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Abstract. Binary direction relations between points in two-dimensional space are the
basis to any qualitative direction calculus. Previous calculi are only on a very low level
of granularity. In this paper we propose a generalization of previous approaches which
enables qualitative calculi with an arbitrary level of granularity. The resulting calculi
are so powerful that they can even emulate a quantitative representation based on a
coordinate system. We also propose a less powerful, purely qualitative version of the
generalized calculus. We identify tractable subsets of the generalized calculus and de-
scribe some applications for which these calculi are useful.

1 Introduction

Spatial information is an important part of intelligent systems. There are mainly two differ-
ent approaches to representing and reasoning about spatial information. One approach tries
to represent spatial information in a quantitative, metric way, usually by some kind of co-
ordinate system. Another approach, qualitative spatial representation and reasoning, tries to
represent spatial information by specifying qualitative relationships between spatial entities.
One of the main motivations of qualitative spatial representation is that it is considered to be
similar to the way humans conceptualize spatial information and to the way it is expressed in
natural language. An obvious advantage of qualitative spatial representation is the handling
of imprecise information. Using qualitative relationships it is possible to express only as
much information as is necessary or known. The level of precision which can be represented
depends on the granularity of the qualitative relations.

Several aspects of space can be represented in a qualitative way, the most important be-
ing topology, direction, and distance [2]. In this paper we focus on qualitative direction, i.e.,
relationships such as left, right, north, or south. Three kinds of spatial entities are usually
distinguished, points, lines or line segments, and extended two- or higher dimensional re-
gions. While regions are certainly the most important spatial entities (real-world objects are
three-dimensional extended regions) points are the most basic spatial entities and particu-
larly important for representing directions. All qualitative direction calculi for one or higher
dimensional spatial entities are essentially based on qualitative directions over points: line
segments can be represented by the two end-points, lines by any two of their points, and di-
rection relations between extended regions depend on certain points of the regions such as
the leftmost point or the center of a region. Sometimes regions can even be approximated as
points, in particular if the size of the regions is small compared to their distance. Therefore,
developing a sophisticated qualitative direction calculus over points and exploring its limits
is an essential part of qualitative spatial representation and reasoning.
?? National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability
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Fig. 1. Cone-based and projection-based qualitative direction calculi [4]

2 Representing Qualitative Direction

The direction between two spatial entities requires to specify either a reference point or a
reference direction with respect to which the direction is measured, i.e., direction is essen-
tially a ternary relation. In this paper we consider directions with respect to a given reference
direction, i.e., we consider absolute and global directions. Under certain conditions relative
directions can be transformed into absolute directions and vice versa, so this restriction is not
as strong as it seems.

The direction of a point q with respect to another point p can be specified by using the
exact angle between the vector pq and the vector which points from p to the given refer-
ence direction, where the angle is between 0◦ and 360◦. If the exact angle is not known or
not important, which is the case whenever humans without a tool for the exact measurement
of directions are involved, then it is better to have a qualitative representation of direction.
The goal of a qualitative representation of the direction between points in two-dimensional
space is to specify a limited number of relations such that each relation covers a part of the
360◦ range and all relations taken together cover the 360◦ range completely. If in addition
the relations do not overlap, they form a jointly exhaustive and pairwise disjoint (JEPD) set
of relations, called basic relations. The number of basic relations and the way in which they
partition the 360◦ range depends on the application and on the required level of granularity.
Since the range which has to be covered by the qualitative relations is fixed and well-defined,
direction is perfectly suited for calculi with a varying level of granularity. If the given direc-
tion information is less precise than that of the basic relations, then the union of different
possible basic relations can be used. Complete lack of information can be expressed as the
union of all basic relations. Thus, a full set of qualitative relations contains all basic relations
B and all possible unions of the basic relations 2B. An essential requirement for applying
standard qualitative reasoning algorithms is that the set of relations is closed under union,
intersection, converse, and composition.

