from Horning [53], who showed that any
recursively enumerable class of languages can be identified
in the limit with probability one. The problem of the proof
—among others of the same spirit [54], [55]—is that it does
not provide us with a reasonable algorithm to perform the
learning task.

A more constructive proof, relying on a reasonable
algorithm, was proposed in [57]: Identification in the limit
of DPFA is shown. This proof is improved in [59] with
results concerning the identification of rational random
variables.

Work has also been done in the Probably Approximately
Correct (PAC) learning paradigm. The results are rather
different depending on the object we want to infer and/or
what we know about it. Actually, Abe and Warmuth [17]
showed that nondeterministic acyclic automata that defined
a probability distribution over ¥", with n and ¥ known,
could be approximated in polynomial time. Moreover, they
showed that learnability is not polynomial in the size of the
vocabulary. Kearns et al. [18] showed that an algorithm that
aims at learning a probabilistic function cannot reach its
goal® if the probability distribution can be generated by a
DPFA over {0, 1}". Thus, knowing the class of the object we
want to infer helps the inference a lot since the object dealt
with in [17] are more complex than the ones addressed in
[18]. Following this idea, Ron et al. [19] proposed a practical
algorithm that converges in a PAC-like framework that
infers a restricted class of acyclic automata. More recently,
Clark and Thollard [58] showed that the result holds with
cyclic automata as soon as a bound on the expected length
of the generated strings is known.

3.2.3 Some Algorithms

If we restrict ourselves to the class of n-gram or k-TSA
distributions, as previously mentioned, learning both the
structure and the probabilities of n-grams or k-TSA is simple
and already very well-known [21], [22]. For more general
PFAs, another strategy can be followed: First, the probabil-
istic prefix tree automaton (PPTA), which models the given
training data with maximum-likelihood, is constructed.
This PPTA is then generalized using state-merging opera-
tions. This is usually called the state-merging strategy.
Following this strategy, Carrasco and Oncina [60]
proposed the ALERGIA algorithm for DPFA learning. Stolcke
and Omohundro [20] proposed another learning algorithm
that infer DPFA based on Bayesian learning. Ron et al. [19]

5. Actually, the authors showed that this problem was as hard as
learning parity functions in a noisy setting for the nonprobabilistic PAC
framework. This problem is generally believed to be untractable.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

reduced the class of the language to be learned and provided
another state-merging algorithm and Thollard et al. [61]
proposed the MDI algorithm under the same framework.
MDI has been shown to outperform ALERGIA on a natural
language modeling task [61] and on shallow parsing [62]. A
recent variant of ALERGIA was proposed in [63] and
evaluated on a natural language modeling task. A modifica-
tion of this algorithm was also used in [64] to discover the
underlying model in structured text collections.

3.2.4 Other Learning Approaches

While not a learning algorithm in itself, a (heuristic) general
learning scheme which is worth mentioning can be derived
from the stochastic morphism theorem shown in Section 2.2. In
fact, the use of the conventional morphism theorem [26]
was already proposed in [65] to develop a general
methodology for learning general regular languages, called
“morphic generator grammatical inference” (MGGI). The basic
idea of MGGI was to rename the symbols of the given
alphabet in such a manner that the syntactic restrictions
which are desirable in the target language can be described
by simple local languages. MGGI constitutes an interesting
engineering tool which has proved very useful in practical
applications [25], [65].

We briefly discuss here how the stochastic morphism
theorem can be used to obtain a stochastic extension of this
methodology, which will be called stochastic MGGI (SMGGI).

Let S be a finite sample of training sentences over ¥ and
let ¥ be the alphabet required to implement an adequate
renaming function g: S — X'*. Let h: ¥'* — ¥* be a letter-to-
letter morphism; typically, one such that h(g(S)) = S. Then,
a 2-TSA model can be obtained and the corresponding
transition and final-state probabilities max-likelihood esti-
mated from ¢(.S) using conventional bigram learning or the
2-TSI algorithm [22].

Let D;(g(S)) be the stochastic local language generated
by this model. The final outcome of SMGGI is then defined
as the regular distribution D = h(D;(g(5)); that is:

Vr € ¥*, Prp(z) = Z Prp,(y(s)) (¥),)

yeh1(z)

where h™1(z) = {y € ¥ 1 y = h(x)}.

From a practical point of view, the morphism £ is just
applied to the terminal symbols of the 2-TSA generating
Ds(g(S)). While this automaton (defined over ') has
deterministic structure and is therefore unambiguous, after
applying h, the resulting automaton is often ambiguous,
thus precluding a simple max-likelihood estimation of the
corresponding transition and final state probabilities.
Nevertheless, (9) allows us to directly use the the 2-TSA
probabilities with the guarantee that they constitute a
proper estimation for the possibly ambiguous resulting
automaton.

3.3 Smoothing Issues

The goal of smoothing is estimating the probability of
events that have never been seen in the training data
available. From the theoretical point of view, smoothing
must be taken into account since estimates must behave
well on the whole set £*. From the practical point of view,

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

we saw that the probability of a sequence is computed using
products of probabilities associated with the symbols.
Smoothing is necessary to distinguish a very probable
sequence with a unique unknown symbol (e.g., in natural
language modeling this can be a sentence with an unknown
proper noun) from a sequence composed of impossible
concatenations of symbols.

Even though some work has been done in order to
theoretically justify some smoothing techniques—e.g., the
Good-Turing estimator [39], [66]—smoothing has mainly
been considered from the practical point of view. The main
line of research is considering the n-gram model as the base
model and a back-off strategy as the smoothing technique
[10], [38], [67], [68], [69]. In the back-off strategy, another
model is used (usually a more general one) in order to
estimate the probability of a sequence; for example, if there
is no trigram to estimate a conditional probability, a bigram
can be used to do it. In order to guarantee an overall
consistent model, several variants have been considered.
After the backing-off, the trigram can again be used to
estimate the probabilities.

Smoothing PFA is a harder problem. Even if we can think
about backing-off to simpler and more general models, it is
not easy to use the PFA to continue the parsing after the
backing-off. A first strategy consists in backing-off to a
unigram and finishing the parsing in the unigram [70] itself.
A more clever strategy is proposed by Llorens et al. [71],
which use a (recursively smoothed) n-gram as a back-off
model. The history of each PFA state is computed in order to
associate it with the adequate n-gram state(s). Parsing can
then go back and forth through the full hierarchy of PFA and
m-gram states, 0 < m < n, as needed for the analysis of any
string in X*. This strategy performs better in terms of
predicting power, but is obviously more expensive in terms
of computing time. An error correcting approach can also
be used, which consists in looking for the string generated
by the PFA that with maximum likelihood may have been
“distorted” (by an error model) into the observed string
[11], [72].

