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Integration of Topological
Constraints in Medical Image
Segmentation

F. Ségonne and B. Fischl1

ABSTRACT Topology is a strong global constraint that can be useful in
generating geometrically accurate segmentations of anatomical structures.
Conversely, topological “defects” or departures from the true topology of
a structure due to segmentation errors can greatly reduce the utility of
anatomical models. In this chapter we cover methods for integrating topo-
logical constraints into segmentation procedures in order to generate geo-
metrically accurate and topologically correct models, which is critical for
many clinical and research applications.

1 Introduction

1.1 Description of the Problem

In medical imaging, the overall shape of a region of interest is typically
prescribed by medical knowledge; it is usually known a priori. Excluding
pathological cases, the shape of most macroscopic brain structures can be
continuously deformed into a sphere. In mathematical terms, these struc-
tures have the topology of a sphere. Particularly, this implies that most
brain structures consist of one single connected object that does not pos-
sess any handles (i.e. holes) or cavities. This is the case for noncortical
structures (such as left and right ventricle, putamen, pallidum, amygdala,
hippocampus, thalamus, and caudate nucleus - see Fig. 1-a), but it also
holds for the cortex under some specific conditions2. In addition to their
individual topological properties, anatomical structures occur in a charac-
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2The human cerebral cortex is a highly folded ribbon of gray matter (GM) that lies
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2 F. Ségonne and B. Fischl

FIGURE 1. a) Subcortical structures have a spherical topology. For instance, the
shape of the hippocampus can be continuously deformed onto a sphere. b) The
human cerebral cortex is a highly folded ribbon of gray matter that lies inside
the cerebrospinal fluid (the red interface) and outside the white matter of the
brain (the green interface). When the midline connections between the left and
right hemisphere are artificially closed, these two surfaces have the topology of a
sphere. c) Due to the partial volume effect, subject motion, etc..., it becomes hard
to distinguish opposite banks of a the gray matter. d) Segmentation algorithms
that do not constrain the topology often produce cortical segmentations with
several topological defects (i.e. handles, cavities, disconnected components). e) A
close-up of a topologically-incorrect cortical surface representation.

teristic spatial pattern relative to one another (e.g. in the human brain, the
amygdala is anterior and superior to the hippocampus). The set of indi-
vidual topological properties and specific relationships between anatomical
structures determine the global topology of a region of interest.

Although many clinical and research applications require accurate seg-
mentations that respect the true anatomy of the targeted structures, only
a few techniques have been proposed to achieve accurate and topologically-
correct segmentations.

1.2 Motivation

Many neurodegenerative disorders, psychiatric disorders, and healthy ag-
ing are frequently associated with structural changes in the brain. These
changes, which can cause alterations in the imaging properties of the brain
tissue, as well as in morphometric properties of brain structures, can be
captured and detected by sophisticated segmentation techniques. Certain
clinical and research applications depend crucially on the accuracy and cor-
rectness of the representations (visualization [11, 12, 56], spherical coordi-
nate system and surface-based atlases [12, 16, 17, 18, 22, 50, 56], shape anal-
ysis [16, 20, 31, 43, 53, 54], surface-based processing of functional data [12],
and inter-subject registration [22, 51, 55], among others). Small geometric
errors in a segmentation can easily change the apparent connectivity of the
segmented structure, posing a problem to studies that aim at analyzing

Locally, its intrinsic “unfolded” structure is that of a 2D sheet, several millimeters thick.
In the absence of pathology and assuming that the midline hemispheric connections are
artificially closed, each cortical hemisphere can be considered as a simply-connected 2D

sheet of neurons that carries the simple topology of a sphere - see Fig. 1-b



1. Integration of Topological Constraints in Medical Image Segmentation 3

the connectedness of different regions (e.g. dramatic underestimation of
true geodesic distances). The accuracy and correctness of the representa-
tions can be critical factors in the success of studies investigating the subtle
early effects of various disease processes.