Frank [4] distinguished two kinds of calculi for representing absolute directions (see
Fig. 1). The projection-based approach is based on two orthogonal axes where the four main
directions north, east, south, and west are located on, and on the four sectors bounded by
the axes which correspond to the directions northeast, southeast, southwest, and northwest.
The cone-based approach is based on four axes which bound eight equally sized sectors
corresponding to the eight above mentioned directions. The computational properties of the
projection-based approach, also known as the cardinal algebra, has been analyzed by Ligozat
[6]. Reasoning over the full cardinal algebra is NP-complete, while there exists a maximal
tractable subset which contains all basic relations. For both approaches the granularity of the
relations is fixed, which strongly limits their applicability.

3 The Star Calculus

In this section we introduce the Star calculus for representing and reasoning about qualitative
directions between points in a two-dimensional space with respect to a given reference di-
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Fig. 2. Two Star calculi: (a) STAR8(0), (b) STAR4[30, 60, 120, 150](30)

rection.3 The Star calculus is a generalization of several existing calculi such as the different
kinds of calculi which Frank distinguished. We give a general specification of a qualitative
direction calculus which allows us to define basic relations on an arbitrary fixed level of
granularity. We define converse and composition in a general way and prove general com-
putational properties. Using the Star calculus, it is possible to specify qualitative direction
relations between two points with respect to a given reference direction. For each point, the
Star calculus divides the plane into several zones which form the different relations.

Definition 1 (Star calculus). Given a two dimensional planeP and a global reference direc-
tion in P . For each point p ∈ P the Star calculus STARm[δ1, . . . , δm](δ1) where 0 ≤ δ1 <
. . . < δm < 360 and δm − δ1 < 180 specifies m lines which intersect at p while forming
the angles δj with the reference direction for each 1 ≤ j ≤ m. For each point p ∈ P these
m lines partition P into 4m + 1 disjoint zones with respect to the reference direction (see
Fig. 2): 2m half lines resulting from the m lines, 2m two-dimensional sectors each bound by
two half lines, and the point p. A unique identifier is assigned to each zone as follows:

– The m lines are split into 2m half-lines which point from p to the directions δj and
(δj+180) mod 360 for 1 ≤ j ≤ m. We assign the unique identifiers 0p, 2p, . . . , (4m−2)p

in clockwise order starting with the angle δ1.
– The 2m half lines and the point p bound 2m sectors. We assign these sectors the unique

identifiers 1p, 3p, . . . , (4m − 1)p in clockwise order starting with the sector bound by p
and the half lines 0p and 2p.

Using these zones, 4m + 1 basic Star relations can be defined as follows:

1. the identity relation id ≡ {(p, p)|p ∈ P}, and
2. the relations I ≡ {(p, q)|p, q ∈ P and q ∈ Ip}, ∀I ∈ {0, 1, 2, . . . , 4m − 1}
3. we denote the relations {1, 3, 5, ...} as odd relations, and {0, 2, 4, ...} as even relations

A Star calculus is the power set of all basic Star relations, i.e., it contains 24m+1 different
relations. The set of 4m + 1 basic relations of a Star calculus A is denoted bas(A). A Star
calculus is called regular, if all 2m zones have equal size, i.e., if the angle between consecu-
tive lines is 180/m degrees, and can be written as STARm(δi). The class of all Star calculi
based on m lines is denoted STARm.

The union of different basic relations can be written as a set of basic relations, e.g., the union
of the basic relations 2, 5, and 6 is written as {2, 5, 6}. The union of all basic relations, the
universal relation, is written as {∗}.

3 The Star calculus was introduced in a slightly different form by Mitra [8], but in this paper we provide
a rigorous formal definition and analysis of the calculus which results in surprisingly new insights.