Smoothing can be considered either as a distribution
estimation technique or as a postprocessing technique used
to improve the result of a given estimator. Some other pre/
postprocessing techniques have been proposed in order to
improve a machine learning algorithm.

In the spirit of preprocessing the data, Dupont and Chase
[73] cluster the data using a statistical clustering algorithm
[74]. The inference algorithm will then provide a class-
model. This technique allows them to work on tasks with
large vocabularies (e.g., 65,000 words). Moreover, it seems to
improve the power of prediction of the model. Another way
of dealing with the data is by typing it. For example, in
natural language processing, we can type a word using
some syntactic information such as the part of speech it
belongs to. The idea is to take external information into
account during the inference. A general framework for
taking into account typed data for the inference of PFA was
studied in [75].

Another technique that preprocesses the data is bagging
[76]. It was successfully adapted to the inference of PFA
applied on a noun phrase chunking task [62].

1033

4 PROBABILISTIC EXTENSIONS

A number of natural extensions of the PFA and DPFA have
been proposed. We mention in the sequel some of the most
important ones. These include probabilistic finite-state trans-
ducers and stochastic finite-state tree automata. These models
are related with the more general stochastic context-free
grammars, for which a short account is also given.

4.1 Probabilistic Finite-State Transducers

Stochastic finite-state transducers (SFSTs) are similar to PFA
but, in this case, two different alphabets are involved:
source (X) and target (A) alphabets. Each transition in a
SFST has attached a source symbol and a (possibly empty)
string of target symbols.

Different types of SFSTs have been applied with success
in some areas of machine translation and pattern recogni-
tion [77], [78], [79], [80], [81], [82], [83]. On the other hand, in
[40], [84], [85], weighted finite-state transducers are intro-
duced. Another (context-free) generalization, head transducer
models, was proposed in [86], [87].

An SFST 7 is defined as an extension of PFA: 7 =
(Q,%,A,6,1, F, Py, where @ is a finite set of states; ¥ and A
are the source and target alphabets, respectively; 6 C
Q x X x A*x Q is a set of transitions; I : Q — IRT and F:
Q — IR" are the initial and final-state probabilities, respec-
tively; and P : § — IR" are the transition probabilities, subject
to the following normalization constraints:

> Ig) =1,

q€qQ

Vg e Q,F(q) + P(g,a,y,q) =1.
a€X, ¢ €QyeA*

A particular case of SFST is the deterministic SFST, where
(¢,a,u,r) € 6 and (g,a,v,s) € 6 implies u=v and r =s. A
slightly different type of deterministic SFST is the sub-
sequential transducer (SST) which can produce an additional
target substring when the end of the input string has been
detected.

In a similar was as a PFA generates an inconditional
distribution on X*, if a SFST has no useless states it
generates a joint distribution Pr7 on X* x A*.

Given a pair (t,z) € A* x ¥*, the computation of Prr (¢, z)
is quite similar to the computation of Pr4(z) for a PFA A
[81]. Other related problems arise in the context of SFST [7],
[88]. Among the most interesting ones is the stochastic
translation problem: Given a SFST T and z € ¥*, compute:°

argmax Prr(t, x). (10)

teA*
This problem has been proven to be NP-Hard [88], but an
approximate solution can be computed in polynomial time
by using an algorithm similar to the Viterbi algorithm for
PFA [7], [43].

For certain particular cases of SFSTs, the (exact) stochastic
translation problem is computationally tractable. If the SFST
T is nonambiguous in the translation sense (Vo € ¥* there are
not two target sentences ¢, € A*, t#1¢, such that

6. SFSTs can be used in statistical machine translation, where the problem
is to find a target-language sentence that maximizes the conditional
probability Pr(¢|z). This is equivalent to (10); i.e., max;Pr(t|z) =
max; Pr(t, x).

1034

Prr(t,z) > 0 and Prz(¢',x) > 0), the translation problem is
polynomial. Moreover, if T is simply nonambiguous (Vx € ¥*
and Vt € A* there are not two different sequences of states
that deal with (z,t) with probability greater then zero), the
translation problem is also polynomial. In these two cases,
the computation can be carried out using an adequate
version of the Viterbi algorithm. Finally, if 7 is subsequential,
or just deterministic with respect to the input symbol, the
stochastic translation problem is also polynomial, though, in
this case, the computational cost is O(|z|), independent of
the size of 7.

The components of an SFST (states, transitions, and the
probabilities associated to the transitions) can be learned
from training pairs in a single process or in a two-step
process. In the latter case, first the structural component is
learned and next the probabilistic components are estimated
from training samples. The GIATI (Grammatical Inference and
Alignments for Translator Inference)’ is a technique of the first
type [81], [89], while OSTIA (Onward Subsequential Transducer
Inference Algorithm) and OMEGA (OSTIA Modified for Employ-
ing Guarantees and Alignments) are techniques for learning
the structural component of a SFST [79], [80]. Only a few
other techniques exist to infer finite-state transducers [77],
[90], [91], [92]. To estimate the probabilistic component in
the two-step approaches, maximum likelihood or other criteria
can be used [7], [45], [93]. One of the main problems
associated with the learning process is the modeling of
events not seen in the training set. As previously discussed
for PFA, this problem can be tackled by using smoothing
techniques; either in the estimation of the probabilistic
components of the SFSTs [94] or within of the process of
learning both components [81].

4.2 Stochastic Context-Free Grammars

Stochastic context-free grammars are the natural extension of
probabilistic finite-state transducers. These models are
defined as a tuple (Q,%,S,R,P), where @ is a set of
nonterminal symbols, ¥ is an finite alphabet, S € @) is the
initial symbol, R is a set of rules A — w with w € (QU XY,
and P: R — IR" is the set of probabilities attached to the
rules such that) gus) P(A —w) =1forall A€ Q.