1.3 Challenges

Accurate segmentation under anatomical consistency is challenging. Seg-
mentation algorithms, which operate on the intensity or texture variations
of the image, are sensitive to the artifacts produced by the image acqui-
sition process. These limitations include image noise, low frequency image
intensity variations or non-uniformity due to radio frequency (RF) inho-
mogeneities, geometric distortions in the images, partial volume averaging
effect, and subject motion. Segmentation techniques that do not integrate
any topological constraints generate segmentations that often contain devi-
ations from the true topology of the structures of interest. These deviations
are called topological defects and can be of three types: cavities, discon-
nected components, or handles (which are topologically equivalent to holes)
that incorrectly connect parts of the volumes.

The integration of topological constraints significantly increases the com-
plexity of the task. Topology is both a global and a local concept; small and
local modifications of a geometric shape can change its global connectiv-
ity. Furthermore, topology is intrinsically a continuous concept (sec. 2.1)
and topological notions are difficult to adapt into a discrete framework
(sec. 2.2). Due to these difficulties, the set of techniques applicable to the
segmentation of images is quite limited (sec. 3).

In this chapter, we present background material of central importance
for the segmentation of medical images under topological constraints. We
introduce some elementary notions of topology (sec. 2.1) and show how
these notions can be adapted into a discrete framework and applied to the
segmentation problem (sec. 2.2). Next, we describe the current state-of-
the-art segmentation of images under topological constraints (sec. 3) and
detail the limitations of existing approaches (sec. 3). Section 4 concludes.

2 Topology in Medical Imaging

In medical image segmentation, one is interested in locating (accurately
and also under topological constraints) specific regions of interest that are
formed by one or several anatomical structures. Those can be represented
equivalently by their volume or their surface and these two equivalent rep-
resentations correspond to the two most common data structures used in
medical imaging: 3D voxel grids and surfaces (such as triangulations or
levelsets).
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2.1 General Notions of Topology

Topology is a branch of mathematics that studies the properties of geomet-
ric figures by abstracting their inherent connectivity while ignoring their
detailed form. The exact geometry of the objects, their location and the
details of their shape are irrelevant to the study of their topological proper-
ties. Schematically, this amounts to characterizing a geometric object (i.e.
a surface or a volume) by its number of disconnected components, holes
and cavities, but not by their position. For instance, the surface of a coffee
mug with a handle has the same topology as the surface of a doughnut
(this type of surface is called a one-handled torus).

FIGURE 2. a-b) Two tori that are homeomorphically equivalent. They share the
same intrinsic topology. However, they do not share the same homotopy type as
one cannot be continuously transformed into the other. c) A geometric object with
a spherical topology; its Euler-characteristic is χ = v − e + f = 8 − 12 + 6 = 2.
d) A geometric object with a toroidal topology and an Euler-characteristic of
χ = v − e+ f = 16− 32 + 16 = 0.

A - Homeomorphism, Genus, and Euler-Characteristic
In medical imaging, the geometric entities under consideration are anatomi-
cal structures, which can frequently be advantageously represented by their
surfaces. The Gauss-Bonnet theorem in differential geometry links the ge-
ometry of surfaces with their topology. Any compact connected orientable
surface is homeomorphic to a sphere with some number of handles. This
number of handles is a topological invariant called the genus. For example,
a sphere is of genus 0 and a torus is of genus 1. The genus g is directly
related to another topological invariant called the Euler-characteristic χ
by the formula χ = 2(1− g)3. The Euler-characteristic is of great practical
interest because it can be calculated from any polyhedral decomposition
(e.g. triangulation) of the surface by the simple formula χ = v−e+f , where
v, e and f denote respectively the number of vertices, edges and faces of
the polyhedron. The Euler-characteristic of a sphere is χ = 2. This implies
that any surface with χ = 2 is topologically equivalent (i.e. homeomorphic)
to a sphere and therefore does not contain any handles. Surfaces with an
Euler-characteristic χ < 2 have a topology that is different from that of a

