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T
he Shannon/Nyquist sam-
pling theorem specifies that
to avoid losing information
when capturing a signal, one
must sample at least two

times faster than the signal bandwidth. In
many applications, including digital
image and video cameras, the Nyquist rate
is so high that too many samples result,
making compression a necessity prior to
storage or transmission. In other applica-
tions, including imaging systems (medical
scanners and radars) and high-speed ana-
log-to-digital converters, increasing the
sampling rate is very expensive.

This lecture note presents a new
method to capture and represent com-
pressible signals at a rate significantly
below the Nyquist rate. This method,
called compressive sensing, employs
nonadaptive linear projections that pre-
serve the structure of the signal; the sig-
nal is then reconstructed from these
projections using an optimization
process [1], [2].

RELEVANCE
The ideas presented here can be used to
illustrate the links between data acquisi-
tion, compression, dimensionality reduc-
tion, and optimization in undergraduate
and graduate digital signal processing,
statistics, and applied mathematics
courses. 

PREREQUISITES
The prerequisites for understanding this
lecture note material are linear algebra,
basic optimization, and basic probability.

PROBLEM STATEMENT

COMPRESSIBLE SIGNALS
Consider a real-valued, finite-length,
one-dimensional, discrete-time signal x,

which can be viewed as an N × 1 column
vector in RN with elements x[n],
n = 1, 2, . . . , N . (We treat an image or
higher-dimensional data by vectorizing it
into a long one-dimensional vector.) Any
signal in RN can be represented in terms
of a basis of N × 1 vectors {ψi}N

i=1. For
simplicity, assume that the basis is
orthonormal. Using the N × N basis
matrix � = [ψ1|ψ2| . . . |ψN] with the
vectors {ψi} as columns, a signal x can
be expressed as

x =
N∑

i =1

si ψi or x = ψs (1)

where s is the N × 1 column vector of
weighting coefficients si = 〈x, ψi〉 = ψ T

i x
and ·T denotes transposition. Clearly, x
and s are equivalent representations of
the signal, with x in the time or space
domain and s in the � domain.

The signal x is K-sparse if it is a linear
combination of only K basis vectors; that
is, only K of the si coefficients in (1) are
nonzero and (N − K) are zero. The case
of interest is when K � N. The signal x
is compressible if the representation (1)
has just a few large coefficients and many
small coefficients.

TRANSFORM CODING 
AND ITS INEFFICIENCIES
The fact that compressible signals are
well approximated by K-sparse represen-
tations forms the foundation of trans-
form coding [3]. In data acquisition
systems (for example, digital cameras)
transform coding plays a central role: the
full N-sample signal x is acquired; the
complete set of transform coefficients
{si} is computed via s = �Tx ; the K
largest coefficients are located and the
(N − K) smallest coefficients are dis-
carded; and the K values and locations of

the largest coefficients are encoded.
Unfortunately, this sample-then-com-
press framework suffers from three
inherent inefficiencies. First, the initial
number of samples N may be large even
if the desired K is small. Second, the set
of all N transform coefficients {si} must
be computed even though all but K of
them will be discarded. Third, the loca-
tions of the large coefficients must be
encoded, thus introducing an overhead.

THE COMPRESSIVE 
SENSING PROBLEM
Compressive sensing address these ineffi-
ciencies by directly acquiring a com-
pressed signal representation without
going through the intermediate stage of
acquiring N samples [1], [2]. Consider a
general linear measurement process that
computes M < N inner products
between x and a collection of vectors
{φ j }M

j=1 as in yj = 〈x, φ j〉. Arrange the
measurements yj in an M × 1 vector y
and the measurement vectors φT

j as rows
in an M × N matrix �. Then, by substi-
tuting � from (1), y can be written as

y = �x = ��s = �s (2)

where � = �� is an M × N matrix. The
measurement process is not adaptive,
meaning that � is fixed and does not
depend on the signal x. The problem
consists of designing a) a stable meas-
urement matrix � such that the salient
information in any K-sparse or com-
pressible signal is not damaged by the
dimensionality reduction from x ∈ RN

to y ∈ RM and b) a reconstruction algo-
rithm to recover x from only M ≈ K
measurements y (or about as many
measurements as the number of coeffi-
cients recorded by a traditional trans-
form coder).
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SOLUTION

DESIGNING A STABLE
MEASUREMENT MATRIX
The measurement matrix � must allow
the reconstruction of the length-N signal
x from M < N measurements (the vector
y). Since M < N, this problem appears
ill-conditioned. If, however, x is K-sparse
and the K locations of the nonzero coef-
ficients in s are known, then the problem
can be solved provided M ≥ K. A neces-
sary and sufficient condition for this sim-
plified problem to be well conditioned is
that, for any vector v sharing the same K
nonzero entries as s and for some ε > 0

1 − ε ≤ ‖�v‖2

‖v‖2
≤ 1 + ε . (3)

That is, the matrix � must preserve the
lengths of these particular K-sparse vec-
tors. Of course, in general the locations
of the K nonzero entries in s are not
known. However, a sufficient condition
for a stable solution for both K-sparse
and compressible signals is that � satis-
fies (3) for an arbitrary 3K-sparse vector
v. This condition is referred to as the
restricted isometry property (RIP) [1]. A
related condition, referred to as incoher-
ence, requires that the rows {φ j} of �
cannot sparsely represent the columns
{ψi} of � (and vice versa).