In general, parsing strings with these models is in O(n?)
(although quadratic algorithms can be designed for special
types of stochastic context-free grammars) [4], [5]. Approx-
imations to stochastic context-free grammars using prob-
abilistic finite-state automata have been proposed in [95],
[96]. Algorithms for the estimation of the probabilities
attached to the rules are basically the inside-outside algorithm
[4], [97] and a Viterbi-like algorithm [98]. The relation
between the probability of the optimal path of states and
the probability of generating a string has been studied in
[99]. The structure of stochastic context-free grammars (the
nonterminal symbols and the rules) can currently be
learned from examples [100], [101], [102] in very limited
settings only (when grammars are even linear). An alternative
line is to learn the context-free grammar from the examples
and by ignoring the distribution: Typically, Sakakibara’s
reversible grammars [103] have been used for this purpose;
then, the inside-outside algorithm is used to estimate the
probabilities.

7. In earlier papers, this technique was called MGGI (Morphic Generator
Transducer Inference).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

There are also extensions of stochastic context-free
grammars for translation: stochastic syntax-directed transla-
tion schemata [104] and head transducer models were proposed
in [86], [87].

4.3 Stochastic Finite-State Tree Automata

Stochastic models that assign a probability to a tree can be
useful, for instance, in natural language modeling to select
the best parse tree for a sentence and resolve structural
ambiguity. For this purpose, finite-state automata that
operate on trees can be defined [15]. In contrast to the case
of strings, where the automaton computes a state for every
prefix, a frontier-to-root tree automaton processes the tree
bottom-up and state is computed for every subtree. The
result depends on both the node label and the states
obtained after the node subtrees. Therefore, a collection of
transition functions, one for each possible number of
subtrees, is needed. This probabilistic extension defines a
probability distribution over the set 7%, of labeled trees.

A probabilistic finite-state tree automaton (PTA) is defined
as (@, 3, A, P, p), where

e () is a finite set of states,

e 3 is the alphabet,

o A={by,61,...,6n} is a collection of transition sets
b CQ XX xQM,

e Pisa collection of functions P = {py,p1,pa,--.,Pm}
of the type py, : 6, — [0,1], and
e p are the root probabilities p : Q — [0, 1].
The required normalizations are
> plg) =1, (11)
q€Q
and, for all g € Q,
M
Y30 pulgasin, . in) = 1. (12)

ae¥ m=0 0] seim EQ:

(@511 yoesimm) E6m

The probability of a tree t in the stochastic language
generated by A is defined as

p(t] A) =" plg) - 7(g, 1), (13)
q€@
where (g, t) is recursively defined as:
po(q,a) ift=ack,
Z pm(qvavé(tl)w"76(tm))'
() 0] yeeesim €Q:
T q’t — (4,501 5.y) €O, (14)
ﬂ-(ih tl) e 7T(i1n7 tm)a
ift=a(ty - ty,) €Ty -3,
0 otherwise.

As in the case of PFA, it is possible to define deterministic
PTA as those where the set {qg€ Q: (q,a,%1,...,im) € O}
has size at most 1 for all a € %, for all m > 0, and for all
i1,...,0m € Q. In such a case, a minimal automaton can be
defined and it can be identified from samples [15].

In contrast, the consistency of probabilistic tree automata
is not guaranteed by (11) and (12) even in the absence of

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

useless states. Consistency requires that the spectral radius of
the production matrix A defined below is strictly smaller
than 1 [42]:

M
AU = E : E E Per(i7@7i17i27--~7im)'

a€Y m=1 i1,9,im€Q:
(4,a,i1 1oeesim) EOm,

(15)

where 1(4, j) is Kronecker’s delta defined before.

5 CONCLUSION

We have, in this paper, proposed a survey of the properties
concerning deterministic and nondeterministic probabilistic
finite-state automata. A certain number of results have been
proved and others can be fairly straightforwardly derived
from them. On the other hand, we have left many questions
not answered in this work. They correspond to problems
that, to our knowledge, are open or, even in a more
extensive way, to research lines that should be followed.
Here are some of these:

1. We studied in the section concerning topology of
part I [1] the questions of computing the distances
between two distributions represented by PFA. In
the case where the PFA are DPFA the computation of
the L, distance and of the Kullback-Leibler diver-
gence can take polynomial time, but what about the
Ly, Ly, and logarithmic distances?

2. In the same trend, it is reasonably clear that, if at
least one of the distributions is represented by a PFA,
the problem of computing or even approximating
the L; (or L) is NP-hard. What happens for the
other distances? The approximation problem can be
defined as follows: Given an integer m decide if
d(D,D') < L.

3. In [105], the question of computing the weight of a
language inside another (or following a regular
distribution) is raised. Technically, it requires com-
puting >_,.; PrB(w), where A is a DFA and B is a
DPFA. Techniques for special cases are proposed in
[105], but the general question is not solved. The
problem is clearly polynomially solvable; the pro-
blem is that of finding a fast algorithm.

4. The equivalence of HMM has been studied in [106],
where it is claimed that it can be tested in
polynomial time. When considering the results from
our Section 2.3, it should be possible to adapt the
proof in order to obtain an equivalent result for PFA.

5. We have provided a number of results on distances
in the section concerning distances of partI[1]. Yet, a
comparison of these distances and how they relate to
learning processes would be of clear interest. From
the theoretical point of view, in a probabilistic PAC
learning framework, the error function used is
usually the Kullback-Leibler divergence [17], [18],
[19], [56], [58]. As we mentioned, many other
measures exist and it should be interesting to study
learnability results while changing the similarity
measure.

1035

6. Smoothing is a crucial issue for language modeling
(see Section 3.3). Good smoothing techniques for
PFA and DPFA would surely improve the modeling
capacities of these models and it can be conjectured
that they might perform better than standard
techniques.

7. Testing the closeness of two distributions from
samples is also an issue that matters: Whether to
be able to use larger data sets for learning or to be
able to decide merging in learning algorithms, one
wishes to be able to have a simple test to decide if
two samples come from the same (or sufficiently
similar) distribution or not.

8. Following [88], we recall that the problem of deciding
whether the probability of the most probable string is
more than a given fraction is NP-hard. It is not
known if the problem belongs to NP.

Obviously, there are many topics related with PFA that
require further research efforts and only few are mentioned
here. To mention but one of these topics, probabilistic (finite
or context-free) transducers are increasingly becoming
important devices, where only a few techniques are known
to infer finite-state transducers from training pairs or to
smooth probabilistic finite-state transducers when the
training pairs are scarce.

