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Who can tell me what this means?

● NR3, pg 700: “What makes the wavelet basis 
interesting is that, unlike sines and cosines, 
individual wavelet functions are quite localized 
in space; simultaneously, like sines and 
cosines, individual wavelet functions are quite 
localized in frequency.”



  

● Time Domain: valuable information suppressed.
● Frequency spectrum shows what frequencies exist in the signal
● Frequency plot tells us how much of each frequency exists in the signal 

(frequency on the x axis and quantity on the y axis)
● Frequency spectrum of a real valued signal always symmetric. So a 50 

Hz signal (from a light bulb) will have a matching frequency at about 950 
Hz. Since the symmetric part provides no extra info, usually suppressed

● Frequency plot doesn't tell us when in time the frequency components 
exist (stationary signal) – ie the frequency of stationary signals doesn't 
change in time 

FT Motivation



  

Stationary signal:
x(t)=cos(2*pi*10*t)+cos(2*pi*25*t)
+cos(2*pi*50*t)+cos(2*pi*100*t) 

Fourier Transform



  

Non-stationary signals

● Biological signals: ECG (heart), EEG (brain), 
EMG (muscles)

● On an EEG you would like to know the time 
intervals between spectral components

● Example: turn on and off a flashlight. What's 
the time lapse of the brain between the 
stimulus and response?



  

Non-stationary signal

Fourier Transform



  

FT not able to distinguish two 
signals of same frequency 

Not suitable for non-stationary 
signals (ie frequency varying in 

time)

If you don't care about time, FT can 
be a good tool



  

What is the Fourier Transform 
Actually Doing?

● Any periodic function can be expressed as infinite sum of periodic 
complex exponential functions

● Techniques generalized to non-periodic functions
● Signal x(t) mutliplied by exponential term at some frequency and 

integrated over ALL TIMES
● What we're actually doing is multiplying original signal by complex 

expression of sines and cosines and integrated
● Sinusoidal term has a frequency f, so if the signal has a high amplitude 

coefficient at that frequency their product will result in a large value, ie) a 
major spectra component of f. On the other hand, if the signal doesn't 
have that component it will warrant zero

● Integral runs from -infinity to + infinity in time. All times added and no 
matter where in time the frequency occurs it will affect the final product 
equally.

● THIS IS WHY THE FOURIER TRANSFORM NOT SUITABLE FOR A 
TIME VARYING FREQUENCY!!! IE) NON-STATIONARY SIGNAL 



  

Alternatives

● Many potential transforms: Hilbert transform, 
short-time Fourier transform, Wigner 
distributions, Radon Transform, Wavelet 
transform

● Short-time Fourier, Wigner and Wavelet give 
time-frequency representation of signal

● WT developed to fix resolution problems of 
STFT



  

Short Term Fourier Transform

● First solution to time varying frequency signals and the short-comings of FT
● Even non-stationary signals have portions in which they are stationary – see example 

every 250 time units
● So the solution was to break the signal up into narrow, stationary portions of the signal
● Difference between FT and STFT is that a window function is needed to designate the 

width of these windows of information
● Narrow window → good time resolution, poor frequency resolution
● Large window → good frequency resolution, poor time resolution



  

Uncertainty Principle

● Originally formulated by Heisenberg in reference to Quantum Mechanics: 
Momentum and position of moving particle cannot be known simultaneously 

● In reference to our problem . . . We can't know exactly what frequency 
exists at what time

● But we can know what frequency bands exist at what time intervals
● Problem of resolution and the main reason for the switch from STFT to WT
● STFT gives fixed resolution at all times while WT gives variable 

resolution . . . higher frequencies are better resolved in time while lower 
frequencies are better resolved in frequency, ie) less error



  

Example

4 Frequency components at different 
times: Sine curves at 250 ms intervals: 
300 Hz, 200 Hz, 100 Hz, 50 Hz

STFT (symmetric since 
FT is also symmetric)



  

Problem with STFT
Example: 4 window sizes



  