3In the case of multiple surfaces involving K connected components, the total genus

is related to the total Euler-characteristic by the formula: χ = 2(K − g).
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sphere. Note, however, that the Euler-characteristic does not provide any
information about the localization of the handles.
B - Intrinsic Topology and Homotopy Type
Homeomorphisms are used to define the intrinsic topology of an object,
independently of the embedding space. The topological invariance of the
Euler characteristic implies that the way a surface is decomposed (i.e. tes-
sellated) does not influence its (intrinsic) topology. Any polyhedral decom-
position of a surface will encode the same intrinsic topology. For example, a
knotted solid torus has the same genus (and the same Euler-characteristic
χ = 0) as a simple torus. In order to topologically differentiate surfaces, one
needs a theory that considers the embedding space. Homotopy, which de-
fines two surfaces to be homotopic if one can be continuously transformed
into the other, is such a theory that provides a measure of an object’s
topology (see [8] for an excellent course in algebraic topology). We stress
the fact that the Euler-characteristic does not define the homotopy type of
a surface, since the embedding space is being ignored. In particular, this
implies that a discrete representation of a surface using a polygonal decom-
position with the desired Euler-characteristic might be self-intersecting in
the 3D embedding space (Fig 3).

FIGURE 3. a) a simple closed curve with the topology of a circle. b) One ex-
ample of a polyhedral decomposition of the curve using 25 vertices and edges.
The corresponding Euler-characteristic χ = v − e = 0 is that of a circle. c) An-
other discretization of the same curve using 14 edges and vertices. Note that the
Euler-characteristic is still that of a circle χ = 0, even though the discrete repre-
sentation of the curve self-intersects in the 2D embedding space. d) Close-up.

C - Topological Defects, Duality Foreground/Background
In this chapter, we call topological defect any deviation from spherical
topology: cavities, disconnected components, or handles. We note that for
each defect present in a geometric entity, referred to as the foreground
object, there exists a corresponding defect in the background (i.e. the em-
bedding space): a disconnected foreground component can be interpreted
as a background cavity; a foreground cavity is a disconnected background
component; and a handle in a foreground component defines another han-
dle in the background component. This foreground/background duality is
of crucial importance for all retrospective topology correction techniques,
as it provides a dual methodology to correct a topological defect. For in-
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stance, the presence of a handle in an object could be corrected by either
cutting the handle in the foreground object, or cutting the corresponding
handle in the background object. Cutting the background handle can be
interpreted as filling the corresponding foreground hole (Fig. 4-b,c).

2.2 Topology and Discrete Imaging

In order to apply topological concepts to a discrete framework and define
the topology type (i.e. homotopy type) of digital segmentations, the notion
of continuity must be adapted to discrete spaces and objects, such as 3D
image grids and triangulations. This is obtained by replacing the notion of
continuity with the weaker notion of connectivity. We describe how topo-
logical notions can be adapted to the two most common data structures
used in medical imaging: 3D data structures and surfaces.
A - Digital Topology
Digital topology provides an elegant framework, which translates the con-
tinuous concepts of topology to discrete images. In this theory, binary im-
ages inherit a precise topological meaning. In particular, the concept of
homotopic deformation, which is required to assign a topological type to
a digital object, is clearly defined through the notion of simple point. An
extensive discussion of these concepts can be found in [36]. In this section,
some basic notions of digital topology are presented. All definitions are
from the work of G. Bertrand, which we refer to for more details [7].

FIGURE 4. a) 6-, 18- and 26-connectivity. b) The circled voxel is a non-simple
point c) Several dual topological corrections are possible: either cutting the handle
(top) or filling the hole (bottom).

In the digital topology framework, a 3D image I is interpreted as a
graph. The vertices of the graph are the digital points (i.e. the voxels) and
the edges are defined through neighborhood relations between points (i.e.
the connectivity). A 3D binary digital image I is composed of a foreground
object X and its inverse, the complement X. We first need to define the
concept of connectivity, which specifies the condition of adjacency that two
points must fulfill to be regarded as connected. Three types of connectivity
are commonly used in 3D: 6-, 18- and 26-connectivity. Two voxels are 6-
adjacent if they share a face, 18-adjacent if they share at least an edge and
26-adjacent if they share at least a corner (Fig. 4-a). In order to avoid topo-
logical paradoxes, different connectivities, n and n, must be used for one
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digital object X and its complement X. This leaves us with four pairs of
compatible connectivities: (6,26), (6,18), (26,6) and (18,6). One important
consequence of the previous requirement is that digital topology does not
provide a consistent framework for multi-label images. No compatible con-
nectivities can be chosen for neighboring components of the same object.
Therefore, digital topology is strictly limited to binary images.