Solving some of the above problems, and in a more
general way, better understanding how PFA and DPFA
work would necessarily increase their importance and
relevance in a number of fields and, specifically, those that
are related to pattern recognition.

APPENDIX

A.1 Proof of Theorem 3

Theorem 3 (Stochastic morphism theorem). Let ¥ be a finite
alphabet and D be a stochastic reqular language on ¥*. There
exists then a finite alphabet %', a letter-to-letter morphism
h: ¥ — ¥* and a stochastic local language over X', Dy,
such that D = h(D,), i.e.,

Va € ¥¥, Prp(x) = Prp,(h 7' (x)) = Y Pro,(y),
yeh~(x)
where h(z) = {y € " | z = h(y)}.

Proof. By Proposition 11 of [1], D can be generated by a PFA
with a single initial state. Let A =< Q, %, 6, qo, F', P > be
such a PFA. Let ¥’ = {a,|(¢, a,q) € 6} and define a letter-
to-letter morphism % : ¥’ — X by h(a,) = a. Next, define
a stochastic local language, D;, over X' by Z =
(X', Py, Pr, Pr), where

Pf(aq) = P(quavq)» PF(“Q) = F(q)v PT(a/q’va‘q) = P(ql7a7 Q)-
(17)

(16)

Now, let = ...z, be a nonempty string over %,
with Prp(x) > 0. Then, at least one valid path exists for =
in A. Let 6 be one of these paths, with sy = go:

0= (507:1:1a 51) cee (Snfbl'nv Sn)-
Associated with 6, define a string y over ¥’ as:
Yy=uyi-.

“Yn = Tig - Tng, -

1036

Let Y be the set of strings in ¥ associated with all the
valid paths for = in A. Note that, for each y € Y, thereis a
unique path for = and vice versa. Note also that z = h(y).
Therefore, Y = h™!(x).

If x =), it has a unique degenerate path consisting
only in gy; thatis, Y = {A} and Prp,(\) = F(qy) = Prp(}).
Otherwise, from (4) and (17), the probability of every
yeYis:

I Priwirs i) - Pr(za,)

Prp, (y) = Pr(w1y,)

= P(SO7JZ1, 81) . HP(Sz;l, Ti, Si) . F(Sn),
which, according to (1) in Section 2.6 of [1] (and noting
that, in our PFA, I(qy) = 1), is the probability of the path
for z in A y is associated with.
Finally, following (2) in Section 2.6 of [1] (that gives
the probability of generating a string),

Z PrDQ ('l}) =

yey

Pru(z) Vz:PrD(z) > 0.

On the other hand, if Prp(z) = 0, then Y = §), leading
to 3 ,cy Prp,(y) = 0. Therefore, since Y =h"'(z), we
have h(D,) = D. 0
This proof is a probabilistic generalization of the proof

for the classical morphism theorem [26]. Given the none-
quivalence of PFA and DPFA, the present construction
required the use of nondeterministic and possibly ambig-
uous finite-state automata.

A.2 Proof of Proposition 4

Proposition 4. Given a PFA A with m transitions and
Prg(X) =0, there exists a HMM M with at most m states,
such that Dyg = Dy.

Proof. Let A=(Q,%,6,1,F,P) be a PFA. We create an
equivalent HMM M = (Q, %,1, F,T,E) as follows:

e Q=0QxQ,
o I(q,¢)=1(q) > pex Plg,a,¢) for all (¢,¢) € Q,

. ((q,q%(1q")=20ex (¢ 0,¢")and T((g, ¢'), ar)
= F(¢), and

* E(gq)a)= ZM S if Pg,a,q) #0.

For each z = x12),) € ¥* with Pry(z) # 0, there is at
least a sequence of states (s,...,s);) that generates x
with probability:
I(s0) - P(s0,@1,81) +* P(Spa) 1, Tjafs Sjaf 15 SJaf) * F(S1a)-
And, in M,

I(s0,51) - E((s0,51),21) - T((s0,51), (51,82)) - - -
E((Sj2]-155/21)> la|) - T((8}z-1, Sja|)> At)-

For each path in A, there is one and only one path in
HMM, so the theorem holds. O

A.3 Proof of Proposition 5
Proposition 5. Given an HMM M with n states, there exists a
PFA A with at most n states such that Dy = Duy.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

Proof. Let M =
equivalent PFA A’ =

Q=Q;
I(q) =1(q), for all g € @\ {qr}, and I(qs) = 0;
6={(q,a,q) : T(q,q) # 0 and E(q, a) # O};
F(q) =0forallg € @\ {qc}, and F(qr) = 1;
P(g.a,q) = E(g,a) T(g,q).
For each x = xx),) € ¥* with Pry(z) # 0, there is at least
a sequence of states (1, ..., 5y, qr) that generates with x

(Q,%,I,F, T,E) be an HMM. We create an
(Q,%,1,6,F, P) as follows:

probability:
I(s1) - E(s1,21) - T(s1,82) - - -T(sm_l, sm)~
E(8ja), ja)) - T(81af> at)-
And, in A,
I(s1) - P(s1,71,52) = P(8]a), T|af> Gf)-

For each path in M, there is one and only one path
in A'. Moreover, by construction, I(s;) =1I(s;) and
P(q,a,q¢) = E(q,a) - T(q,q); therefore, Dy = Dy, Final-
ly, by Proposition 11 of [1], we can build a PFA A, with
at most |Q| = n states, such that Dy = Dy. 0

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their
careful reading and in-depth criticisms and suggestions.
This work has been partially supported by the Spanish
project TIC2003-08681-C02 and the IST Programme of the
European Community, under the PASCAL Network of
Excellence, IST-2002-506778. This publication only reflects
the authors” views.

REFERENCES

[1] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R.C.
Carrasco, “Probabilistic Finite-State Automata—Part1,” IEEE Trans.
Pattern Analysis and Machine Intelligence, special issue on syntactic
and structural pattern recognition, vol 27, no. 7, pp. 1013-1025, July
2005.

[2] L.E. Baum, “An Inequality and Associated Maximization Techni-
que in Statistical Estimation for Probabilistic Functions of Markov
Processes,” Inequalities, vol. 3, pp. 1-8, 1972.

[3] C.FJ. Wu, “On the Convergence Properties of the EM Algorithm,”
Annals of Statistics, vol. 11, no. 1, pp. 95-103, 1983.