Definition 2 (range). If a union of relations covers a complete range of consecutive basic
relations, e.g. {2, 3, 4, 5, 6}, we can write this as the range [2 − 6]. If the union contains the
identity relation, we write + instead of −, i.e., {2, 3, 4, 5, 6, id} can be written as the range
[2 + 6]. A range is always written in clockwise order, i.e., [2 − 6] is different from [6 − 2]
(which represents {6, . . . , 4m − 1, 0, 1, 2}). An open range ]R − S[ or ]R + S[ excludes the
first and the last relation R and S from the range if they correspond to half-lines, i.e., if they
are even numbers. E.g., ]2 − 6[ = ]1− 5[ = [1 − 5].

Let us specify the usual operators for the Star relations. Union and intersection of Star rela-
tions are the normal set-theoretic operators. Converse and composition depend on the seman-
tics of the relations. Although a Star calculus can have sectors of different sizes, each relation
has a definite converse relation because of the point symmetry of the lines intersecting at p.

Proposition 1 (converse). Given a Star calculus A ∈ STARm. The converse of the relation
id is id. The converse R^ of a basic relation R ∈ bas(A) with 0 ≤ R ≤ 4m − 1 is given
by (R + 2m) mod 4m. The converse of a union of basic relations is equal to the union of all
converse basic relations. The converse of a range [R ± S] results in [R^ ± S^]. Analogous
for open ranges.

The notion of ranges is particularly helpful for specifying compositions of basic relations
since these mostly cover consecutive relations. The composition operator is usually defined
as x(R ◦ S)y =def ∃z : xRz ∧ zSy.

Proposition 2 (composition). Given a Star calculus A ∈ STARm. Composition R ◦ S of
two basic relations R, S ∈ bas(A) can be computed as follows:

1. If R = id, then R ◦ S = S, 2. If S = id, then R ◦ S = R,
3. If R = S, then R ◦ S = R, 4. If R = S^ and R odd, then R ◦ S = {∗},
5. If R = S^ and R even, then R ◦ S = {R, S, id},
6. Let X be the shortest distance between R and S, i.e., (R + X) mod 4m = S.

If X < 2m, then R ◦ S =]R − S[. If X > 2m, then R ◦ S =]S − R[.

It follows from the above rules that R ◦ S = S ◦ R. Please note that the relations resulting
from the last composition rule never contain boundary relations corresponding to half lines.
This is because id is not contained in these relations, so either with R or with S one is always
forced to leave the bounding lines. As usual, the composition of unions of basic relations is
the union of the composition of each involved basic relation. It is surprising that the angles
of the lines do not seem to be important, but we will see later that this is not always the case.

4 Reasoning over the Star calculus
Qualitative spatial reasoning consists of several different reasoning problems such as deriving
unknown relations from a given set of spatial constraints or eliminating all impossible labels
from given spatial constraints in order to obtain the minimal representation. Most of these
problems can be reduced to the consistency problem CSPSAT(S) where S ⊆ 2B and 2B is
closed under the usual operators [10]:

Instance: Given a set V of n variables over a domain D and a finite set Θ of binary con-
straints xRy where R ∈ S and x, y ∈ V .

Question: Is there an instantiation of all n variables in Θ with values from D which satisfies
all constraints?

For Star calculi, the domain D of variables is the set of all points p ∈ P .
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Fig. 3. Constructing the exact position of points with respect to p and q using lines with fixed angles

Theorem 1. Given a Star calculus A ∈ STARm. If m = 1, then CSPSAT(A) is tractable.
If m ≥ 2, then CSPSAT(A) is NP-complete.