We now come to the definition of a simple point. This concept is central to
most digital segmentation methods that integrate topological constraints [3,
26, 32, 36, 42, 44, 49].

Definition 1.1 Simple point A point of a binary object is simple if it can
be added or removed without changing the topology of both the object and the
background, that is, without changing the number of connected components,
cavities and handles of both X and X (Fig. 4-b,c).

A simple point is easily characterized by two topological numbers with re-
spect to the digital object (X,X) and a consistent connectivity pair (n, n).
These numbers, denoted Tn(x, X) and Tn(x, X), were introduced by G.
Bertrand in [1] as an elegant way to classify the topology type of a given
voxel. The values of Tn(x, X) and Tn(x, X) characterize isolated, interior
and border points as well as different kinds of junctions. In particular, a
point is simple if and only if Tn(x, X) = Tn(x, X) = 1. Their efficient
computation, which only involves the 26-neighborhood, is described in [6].

The definition of a discrete homotopy follows from the concept of simple
point.

Definition 1.2 Homotopic deformation We define a homotopic defor-
mation of an object X as a sequence of deletions or additions of simple
points.

Finally, two objects X and Y share the same homotopy type if there exists
a sequence of transformations X0...Xk and a sequence of points x1...xk,
such that X0 = X and Xi−1 = Xi

⋃
{xi} or Xi−1 = Xi \ {xi} and the

point xi is simple relative to Xi for i = 1, ..., k.
To be complete, we also mention some recent research in digital topol-

ogy, such as the concept of multisimple point in [45, 44] to characterize
the modification of the genus, a novel characterization of homeomorphic
deformation in [4], as well as some octree grid topology concept in [1].
B - Surfaces in Discrete Imaging
We now turn to the translation of continuous topological concepts to dis-
crete surface representations. There are essentially two ways of representing
a surface in discrete imaging. Surfaces can be either represented explicitly,
by using a parameterized polygonal decomposition, or implicitly as the
level set of some function defined in the 3D embedding space. Each type of
representation has advantages and disadvantages, and has been extensively
used for the purpose of medical image segmentation [11, 13, 21, 23, 35, 37,
57, 58, 59].
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FIGURE 5. a) A triangulated cortical surface b) Tiling inconscistency in iso-
surface extraction c) Different tessellations corresponding to different topology
types.

B.1 - Explicit Representations
An explicit representation models a surface by a set of vertices, edges, and
faces, associated with a chosen parameterization of each face. The set of
vertices, edges, and faces composes the polyhedral representation of the
surface. The parameterization of the faces determines the exact geometry
of the surface. For instance, tessellations correspond to linear parameteri-
zations of each face, while splines use higher-order approximations. Trian-
gulations are a special kind of tessellation, in which each face is a triangle
(Fig. 5-a).

The topological invariance of the Euler-characteristic implies that ex-
plicit models unambiguously encode the intrinsic topology of the surfaces.
However, there is no guarantee that the surface representation is not self-
intersecting. As previously mentioned, the topological equivalence defining
the intrinsic topology of a geometric entity ignores the embedding space.
Consequently, additional precautions must be taken in order to ensure
that the discretization of a surface does not generate self-intersections.
The self-intersection problem is important when the surfaces are itera-
tively deformed in order to match a targeted structure (i.e. theory of active
contours).

Finally, we note that explicit representations can approximate surfaces
at any level of precision, by using more refined meshes. Contrary to the
theory of digital topology that constitutes a discrete approximation of the
continuous space, and is therefore limited by the resolution of the 3D digital
images, explicit representations can accurately approximate any surface by
using high-resolution meshes.
B.2 - Implicit Representations
Implicit models encode the surface of interest C as the level set of a higher-
dimensional function φ defined in the embedding space R3. The function
φ, defined on a 3D voxel grid, is usually the signed distance function of the
surface with the contour being the zero level set of φ: C = φ−1(0).