[4] F. Casacuberta, “Statistical Estimation of Stochastic Context-Free
Grammars,” Pattern Recognition Letters, vol. 16, pp. 565-573, 1995.

[5] F. Casacuberta, “Growth Transformations for Probabilistic Func-
tions of Stochastic Grammars,” Int’l . Pattern Recognition and
Artificial Intelligence, vol. 10, no. 3, pp. 183-201, 1996.

[6] G.J. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
Wiley, 1997.

[71 D. Pic6 and F. Casacuberta, “Some Statistical-Estimation Methods
for Stochastic Finite-State Transducers,” Machine Learning J.,
vol. 44, no. 1, pp. 121-141, 2001.

[8] P.Dupont, F. Denis, and Y. Esposito, “Links between Probabilistic
Automata and Hidden Markov Models: Probability Distributions,
Learning Models and Induction Algorithms,” Pattern Recognition,
2004.

[9] LH. Witten and T.C. Bell, “The Zero Frequency Problem:
Estimating the Probabilities of Novel Events in Adaptive Test
Compression,” IEEE Trans. Information Theory, vol. 37, no. 4,
pp- 1085-1094, 1991.

[10] H. Ney, S. Martin, and F. Wessel, Corpus-Based Statiscal Methods in
Speech and Language Processing, S. Young and G. Bloothooft, eds.,
pp- 174-207, Kluwer Academic Publishers, 1997.

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

(1]

[12]

[13]

(14]

(15]

(o]

[17]

(18]

[19]

[20]

[21]

(22]

(23]
[24]

(23]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

P. Dupont and].-C. Amengual, “Smoothing Probabilistic Auto-
mata: An Error-Correcting Approach,” Proc. Fifth Int’l Colloquium
Grammatical Inference: Algorithms and Applications, pp. 51-56, 2000.
Y. Sakakibara, M. Brown, R. Hughley, I. Mian, K. Sjolander,
R. Underwood, and D. Haussler, “Stochastic Context-Free
Grammars for tRNA Modeling,” Nuclear Acids Research, vol. 22,
pp. 5112-5120, 1994.

T. Kammeyer and R.K. Belew, “Stochastic Context-Free Grammar
Induction with a Genetic Algorithm Using Local Search,”
Foundations of Genetic Algorithms IV, RK. Belew and M. Vose,
eds., 1996.

N. Abe and H. Mamitsuka, “Predicting Protein Secondary
Structure Using Stochastic Tree Grammars,” Machine Learning J.,
vol. 29, pp. 275-301, 1997.

R.C. Carrasco, J. Oncina, and J. Calera-Rubio, “Stochastic
Inference of Regular Tree Languages,” Machine Learning J.,
vol. 44, no. 1, pp. 185-197, 2001.

M. Kearns and L. Valiant, “Cryptographic Limitations on
Learning Boolean Formulae and Finite Automata,” Proc. 21st
ACM Symp. Theory of Computing, pp. 433-444, 1989.

N. Abe and M. Warmuth, “On the Computational Complexity of
Approximating Distributions by Probabilistic Automata,” Machine
Learning J., vol. 9, pp. 205-260, 1992.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, and
L. Sellie, “On the Learnability of Discrete Distributions,” Proc. 25th
Ann. ACM Symp. Theory of Computing, pp. 273-282, 1994.

D. Ron, Y. Singer, and N. Tishby, “On the Learnability and Usage
of Acyclic Probabilistic Finite Automata,” Proc. Conf. Learning
Theory, pp. 31-40, 1995.

A. Stolcke and S. Omohundro, “Inducing Probabilistic Grammars
by Bayesian Model Merging,” Proc. Second Int’l Colloquium
Grammatical Inference and Applications, pp. 106-118, 1994.

F. Jelinek, Statistical Methods for Speech Recognition. Cambridge,
Mass.: MIT Press, 1998.

P. Garcia and E. Vidal, “Inference of k-Testable Languages in the
Strict Sense and Application to Syntactic Pattern Recognition,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 9,
pp- 920-925, Sept. 1990.

Y. Zalcstein, “Locally Testable Languages,” |. Computer and System
Sciences, vol. 6, pp. 151-167, 1972.

R. McNaughton, “Algebraic Decision Procedures for Local
Testability,” Math. System Theory, vol. 8, no. 1, pp. 60-67, 1974.
E. Vidal and D. Llorens, “Using Knowledge to Improve N-Gram
Language Modelling through the MGGI Methodology,” Proc.
Third Int’l Colloquium Grammatical Inference: Learning Syntax from
Sentences, pp. 179-190, 1996.

S. Eilenberg, Automata, Languages and Machines. Vol. A. New York:
Academic, 1974.

L. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recoginition,” Proc. IEEE, vol. 77, pp. 257-
286, 1989.

J. Picone, “Continuous Speech Recognition Using Hidden Markov
Models,” IEEE ASSP Magazine, vol. 7, no. 3, pp. 26-41, 1990.

I. Bazzi, R. Schwartz, and]J. Makhoul, “An Omnifont Open-
Vocabulary OCR System for English and Arabic,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 21, no. 6, pp. 495-
504, June 1999.

A. Toselli, A. Juan, D. Keysers, J. Gonzélez, I. Salvador, H. Ney,
E. Vidal, and F. Casacuberta, “Integrated Handwriting Recogni-
tion and Interpretation Using Finite State Models,” Int’l |. Pattern
Recognition and Artificial Intelligence, 2004.

F. Casacuberta, “Finite-State Transducers for Speech-Input Trans-
lation,” Proc. Workshop Automatic Speech Recognition and Under-
standing, Dec. 2001.

F. Casacuberta, E. Vidal, and].M. Vilar, “Architectures for Speech-
to-Speech Translation Using Finite-State Models,” Proc. Workshop
on Speech-to-Speech Translation: Algorithms and Systems, pp. 39-44,
July 2002.

A. Molina and F. Pla, “Shallow Parsing Using Specialized HMMs,”
J. Machine Learning Research, vol. 2, pp. 559-594, Mar. 2002.

H. Bunke and T. Caelli, Hidden Markov Models Applications in
Computer Vision, Series in Machine Perception and Artificial
Intelligence, vol. 45. World Scientific, 2001.

R. Llobet, A.H. Toselli,].C. Perez-Cortes, and A. Juan, “Computer-
Aided Prostate Cancer Detection in Ultrasonographic Images,”
Proc. First Iberian Conf. Pattern Recognition and Image Analysis,
pp. 411-419, 2003.