Proof Sketch. Let m = 1. We define a x-y-coordinate system in P where axis x is parallel
to the line given by A and axis y is orthogonal to x. If we consider p ∈ P the center of
the coordinate system, then the five zones defined by A with respect to p can be projected
onto the two axes and be described as pairs of point algebra relations in the following way
{{>}, {=}}, {{<=>}, {<}}, {{<}, {=}}, {{<=>}, {>}}, and {{=}, {=}}, where the
first point relation specifies the projection onto the x axis and the second point relation the
projection onto the y axis. This carries over to the Star relations which can be described in
the same way. Any set of constraints Θ over A can be divided into two sets Θx and Θy of
point algebra constraints as described above. First Θy is solved while eliminating all unforced
equalities. Then all constraints of Θx referring to variables which are not equal in the solution
of Θy are eliminated, resulting in Θ′

x. Θ is consistent iff Θy and Θ′
x are both consistent. For

m = 2, NP-completeness follows from the NP-completeness result by Ligozat [6]. This
carries over to all m > 2.

The next step is usually to study the computational properties of the basic relations, and,
if reasoning over them is tractable, identify maximal tractable subsets. Before doing so, we
first have a closer look at the expressiveness of the Star relations. As we will see, they are
amazingly powerful as they actually allow us to express geometrical statements. Assume
we have a Star calculus with three lines as show in Figure 3(a) and the three constraints
p{0}q, q{4}r, p{2}r. If the constraints are consistent, then for all consistent instantiations of
p and q, the instantiation of r is exactly determined as the intersection of the two lines 2p and
4q (see Figure 3(b)). This is an immediate consequence of Euclid’s AAS and ASA theorems
as the even Star relations have fixed angles. If we have two more constraints q{2}s, r{0}s,
then the position of s is also exactly determined with respect to the instantiations of p and
q, although the direct relation between p and s can only be expressed as p{1}s which is a
two-dimensional sector. In the same way we can continue and form an infinite grid of points
which are all exactly determined with respect to the instantiations of two points p and q (see
Figure 3(c)). If more than three lines are available, it is possible to exactly determine an
infinite number of points between two other points of the grid (see Figure 3(d)), i.e., we can
get coordinate system with rational values. This demonstrates that Star calculi with three or
more lines are so expressive that it is even possible to define coordinate systems, an essentially
quantitative entity. This fact is summarized in the following proposition.

Proposition 3 (coordinate systems based on Star relations). Given a Star calculus A ∈
STARm and two points p, q ∈ P . If m = 3, it is possible to define a coordinate system
with integer values with respect to two points p and q and the three given angles of A (see
Figure 3(c)). If m > 3, it is possible to define a coordinate system with rational values with
respect to two points p and q and the given angles of A. (see Figure 3(d)).
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Fig. 4. (a) Construction for the proof of Theorem 2 (b) The Star calculi A and B of example 1

Thus, by using a Star calculus with more than two lines, the boundary between qualitative and
quantitative representation has disappeared. The quantitative aspect of a coordinate system
can be emulated by the Star calculus.

Since the exact positions of points which are enforced by the coordinate system cannot be
determined by computing composition and intersection of other Star relations,it is quite ob-
vious that this expressive power cannot be captured by qualitative reasoning methods based
only on relational operations. A commonly used method of this kind is that of enforcing
k-consistency [7]. A set of constraints Θ is called k-consistent, iff for each consistent instan-
tiation of k − 1 variables of Θ there is also a consistent instantiation of any k-th variable of
Θ. The method of enforcing k-consistency consists in eliminating all basic relations of all
tuples of k variables that contradict the results of applying all possible compositions within
the tuple. Enforcing 3-consistency (also known as the path-consistency method), for instance,
is done by computing for all triples of variables x, y, z of a set of constraints all entailments
Rxz := Rxz ∩ (Rxy ◦Ryz) until a fixed point is reached. If the empty relation occurs, the set
is inconsistent. For k ≥ 3 composition of relations of arity k − 1 must be defined and used.

Theorem 2. Given a Star calculus A ∈ STARm with m ≥ 3 and a constant k ≥ 2. It is not
possible to decide CSPSAT(bas(A)) by enforcing k-consistency.