STFT of Window Lengths

Window 1: narrow window → Good 
time resolution, poor frequency 
resolution

Window 2: Wide window → Good 
frequency resolution, poor time 
resolution



  

Problem with STFT: Resolution

● In FT, there's no resolution problem. In time 
domain, we know exactly the time and none of 
the frequency. In frequency, we know exactly the 
frequency and none of the time

● Happens because the window in FT is infinite the 
e^iwt function. While in STFT our window is finite 
length

● Resolution dilemma 
● WT solves it, to some extent 



  

Wavelet Transform

● HUP exists regardless of the transform employed
● But possible to analyze the signal with a different approach 

called multiresolution analysis (MRA)
● Analyzes the signal at different frequencies and resolutions
● Every frequency component not resolved equally
● At high frequencies: Good time resolution; poor frequency 

resolution
● At low frequencies: Good frequency resolution; poor time 

resolution
● Makes sense when signal has high frequency for short 

durations and low frequency for long durations
● Signals encountered often of this type



  

a:scaling  b:time

ξ :frequency



  

WT

● Similar to STFT, the signal multiplied by a 
function (a wavelet) and computed separately 
for different segments of time signal

● Two differences
– FT of window signals not taken 

– Width of window changed as transform is taken for 
every spectral component



  

Wavlet Jargon

● Function of two variables: translation and scale
● Psi(t) is the transforming function (mother wavelet)
● Wavelet means small wave. ie) window function is of finite length
● Wave means window function is oscillatory
● Mother means the functions used in different regions all derive from one common 

function
● Mother wavelet is the prototype for other window functions
● Translation refers to the location of the window. The window is shifted through the 

signal . . . corresponds to time info
● Scale defined as inverse frequency
● Scale similar to scale on a map. A large scale tells us that we have a non-detailed global 

view. In terms of frequency, a low frequency (high scale) means we see a global, non-
detailed image

● Low scales usually don't last for entire duration of signal. High scales do



  

Scale



  

Mother wavelet

● All windows used are dilated/shifted versions 
of the mother wavelet (scale/transformation)

● Many candidates: Morlet wavelet and Mexican 
hat function are two possibilities



  

Mexican Hat



  

Computation of Continuous Wavelet 
Transform

● After choosing the mother, computation starts with s= 1 and CWT taken 
for all values of s greater and smaller than 1

● Wavelet placed at beginning of signal (t=0)
● Wavelet at scale 1 multiplied by signal/integrated over all times. Result 

multiplied by 1/sqrt{s} for normalization. This gives the value at tau=0, 
s=1. Wavelet at s=1 then translated by  tau and value found for tau=tau, 
s=1. Continued till end of signal when s is incremented

● Product at each step is nonzero only when signal falls in region of 
support of the wavelet. ie) signal must have spectral component that 
corresponds to value of s to yield a product

● Shifting wavelet in time, localizes signal in time. Changing value of s, 
localizes signal in scale (frequency)



  

● For every scale and every time, one point in time-scale plane 
computed

● Translation related to time. Scale shows inverse frequency
● Time-Frequency plot consists of squares in STFT
● In WT it consists of rectangles of different dimensions
● HUP still holds. But smarter, targeted analysis
● CWT can be thought of as inner product of test signal with basis 

function psi . . . Gives a measure of similarity between the basis 
functions (wavelets) and the signal itself

● CWT is a reversible transform as long as it meats non-restrictive 
admissibility condition: 



  

Example: different scale and 
translation values



  



  



  

Example



  



  

CWT Resolution



  

DWT

● Filters of different cutoff frequencies used to analyze signal at different 
scales

● Rather than taking samples at all scales and translations, signal passed 
through series of high pas filters to analyze high frequencies and low pass 
filters to analyze low frequencies

● Filtering means convolving signal with filter response
● Scale changed by adding or removing data samples (subsampling by two 

means removing every two samples) 
● Sampling frequency taken in radians (2pi) . . .
●  highest frequency component will be pi radians, if signal sampled at 

Nyquist's rate (2x the max frequency in signal).
●  Hz not appropriate for discrete signals (can be used in discussion but not 

application)
● Resolution affected by filtering operations, since related to amount of 

information in signal
● Low pass filtering halves the resolution but leaves scale unchanged