(30]

[37]

(38]

[39]

(40]

[41]

(42]

(43]

(44]

[43]

[46]
[47]
(48]

(49]

(50]

(51]

(52]

(53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

1037

Y. Bengio, V.-P. Lauzon, and R. Ducharme, “Experiments on the
Application of IOHMMs to Model Financial Returns Series,” IEEE
Trans. Neural Networks, vol. 12, no. 1, pp. 113-123, 2001.

F. Casacuberta, “Some Relations among Stochastic Finite State
Networks Used in Automatic Speech Recognition,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 691-695,
July 1990.

J. Goodman, “A Bit of Progress in Language Modeling,” technical
report, Microsoft Research, 2001.

D. McAllester and R.E. Schapire, “On the Convergence Rate of
Good-Turing Estimators,” Proc. 13th Ann. Conf. Computer Learning
Theory, pp. 1-6, 2000.

M. Mohri, F. Pereira, and M. Riley, “The Design Principles of a
Weighted Finite-State Transducer Library,” Theoretical Computer
Science, vol. 231, pp. 17-32, 2000.

R. Chaudhuri and S. Rao, “Approximating Grammar Probabil-
ities: Solution to a Conjecture,” J. Assoc. Computing Machinery,
vol. 33, no. 4, pp. 702-705, 1986.

C.S. Wetherell, “Probabilistic Languages: A Review and Some
Open Questions,” Computing Surveys, vol. 12, no. 4, 1980.

F. Casacuberta, “Probabilistic Estimation of Stochastic Regular
Syntax-Directed Translation Schemes,” Proc. Spanish Symp.
Pattern Recognition and Image Analysis, R. Moreno, ed., pp. 201-
297, 1995.

F. Casacuberta, “Maximum Mutual Information and Conditional
Maximum Likelihood Estimation of Stochastic Regular Syntax-
Directed Translation Schemes,” Proc. Third Int’l Colloquium
Grammatical Inference: Learning Syntax from Sentences, pp. 282-291,
1996.

D. Pic6 and F. Casacuberta, “A Statistical-Estimation Method for
Stochastic Finite-State Transducers Based on Entropy Measures,”
Proc. Joint Int’l Assoc. Pattern Recognition Workshops Syntactical and
Structural Pattern Recognition and Statistical Pattern Recognition,
pp. 417-426, 2000.

E.M. Gold, “Language Identification in the Limit,” Information and
Control, vol. 10, no. 5, pp. 447-474, 1967.

E.M. Gold, “Complexity of Automaton Identification from Given
Data,” Information and Control, vol. 37, pp. 302-320, 1978.

L.G. Valiant, “A Theory of the Learnable,” Comm. Assoc.
Computing Machinery, vol. 27, no. 11, pp. 1134-1142, 1984.

L. Pitt and M. Warmuth, “The Minimum Consistent DFA Problem
Cannot be Approximated within Any Polynomial,”]. Assoc.
Computing Machinery, vol. 40, no. 1, pp. 95-142, 1993.

F. Denis, C. d’'Halluin, and R. Gilleron, “PAC Learning with
Simple Examples,” Proc. 13th Symp. Theoretical Aspects of Computer
Science, pp. 231-242, 1996.

F. Denis and R. Gilleron, “PAC Learning under Helpful Distribu-
tions,” Algorithmic Learning Theory, 1997.

R. Parekh and V. Honavar, “Learning DFA from Simple
Examples,” Proc. Workshop Automata Induction, Grammatical
Inference, and Language Acquisition, 1997.

J.J. Horning, “A Procedure for Grammatical Inference,” Informa-
tion Processing, vol. 71, pp. 519-523, 1972.

D. Angluin, “Identifying Languages from Stochastic Examples,”
Technical Report YALEU/DCS/RR-614, Yale Univ., Mar. 1988.
S. Kapur and G. Bilardi, “Language Learning from Stochastic
Input,” Proc. Fifth Conf. Computational Learning Theory, pp. 303-310,
July 1992.

N. Abe and M. Warmuth, “On the Computational Complexity of
Approximating Distributions by Probabilistic Automata,” Proc.
Third Workshop Computational Learning Theory, pp. 52-66, 1998.

R. Carrasco and]. Oncina, “Learning Deterministic Regular
Grammars from Stochastic Samples in Polynomial Time,”
Theoretical Informatics and Applications, vol. 33, no. 1, pp. 1-20,
1999.

A. Clark and F. Thollard, “Pac-Learnability of Probabilistic
Deterministic Finite State Automata,” J. Machine Learning Research,
vol. 5, pp. 473-497, May 2004.

C. de la Higuera and F. Thollard, “Identification in the Limit with
Probability One of Stochastic Deterministic Finite Automata,”
Proc. Fifth Int'l Colloquium Grammatical Inference: Algorithms and
Applications, pp. 15-24. 2000.

R. Carrasco and]J. Oncina, “Learning Stochastic Regular Gram-
mars by Means of a State Merging Method,” Proc. Second Int’l
Colloquium Grammatical Inference, pp. 139-150, 1994.

1038

[61]

[62]

[63]

[64]

[65]

[00]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]
[70]

(771

(78]

[79]

(80]

(81]

(82]

(83]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO.7, JULY 2005

F. Thollard, P. Dupont, and C. de la Higuera, “Probabilistic DFA
Inference Using Kullback-Leibler Divergence and Minimality,”
Proc. 17th Int’l Conf. Machine Learning, pp. 975-982, 2000.

F. Thollard and A. Clark, “Shallow Parsing Using Probabilistic
Grammatical Inference,” Proc. Sixth Int’l Colloquium Grammatical
Inference, pp. 269-282, Sept. 2002.

C. Kermorvant and P. Dupont, “Stochastic Grammatical Inference
with Multinomial Tests,” Proc. Sixth Int’l Colloquium Grammatical
Inference: Algorithms and Applications, pp. 149-160, 2002.

M. Young-Lai and F.W. Tompa, “Stochastic Grammatical In-
ference of Text Database Structure,” Machine Learning J., vol. 40,
no. 2, pp. 111-137, 2000.

P. Garcia, E. Vidal, and F. Casacuberta, “Local Languages, the
Succesor Method, and a Step Towards a General Methodology for
the Inference of Regular Grammars,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 9, no. 6, pp. 841-845, June 1987.