This type of representation has several advantages. First, no explicit rep-
resentation and no parameterization are required. In the theory of active
contours, this has proven to be a huge advantage as implicit representations
can naturally change topology during the deformation of the model. Self-
intersections, which are costly to prevent in parametric deformable models,
are avoided and topological changes are automated. In addition, many fun-
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damental properties of the surface C, such as its normal or its curvature,
are easily computed from the level set function φ.

However, these models can only represent manifolds of codimension one
without borders, i.e. closed surfaces in R3. For the purpose of segmenting
anatomical structures, the use of such representations is not a limitation.
Another - more subtle - drawback of implicit representations is that, even
though level sets achieve sub-voxel accuracy, the exact location of the con-
tour depends on the image resolution. For instance, in the case of two
adjacent banks of a sulcus that are closer than the resolution of the un-
derlying voxel grid (or physically touching), the finite image resolution and
the topological constraint necessitate some voxels to be labeled as outside
voxels (ideally, these voxels should be the ones belonging to CSF), thus im-
posing a constraint on the location and accuracy of the surface model (some
recent methods to alleviate this limitation have been proposed in [2, 27]).

So far, we have not specified how implicit representations can ensure
that the topology of the encoded surface is the correct one. Since implicit
representations make use of the underlying 3D voxel grid (through a signed
distance function φ) to encode the contour of interest, digital topology
(sec. 2.2-A) can be used to specify the topology of the contour [28]. The
foreground object X is simply defined as the set of negative grid points
(i.e. X = {x ∈ R3 | φ(x) ≤ 0}), and the background object X as the
set of strictly positive grid points (i.e. X = {x ∈ R3 | φ(x) > 0}). Then,
given a choice of compatible connectivities, the topology of the contour is
determined unambiguously.

C - From Images to Surfaces: Isocontour Extraction
In the previous section, we described the manner in which topology can be
adapted to the two most common data structures used in medical imaging.
The ability to go from one representation to the next arises as a difficulty.
Although it is possible to generate triangulations from 3D binary digital
segmentations, such that the resulting topology of the surfaces is consistent
with the choice of digital topology, it is not always possible to produce a
digital binary representation, whose topology is similar to that of a given
triangulation: digital topology constitutes a discrete approximation of the
continuous space at a finite resolution, while triangulations approximate
continuous surfaces at any level of precision.

The marching cubes (MC) algorithm was first introduced by Lorensen
and Cline in 1987 [34] as a way to generate a polygonal decomposition (e.g.
a triangulation) from a scalar field sampled on a rectilinear grid (e.g. an im-
plicit representation). Given an isovalue, the MC algorithm quickly extracts
a representation of the isosurface of the scalar field. The MC algorithm first
partitions the data into a set of cubic (or rectilinear) cells, the cell vertices
being the grid points. Based on the relative polarity of their scalar value
(above or below the isovalue), each vertex is assigned a binary label, which
indicates whether the grid point is inside or outside the isosurface. Then,
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each cubic cell is processed sequentially. Patches (i.e. sets of triangles) that
approximate the isosurface (based on tri-linear interpolation) are produced
within each cube, and the polygon patches are naturally joined together to
form the final isosurface representation.

Unfortunately, the standard marching squares or marching cubes algo-
rithm does not generate topologically consistent tessellations, since the
resulting tessellations may contain tiling and topological inconsistencies
(Fig. 5-b). In order to alleviate this problem, Han et al. [28] have designed
a modified connectivity-consistent marching contour algorithm, by build-
ing a specialized case table for each type of digital topology (Fig. 5-c).
Extensive discussion of isocontour extraction algorithms can be found in
the thesis of Han [25]. Note also some new research directions such as [1].

3 State of the Art in Segmentation under
Topological Constraints

As noted previously, methods for producing topologically-correct segmen-
tations can be broadly divided into two categories. A first set of approaches
directly incorporates topological constraints into the segmentation process,
while another set aims at correcting retrospectively the spherical topology
of an already segmented image.

3.1 Topologically-Constrained Segmentations

The topology-enforcing techniques proceed by iteratively deforming a model
of known topology onto a targeted structure, while preserving its topology.
Several techniques have been used for the segmentation of anatomical struc-
tures, with the topological constraint taking different forms depending on
the chosen method.