Direct construction of a measure-
ment matrix � such that � = �� has
the RIP requires verifying (3) for each
of the 

(N
K

)
possible combinations of K

nonzero entries in the vector v of

length N. However, both the RIP and
incoherence can be achieved with high
probability simply by selecting � as a
random matrix. For instance, let the
matrix elements φ j,i be independent
and identically distributed (iid) random
variables from a Gaussian probability
density function with mean zero and
variance 1/N [1], [2], [4]. Then the
measurements y are merely M different
randomly weighted linear combinations
of the elements of x, as illustrated in
Figure 1(a). The Gaussian measure-
ment matrix � has two interesting and
useful properties:

■ The matrix � is incoherent with
the basis � = I of delta spikes with
high probability. More specifically, an
M × N iid Gaussian matrix
� = �I = � can be shown to have
the RIP with high probability if
M ≥ cK log(N/K) , with c a small
constant [1], [2], [4]. Therefore, K-
sparse and compressible signals of
length N can be recovered from 
only M ≥ cK log(N/K) � N random
Gaussian measurements.
■ The matrix � is universal in the
sense that � = �� will be iid
Gaussian and thus have the RIP with
high probability regardless of the
choice of orthonormal basis �.

DESIGNING A SIGNAL
RECONSTRUCTION ALGORITHM
The signal reconstruction algorithm
must take the M measurements in the
vector y, the random measurement
matrix � (or the random seed that gen-

erated it), and the basis � and recon-
struct the length-N signal x or, equiva-
lently, its sparse coefficient vector s. For
K-sparse signals, since M < N in (2)
there are infinitely many s′ that satisfy
�s′ = y. This is because if �s = y then
�(s + r) = y for any vector r in the null
space N (�) of �. Therefore, the signal
reconstruction algorithm aims to find
the signal’s sparse coefficient vector in
the (N − M)-dimensional translated null
space H = N (�) + s.

■ Minimum �2 norm reconstruction:
Define the �p norm of the vector s as
(‖s‖p)

p = ∑N
i=1 |si|p . The classical

approach to inverse problems of this
type is to find the vector in the trans-
lated null space with the smallest �2

norm (energy) by solving

ŝ = argmin ‖s′‖2 such that �s′ = y.

(4)

This optimization has the convenient
closed-form solution ̂s = �T(��T)−1 y.
Unfortunately, �2 minimization will
almost never find a K-sparse solution,
returning instead a nonsparse ̂s with
many nonzero elements.
■ Minimum �0 norm reconstruction:
Since the �2 norm measures signal
energy and not signal sparsity, con-
sider the �0 norm that counts the
number of non-zero entries in s.
(Hence a K -sparse vector has �0

norm equal to K.) The modified opti-
mization

ŝ = argmin ‖s′‖0 such that �s′ = y

(5)

can recover a K-sparse signal exactly
with high probability using only
M = K + 1 iid Gaussian measure-
ments [5]. Unfortunately, solving (5)
is both numerically unstable and NP-
complete, requiring an exhaustive
enumeration of all 

(N
K

)
possible loca-

tions of the nonzero entries in s.
■  Minimum �1 norm reconstruction:
Surprisingly, optimization based on
the �1 norm

ŝ = argmin ‖s′‖1 such that �s′ = y

(6)

[FIG1] (a) Compressive sensing measurement process with a random Gaussian
measurement matrix � and discrete cosine transform (DCT) matrix �. The vector of
coefficients s is sparse with K = 4. (b) Measurement process with � = ��. There are
four columns that correspond to nonzero si coefficients; the measurement vector y is a
linear combination of these columns.
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can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why �2

reconstruction fails to find the sparse
solution that can be identified by �1

reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (�) + s
is oriented at a random angle due to the
randomness in the matrix � as shown in
Figure 2(b). (In practice N, M, K � 3, so
any intuition based on three dimensions
may be misleading.) The �2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the �2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the �1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the �1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j

and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the �2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the �2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the �1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the �1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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line structure in the spectrum of the
recursive CORDIC, and the phase error
correction is not applied to suppress phase
error artifacts but rather to complete the
phase rotation left incomplete due to the
residual phase term in the angle accumu-
lator. This is a very different DDS! 

IMPLEMENTATION 
As a practical note, there are truncating
quantizers between the AGC multipliers
and the feedback delay element regis-
ters. As such, the truncation error circu-
lates in the registers and contributes an
undesired dc component to the complex
sinusoid output. This dc component can
(and should) be suppressed by using a
sigma delta-based dc cancellation loop
between the AGC multipliers and the
feedback delay elements [6].

CONCLUSIONS
We modified the traditional recursive
DDS complex oscillator structure to a

tangent/cosine configuration. The tan(θ)
computations were implemented by
CORDIC rotations avoiding the need for
multiply operations. To minimize output
phase angle error, we applied a post-
CORDIC clean-up angle rotation. Finally,
we stabilized the DDS output amplitude
by an AGC loop. The phase-noise per-
formance of the DDS is quite remarkable
and we invite you, the reader, to take a
careful look at its structure. A MATLAB-
code implementation of the DDS is avail-
able at http://apollo.ee.columbia.edu/
spm/?i=external/tipsandtricks. 
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An image acquired with the single-
pixel camera using about 60% fewer ran-
dom measurements than reconstructed
pixels is illustrated in Figure 3(c); com-
pare to the target image in Figure 3(b).
The reconstruction was performed via a
total variation optimization [1], which is
closely related to the �1 reconstruction in
the wavelet domain. In addition to requir-
ing fewer measurements, this camera can
image at wavelengths where is difficult or
expensive to create a large array of sen-
sors. It can also acquire data over time to
enable video reconstruction [10].

CONCLUSIONS:
WHAT WE HAVE LEARNED
Signal acquisition based on compressive
sensing can be more efficient than tradi-
tional sampling for sparse or compressible
signals. In compressive sensing, the famil-
iar least squares optimization is inadequate
for signal reconstruction, and other types
of convex optimization must be invoked.
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