A. Orlitsky, N.P. Santhanam, and J. Zhang, “Always Good Turing:
Asymptotically Optimal Probability Estimation,” Proc. 44th Ann.
IEEE Symp. Foundations of Computer Science, p. 179, Oct. 2003.

S. Katz, “Estimation of Probabilities from Sparse Data for the
Language Model Component of a Speech Recognizer,” IEEE
Trans. Acoustic, Speech and Signal Processing, vol. 35, no. 3, pp. 400-
401, 1987.

R. Kneser and H. Ney, “Improved Backing-Off for m-Gram
Language Modeling,” IEEE Int’l Conf. Acoustics, Speech and Signal
Processing, vol. 1, pp. 181-184, 1995.

S.F. Chen and J. Goodman, “An Empirical Study of Smoothing
Techniques for Language Modeling,” Proc. 34th Ann. Meeting of the
Assoc. for Computational Linguistics, pp. 310-318, 1996.

F. Thollard, “Improving Probabilistic Grammatical Inference Core
Algorithms with Post-Processing Techniques,” Proc. 18th Int’l
Conf. Machine Learning, pp. 561-568, 2001.

D. Llorens,]. M. Vilar, and F. Casacuberta, “Finite State Language
Models Smoothed Using n-Grams,” Int’l]. Pattern Recognition and
Artificial Intelligence, vol. 16, no. 3, pp. 275-289, 2002.

J. Amengual, A. Sanchis, E. Vidal, and J. Benedi, “Language
Simplification through Error-Correcting and Grammatical Infer-
ence Techniques,” Machine Learning |., vol. 44, no. 1, pp. 143-159,
2001.

P. Dupont and L. Chase, “Using Symbol Clustering to Improve
Probabilistic Automaton Inference,” Proc. Fourth Int’l Colloquium
Grammatical Inference, pp. 232-243, 1998.

R. Kneser and H. Ney, “Improved Clustering Techniques for
Class-Based Language Modelling,” Proc. European Conf. Speech
Comm. and Technology, pp. 973-976, 1993.

C. Kermorvant and C. de la Higuera, “Learning Languages with
Help,” Proc. Int’l Colloquium Grammatical Inference, vol. 2484, 2002.
L. Breiman, “Bagging Predictors,” Machine Learning]., vol. 24,
no. 2, pp. 123-140, 1996.

S. Bangalore and G. Riccardi, “Stochastic Finite-State Models for
Spoken Language Machine Translation,” Proc. Workshop Embedded
Machine Translation Systems, North Am. Chapter Assoc. for Computa-
tional Linguistics, pp. 52-59, May 2000.

S. Bangalore and G. Ricardi, “A Finite-State Approach to Machine
Translation,” Proc. North Am. Chapter Assoc. for Computational
Linguistics, May 2001.

J. Oncina, P. Garcia, and E. Vidal, “Learning Subsequential
Transducers for Pattern Recognition Interpretation Tasks,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 5,
pp- 448-458, May 1993.

J.M. Vilar, “Improve the Learning of Subsequential Transducers
by Using Alignments and Dictionaries,” Proc. Fifth Int’l Colloquium
Grammatical Inference: Algorithms and Applications, pp. 298-312,
2000.

F. Casacuberta, “Inference of Finite-State Transducers by Using
Regular Grammars and Morphisms,” Proc. Fifth Int’l Colloquium
Grammatical Inference: Algorithms and Applications, pp. 1-14, 2000.
F. Casacuberta, H. Ney, F.J. Och, E. Vidal,].M. Vilar, S. Barrachina,
I. Garcia-Varea, D. Llorens, C. Martinez, S. Molau, F. Nevado, M.
Pastor, D. Pic6, A. Sanchis, and C. Tillmann, “Some Approaches to
Statistical and Finite-State Speech-to-Speech Translation,” Compu-
ter Speech and Language, 2003.

F. Casacuberta and E. Vidal, “Machine Translation with Inferred
Stochastic Finite-State Transducers,” Computational Linguistics,
vol. 30, no. 2, pp. 205-225, 2004.

[84] M. Mohri, “Finite-State Transducers in Language and Speech
Processing,” Computational Linguistics, vol. 23, no. 3, pp. 269-311,
1997.

M. Mohri, F. Pereira, and M. Riley, “Weighted Finite-State

Transducers in Speech Recognition,” Computer Speech and Lan-

guage, vol. 16, no. 1, pp. 69-88, 2002.

H. Alshawi, S. Bangalore, and S. Douglas, “Head Transducer

Model for Speech Translation and Their Automatic Acquisition

from Bilingual Data,” Machine Translation, 2000.

H. Alshawi, S. Bangalore, and S. Douglas, “Learning Dependency

Translation Models as Collections of Finite State Head Transdu-

cers,” Computational Linguistics, vol. 26, 2000.

F. Casacuberta and C. de la Higuera, “Computational Complexity

of Problems on Probabilistic Grammars and Transducers,” Proc.

Fifth Int’l Colloquium Grammatical Inference: Algorithms and Applica-

tions, pp. 15-24, 2000.

F. Casacuberta, E. Vidal, and D. Pic6, “Inference of Finite-State

Transducers from Regular Languages,” Pattern Recognition, 2004,

to appear.

E. Mikinen, “Inferring Finite Transducers,” Technical Report

A-1999-3, Univ. of Tampere, 1999.

E. Vidal, P. Garcia, and E. Segarra, “Inductive Learning of Finite-

State Transducers for the Interpretation of Unidimensional

Objects,” Structural Pattern Analysis, R. Mohr, T. Pavlidis, and

A. Sanfeliu, eds., pp. 17-35, 1989.

K. Knight and Y. Al-Onaizan, “Translation with Finite-State

Devices,” Proc. Proc. Third Conf. Assoc. for Machine Translation in

the Americas: Machine Translation and the Information Soup, vol. 1529,

pp. 421-437, 1998.

J. Eisner, “Parameter Estimation for Probabilistic Finite-State

Transducers,” Proc. 40th Ann. Meeting Assoc. Computational

Linguistics, July 2002.

D. Llorens, “Suavizado de Autématas y Traductores Finitos

Estocasticos,” PhD dissertation, Univ. Politécnica de Valéncia,

2000.

M.-]. Nederhoff, “Practical Experiments with Regular Approx-

imation of Context-Free Languages,” Computational Linguistics,

vol. 26, no. 1, 2000.