A - Active Contours
Depending on the representation, two different implementations are usu-
ally encountered. One encodes the manifold of interest with an explicit
representation using a Lagrangian formulation [52], while another implic-
itly represents the contour as the level set of a function defined on higher-
dimensional manifold in an Eulerian formulation [9, 40].
• Parameterized models maintain an explicit representation of the con-
tour and preserve its initial intrinsic topology. Any level of accuracy can
be achieved by using more refined meshes. However, the preservation of
the whole topology also requires the prevention of self-intersections, which
proves to be computationally intensive and requires elaborate methods to
detect and prevent surface intersection during the evolution. Also, note that
the preservation of the initial topology is often a strong limitation to most
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explicit models, since a fully automatic and efficient handling of topology
changes using explicit models remains an open issue [14, 15, 33, 41, 38, 39].
• The ability to automatically handle topological changes is a long ac-
knowledged advantage of the level set method over explicit deformable
models, but may not be desirable in some applications where some prior
knowledge of the target topology is available. This is typically the case in
biomedical image segmentation, where the topology of the organs and their
mutual topological relations is prescribed by anatomical knowledge (in the
absence of gross pathology). In order to overcome this problem, a topology-
preserving variant of the level set method has been proposed in [28]. This
method is based on the theory of digital topology and uses the underlying
embedding space to constrain the topology of the interior of the level set.
However, the strict topology preservation necessitates an initialization of
the active contour that is close to its final configuration in order to avoid
topological barriers that can easily generate large geometrical errors. In
the case of complex structures, like the cortical surface, such initialization
proves to be extremely difficult [26].
Recently, another variant was proposed to exert a more subtle topological
control on a level set evolution by allowing connected components to merge,
split or vanish without changing the genus of the active contours [44].
While the original level set model does not provide any topological control,
topology-preserving level sets enforce a strong constraint that is often too
restrictive. This framework establishes a trade-off between the two models.
It offers a more fine-grained topological control that alleviates many prob-
lems of methods that enforce a strong topological constraint (e.g. sensitivity
to initialization and noise, simultaneous evolution of multiple components
and speed of convergence).

B - Digital Homotopic Deformations
Similar to active contour models, digital approaches [8, 3, 5, 36, 42] deform
an initial region with a known given topology (typically a single voxel
carrying a spherical topology), by addition/deletion of points, minimizing
a global energy functional while preserving the correct digital topology.
Regions are grown or shrunk by adding points that will not change the
region topology. Most of these methods are based on the theory of digital
topology and the notion of simple points.

C - Segmentation by Registration
Some approaches have been proposed to match a template with a given
topology onto a specified MRI image [3, 10, 30]. These methods have the
strong advantage of being able to enforce complex topology in the seg-
mentation process, and to encode the spatial relationships that exist in
between structures [4, 5]. Nevertheless, the design of elaborate templates
that include several structures with the correct topology is challenging.
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D - Limitations of Topologically-Constrained Segmentations
All these methods have the advantage of allowing the user to specify the
proper topology and not allowing it to change. In the case of segmenta-
tion by registration, full brain models containing several structures can be
matched onto a targeted image. Unfortunately, these methods are highly
sensitive with regard to their initialization, and accurate final configura-
tions most often require an initialization of the models that is close to its
final configuration. One of the main reasons is that the energy functionals
driving the deformation are typically highly non-convex and the evolution
is therefore easily trapped in local minima.

A significant drawback of topologically constrained evolution is that it
can lead to large geometric errors, due to the topological constraint and the
presence of topological barriers (constituted by sets of non-simple points in
the case of digital segmentations, self-touching and frozen surface regions
in active contours segmentations). This is the case for methods that aim at
segmenting the cortex starting from one single object located deep inside
the cortical surface. Large topological barriers are often generated during
the template deformation leading to inaccurate final segmentations. This
is mostly a result of the presence of noise in the image and of the fact that
topologically constrained segmentation prevents the formation of cavities
(easy to detect and suppress) as well as the formation of handles.