  

● Decomposition of signal into different frequency bands done by 
successive high and lowpass filtering of time domain signal 

● Nyquist's rule says after filtering half the samples can be removed
● Decomposition of the signal into low and high pass components, 

halves the time resolution, since you have half the # of samples 
but doubles the frequency resolution, since you have frequency 
band spans only half the previous band

● Can be repeated indefinitely



  

Example - Subbanding

● Original signal has 512 sample points with frequency 
band from zero to p rad/s

● First decomposition and subsampling of 2, leaves the 
highpass filter output with 256 points and frequencies 
from p/2 to p rad/s

● Lowpass filter output left with 256 points with 
frequencies from 0 to p rad/s

● Process continues until only 2 samples are left (8 
levels of decomposition in this example)

● DWT found by concatenating all coefficients from last 
level of decomposition. DWT left with same number of 
coefficients as original signal



  

● Most prominent frequencies in original signal have high amplitudes in 
that region of DWT with those frequencies

● Unlike FT, the time frequency not lost!
● But resolution depends on where the signal lies
● If it lies in high frequency, as it usually does, time localization is 

precise . . . since many samples are used to express this
● If it lies in low frequency it is imprecise, since few samples compose 

this measurement
● ie) good time resolution at high frequencies. Good frequency 

resolution at low frequencies
● Data reduction from discarding low amplitude data
● In the low frequency region, only first 64 samples carry relevant info 

and rest can be discarded 



  

● Ideal filters that always provide perfect 
reconstruction not possible, but under certain 
conditions they can provide perfect 
reconstruction

● Most famous are the Daubechies wavelets
● Length of signal must be power of 2
● DWT coefficients of each level are 

concatenated starting with last level



  

Example

● Suppose a 256 sample signal sampled at 10 
MHz and we are looking for DWT coefficients

● Since we have a 10 MHz signal, the highest 
frequency component in the signal can be 5 
MHz

● High and low pass filters applied at each level. 
9 levels total



  

Coefficient levels: 256 samples

● Level 1: 256 coefficients
● Level 2: 128 coefficients
● Level 3: 64 coefficients
● Level 4: 32 coefficients
● Level 5: 16 coefficients
● Level 6: 8 coefficients
● Level 7: 4 coefficients
● Level 8: 2 coefficients
● Level 9: 1 coefficient



  

Wavelet Tutorial: Robi Polikar, 
Rowan University

● Part I: 
http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html

● Part II: 
http://users.rowan.edu/~polikar/WAVELETS/WTpart2.html

● Part III: 
http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html

● Part IV: 
http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html
 

http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html
http://users.rowan.edu/~polikar/WAVELETS/WTpart2.html
http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html
http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html


  



  

● DWT used for data compression for previously sampled signal
● CWT used for signal analysis
● DWT common in engineering and computer science while CWT common in 

scientific research 
● JPEG 2000 is a compression standard that uses biorthogonal wavelets
● Smoothing/denoising data using wavelet coefficient threshold … threshold wavelet 

coefficients to smooth undesired frequency components 
● Wavelet transform is representation of function by wavelets
● Wavelets are scaled/translated copies (daughter wavelets) of a finite-length/fast-

decaying oscillating waveform (mother wavelet)
● Unlike Fourier transform, can represent functions with discontinuities/non-smooth 

functions and deconstruct finite/non-periodic signals. In fact smooth, periodic 
signals may be better compressed with Fourier methods

● CWT operate over every possible scale and translation while wavelets use a 
specific subset of scale/translation values



  

● Nyquist's rule tells us at lower frequencies, sampling rate 
can be decreased . . . saving us  significant computational 
time

● How low can sampling rate be and still reconstruct the 
signal? Main question of optimization

● Discretized CWT is just a sampled version of CWT that 
allows computer processing (not the same as DWT) – 
information is highly redundant

● Discretized continuous wavelet transform can take long time 
depending on size of signal and desired resolution. DWT 
much faster 
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