M. Mohri and M.-]. Nederhof, “Regular Approximations of

Context-Free Grammars through Transformations,” Robustness in

Language and Speech Technology, J.-C. Junqua and G. van Noord,

eds., pp. 252-261. Kluwer Academic Publisher, Springer Verlag,

2000.

K. Lari and S. Young, “The Estimation of Stochastic Context-Free

Grammars Using the Inside-Outside Algorithm,” Computer Speech

and Language, no. 4, pp. 35-56, 1990.

J. Sanchez and J. Benedi, “Consistency of Stocastic Context—Free

Grammars from Probabilistic Estimation Based on Growth

Transformation,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 19, no. 9, pp. 1052-1055, Sept. 1997.

J. Sanchez, J. Benedi, and F. Casacuberta, “Comparison between

the Inside-Outside Algorithm and the Viterbi Algorithm for

Stochastic Context-Free Grammars,” Proc. Sixth Int'l Workshop

Advances in Syntactical and Structural Pattern Recognition, pp. 50-59,

1996.

[100]Y. Takada, “Grammatical Inference for Even Linear Languages
Based on Control Sets,” Information Processing Letters, vol. 28, no. 4,
pp- 193-199, 1988.

[101] T. Koshiba, E. Mékinen, and Y. Takada, “Learning Deterministic
Even Linear Languages from Positive Examples,” Theoretical
Computer Science, vol. 185, no. 1, pp. 63-79, 1997.

[102] T. Koshiba, E. Mékinen, and Y. Takada, “Inferring Pure Context-
Free Languages from Positive Data,” Acta Cybernetica, vol. 14, no. 3,
pp. 469-477, 2000.

[103]Y. Sakakibara, “Learning Context-Free Grammars from Structural
Data in Polynomial Time,” Theoretical Computer Science, vol. 76,
pp- 223-242, 1990.

[104]F. Maryanski and M.G. Thomason, “Properties of Stochastic
Syntax-Directed Translation Schemata,” Int’l]. Computer and
Information Science, vol. 8, no. 2, pp. 89-110, 1979.

[105] A. Fred, “Computation of Substring Probabilities in Stochastic
Grammars,” Proc. Fifth Int’l Colloquium Grammatical Inference:
Algorithms and Applications, pp. 103-114, 2000.

[106] V. Balasubramanian, “Equivalence and Reduction of Hidden
Markov Models,” Technical Report AITR-1370, Mass. Inst. of
Technology, 1993.

(85]

(36]

(871

(88]

(89]

[90]

1]

[92]

193]

[94]

(93]

(9]

7]

(98]

(991

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I

Enrique Vidal received the Doctor en Ciencias
Fisicas degree in 1985 from the Universidad de
Valencia, Spain. From 1978 to 1986, he was
with this University serving in computer system
programming and teaching positions. In the
same period, he coordinated a research group
in the fields of pattern recognition and automatic
speech recognition. In 1986, he joined the
Departamento de Sistemas Informaticos vy
Computacién of the Universidad Politécnica de
Valencia (UPV), where he served as a full professor of the Facultad de
Informatica. In 1995, he joined the Instituto Tecnoldgico de Informatica,
where he has been coordinating several projects on Pattern Recognition
and Machine Translation. He is coleader of the Pattern Recognition and
Human Language Technology group of the UPV. His current fields of
interest include statistical and syntactic pattern recognition and their
applications to language, speech, and image processing. In these fields,
he has published more than 100 papers in journals, conference
proceedings, and books. Dr. Vidal is a member of the Spanish Society
for Pattern Recognition and Image Analysis (AERFAI), the International
Association for Pattern Recognition (IAPR), and the IEEE Computer
Society.

Franck Thollard received the masters of
computer science in 1995 from the University
of Montpellier, France. He received the PhD
degree in computer science from the University
of Saint-Etienne in 2000. He worked at the
University of Tuebingen (Germany) and at the
. University of Geneva (Switzeland) under the
f) Learning Computational Grammar European
Project. Since 2002, he has been working as a
lecturer with the EURISE research team. His
current research interests include machine learning and its application to
natural language processing (e.g., language modeling, parsing, etc.).

-~
o
®

!
o

Colin de la Higuera received the master and
PhD degrees in computer science from the
University of Bordeaux, France, in 1985 and
1989, respectively. He worked as Maitre de
Conférences (senior lecturer) from 1989 to 1997
at Montpellier University and, since 1997, has
been a professor at Saint-Etienne University,
where he is director of the EURISE research
team. His main research theme is grammatical
inference and he has been serving as chairman of
the ICGI (International Community in Grammatical Inference) since 2002.

1039

Francisco Casacuberta received the master
and PhD degrees in physics from the University
of Valencia, Spain, in 1976 and 1981, respec-
tively. From 1976 to 1979, he worked with the
Department of Electricity and Electronics at the
University of Valencia as an FPI fellow. From
1980 to 1986, he was with the Computing Center
of the University of Valencia. Since 1980, he has
been with the Department of Information Sys-
tems and Computation of the Polytechnic Uni-
versity of Valencia, first as an associate professor and, since 1990, as a
full professor. Since 1981, he has been an active member of a research
group in the fields of automatic speech recognition and machine
translation (Pattern Recognition and Human Language Technology
group). Dr. Casacuberta is a member of the Spanish Society for Pattern
Recognition and Image Analysis (AERFAI), which is an affiliate society
of IAPR, the IEEE Computer Society, and the Spanish Association for
Artificial Intelligence (AEPIA). His current research interests include the
areas of syntactic pattern recognition, statistical pattern recognition,
machine translation, speech recognition, and machine learning.

Rafael C. Carrasco received a degree in physics
from the University of Valencia in 1987. He
received the PhD degree in theoretical physics
from the University of Valencia in 1991 and
another PhD degree in computer science from
the University of Alicante in 1997. In 1992, he
joined the Departamento de Lenguajes y Siste-
mas Informaticos at the University of Alicante as
a professor teaching formal languages and
automata theory, algorithmics, and markup lan-
guages Since 2002, he has lead the technology section of the Miguel de
Cervantes digital library (http://www.cerantesvirtual.com). His research
interests include grammar induction from stochastic samples, probabil-
istic automata, recurrent neural networks and rule encoding, markup
languages and digital libraries, finite-state methods in automatic
translation, and computer simulation of photonuclear reactions.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