Finally, we note that digital methods, as well as implicit representations
that use the 3D embedding space to encode the surface of interest, are
constrained by the finite resolution of the 3D grid and may not be able to
represent deep folds in the target structure. To solve this problem, Han et
al. [27] have implemented a moving grid algorithm, which aims at optimally
deforming the underlying 3D grid for accurate implicit representations. Let
us also mention some recent octree-based topology-preserving geometric
deformable model [2].

3.2 Retrospective Topology Correction

Recently, new approaches have been developed to retrospectively correct
the topology of an already-segmented image. These techniques, which do
not impose any topological constraints on the segmentation process, can
focus on attaining more accurate models with few topological inconsisten-
cies to be identified and corrected post-hoc. These methods can be di-
vided into two main classes: volume-based methods that work directly on
the volume lattice and correct the topology by addition/deletion of vox-
els [26, 32, 46, 49], and surface-based methods that aim at modifying the
tessellation by locating and cutting handles [19, 24, 47, 48].

A - Volume-Based Approaches
Most volume-based approaches have been specifically designed to enforce
the spherical topology of cortical surface. These methods identify the lo-
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cation of the topological defects present in the segmentation by building a
graph encoding the connectivity of the segmentation; the topological de-
fects present in the volume are then corrected by introducing some cuts in
the connectivity graph (e.g. modifying the binary labels of some key voxels
in the volume).

One of the most inspirational approaches in this domain is certainly the
pioneering work of Shattuck and Leahy [49]. One drawback of their ap-
proach is that the “cuts”, which are necessary to correct the topological
defects, can only be oriented along the Cartesian axes and give rise to “un-
natural” topological corrections. Their method is based on the theory of
digital topology but is limited to 6-connectivity and has not been general-
ized for any other connectivity rule.

Han et al. developed an algorithm to correct the topology of a binary
object under any digital connectivity [26]. They detect handles by graph
analysis, using successive foreground and background morphological open-
ings to iteratively break the potential topological defects at the smallest
scales. In contrast to the approach of Shattuck and Leahy, “cuts” are not
forced to be oriented along cardinal axes. However, topological corrections
at a specific scale depend on the choice of filter, either foreground or back-
ground morphological filter, which fails to evaluate simultaneously the ef-
fect of two complementary dual solutions (i.e. cutting the handle or filling
the corresponding hole) on the corrected segmentation.

Kriegeskorte and Goeble proposed a region growing method prioritized
by the distance-to-surface of the voxels in order to force the cuts to be lo-
cated at the thinnest part of each topological defect [32]. The same process
is applied to the inverse object, offering an alternative solution to each cut.
An empirical cost is then assigned to each solution and the final decision
is the one minimizing the global cost function.

While these methods can be effective, they cannot be used to correct the
topology of arbitrary segmentations, as they make assumptions regarding
the topology of the initial input image. Most frequently, fully-connected
volumes are assumed and cavities are supposed to be removed as a prepro-
cessing step. In addition, they do not integrate any statistical or geometric
information into the topology correction process. To alleviate these limita-
tions, Ségonne et al. [46, 45] propose a topology correction approach that is
phrased within the theory of Bayesian parameter estimation and integrates
statistical information into the topology correction process. In addition, no
assumption is made about the topology of the initial input images.

B - Surface-Based Approaches
Approaches of the other type operate directly on the triangulated surface
mesh. Topological defects are located either as intersections of wavefronts
propagating on the tessellation [24, 29] or as non-homeomorphic regions
between the initial triangulation and a sphere [19, 47, 48].

In [24, 29], a randomly selected vertex is used to initialize a region
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growing algorithm, which detects loops (i.e. topological defects) in the tri-
angulation where wavefronts meet. Topological corrections are obtained
through the use of opening operators on the triangle mesh, resulting in a
fast method that depends on the initially selected vertex. In a similar work,
Jaume [29] identifies minimal loops in the volume by wavefront propaga-
tion. This method assumes that the initial triangulation was generated
through the use of a topologically-consistent algorithm. The minimal loops
are then used to identify non-simple voxels in the volume, which are subse-
quently deleted. Again, this approach orients the “cuts” along the Cartesian
axes and generates “unnatural” topological corrections. In addition, both
methods ignore all additional information, such as the underlying inten-
sity profile or the expected local curvature, and the resulting topological
corrections might not be accurate.

Fischl et al. [19] proposed an automated procedure to locate topologi-
cal defects by homeomorphically mapping the initial triangulation onto a
sphere. Topological defects are identified as regions in which the homeomor-
phic mapping is broken and a greedy algorithm is used to retessellate in-
correct patches, constraining the topology on the sphere S while preserving
geometric accuracy by a maximum likelihood optimization. Unfortunately,
this method relies on a greedy algorithm and the reconstructed final surface
might be inaccurate. In addition, even though the final intrinsic topology
will be the correct one, the proposed method cannot guarantee that final
surface will not self-intersect.

Recently, Ségonne et al. proposed a methodology [47, 48] that alleviates
most limitations of previous approaches, and is able to generate accurate
topological corrections by integrating statistical and geometric informa-
tion into the topology correction process while guaranteeing that the final
surface will not self-intersect. Non-separating loops locate handles present
in the volume, and produce topologically-corrected candidate solutions by
discarding the faces that form the loops and by sealing the open mesh. The
accuracy of each candidate solution is then maximized by active contour
optimization. Finally, randomly-generated candidate solutions are selected
based on their goodness of fit in a Bayesian framework.

C - Limitations of Retrospective Topology Correction Algorithms
Most of these methods assume that the topological defects in the segmen-
tation are located at the thinnest parts of the segmented volume and aim
to correct the topology by minimally modifying the volume or tessella-
tion [24, 26, 29, 32, 49]. Although this will often lead to accurate results,
due to the accuracy of initial segmentations, topological corrections may
not be optimal: additional information, such as the expected local curva-
ture or the local intensity distribution, may lead to different corrections
(i.e. hopefully comparable to the ones a trained operator would make).
In addition, digital methods often suffer from the finite resolution of the
digital grids, posing a problem to the accurate location of the potential
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cuts.
Few methods have been proposed to integrate into the segmentation pro-

cess some additional information, such as intensity or curvature [46, 47, 48].
Although the method introduced in [46] has the advantage of correcting
the topology of any initial segmentation without making any assumption
on the initial connectedness of the segmentation, it suffers from the same
limitations as most digital methods (i.e. the accurate location of the po-
tential cuts). Also, as most retrospective topology correction methods it
only evaluates a small number of potential topological corrections per de-
fect (i.e. only two dual corrections), consequently failing often to produce
optimal solutions. To our knowledge, only the approach developed in [48]
has been proposed thus far to generate multiple solutions and explore the
full space of potential solutions in order to select the best correction of a
topological defect.

4 Conclusion

In this chapter, we covered methods for integrating topological constraints
into segmentation procedures in order to generate geometrically accurate
and topologically correct models. We introduced some elementary but es-
sential notions of topology (sec. 2.1), such as the concepts of homeomor-
phism and homotopy that are necessary to characterize the topological type
of a geometric object. We have clearly distinguished the intrinsic topology
of an object from its homotopy type (sec. 2.1). Also, we have emphasized
the connections linking topology and differential geometry, such as the cru-
cial notion of the Euler-characteristic of a surface.

The adaptation of the continuous concepts of topology into a discrete
framework that is practical to the segmentation of medical images proves
to be challenging. However, we have shown that topologically-consistent
frameworks can be constructed by replacing the notion of continuity by
the weaker notion of connectivity (sec. 2.2), using concepts from the the-
ory of digital topology is (sec. 2.2-A). In particular, we have introduced
the important concepts of simple point and topological numbers, and de-
fined the discrete equivalent of homotopic deformations based on the notion
of simple point. We have also presented isocontour extraction techniques
(sec. 2.2-C).

Finally, we described current state-of-the-art segmentation of images
under topological constraints and detailed the limitations of existing ap-
proaches (sec. 3). Among state-of-art techniques, retrospective methods
(sec. 3.2) achieve overall better results than topologically constrained seg-
mentation methods (sec. 3.1). In addition, techniques that integrate addi-
tional information, such as intensity or curvature, often lead to more accu-
rate segmentations. However, segmentation under topological constraints
remains a challenge with several promising research directions [2, 4, 5, 44,
48].
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