Proof Sketch. Let m = 3. We use a Star calculus such as that in Fig. 4(a) (note that the lines
could have arbitrary angles) and emulate a coordinate system with respect to two points u and
v, i.e., we assume u has coordinate (0, 0) and v has coordinate (1, 0). We construct a point
s with coordinate (2k, 2) by using a sequence of triangles with length 1. We further define a
point r with coordinate (2k + 1, 0) by using a sequence of triangles of length 1 followed by
a sequence of triangles of length k (see Fig. 4(a)). Let Θ be the set of all constraints between
all points involved in the construction where each constraint gives the exact basic relation
between the points except for the relation between r and s which we set to r{0}s. In order to
determine that Θ is inconsistent, it is necessary to map the points to a coordinate system or
to count the relations which is impossible by trying to enforce k-consistency. Note that more
than k variables are necessary in order to construct larger triangles of length k. For m > 3 an
inconsistent set can be constructed in a similar way by making use of intermediate points on
rational coordinates as shown in Figure 3(c).

Note that the qualitative Star relations also depend on other geometrical laws such as the
theorems of intersecting lines. The following example gives further indication that qualitative
reasoning methods cannot be complete for Star calculi with m ≥ 3.

Example 1. A = STAR4[0, 45, 90, 135](0) and B = STAR4[0, 45, 90, 110](0). Both cal-
culi define 17 basic relations. Their composition and converse tables are identical. Let Θ be
the set of constraints A{0}B, A{12}C, C{2}B, C{0}D, B{12}D and let ϕ be the constraint
A{14}D (see Figure 4(b)). For both calculi Θ is consistent. Θ ∪ ϕ is consistent for A, but
inconsistent for B.
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4(0) obtained from STAR4(0).

Despite the negative result of Theorem 2, CSPSAT(bas(A)) is nevertheless tractable. It
is just not possible to decide it with qualitative reasoning methods only, they only give ap-
proximate solutions to the consistency problem. It could be solved using quantitative methods
such as expressing the constraints as a system of inequalities resulting from the algebraic se-
mantics of the relations, or by combining qualitative reasoning methods with a coordinate
system where intermediate results are entered, but this is outside the focus of this paper.

Since we are dealing with qualitative spatial representation and reasoning in this paper, we
will in the following try to revise the Star calculus in a way which enables purely qualitative
reasoning methods. In doing so, we will try to meet two important requirements for efficient
qualitative reasoning over a particular calculus, namely, that tractable qualitative reasoning
methods are sufficient for the set of basic relations of the calculus [9] and that all basic
relations are contained in the tractable subsets of the calculus [11]. Since both requirements
are not supported by the Star calculus, we have to define a revised version of the Star calculus
which enables purely qualitative direction relations on arbitrary levels of granularity.

5 A Purely Qualitative Direction Calculus
Responsible for the high expressiveness of the Star calculus and for its ability to emulate
a metric representation are the basic relations corresponding to the lines, i.e., the “one-
dimensional relations”. If these were eliminated or subsumed by new relations, it could be
possible to obtain a sub-calculus of the Star calculus which allows for efficient qualitative
reasoning. Removing the one-dimensional relations or adding them to both neighboring rela-
tions leads to relations which are not JEPD anymore. So we have to combine them with only
one neighboring relation in order to obtain new basic relations. Since the resulting basic re-
lations should be closed under converse, we have to combine them with either the preceding
or the succeeding relations in clockwise order. We choose the first.

Definition 3 (revised Star calculus).Given a Star calculus A ∈ STARm for some m ≥ 2
and its set of basic relations bas(A) = {0, 1, . . . , 4m − 1, id}. The revised Star calculus
Ar is the power set of the jointly exhaustive and pairwise disjoint set of relations R =
{R0, R1, . . . , R2m−1, id} which is obtained from bas(A) in the following way (see Figure 5):
Ri := {2i + 1, 2i + 2} for 0 ≤ i ≤ 2m − 2 and R2m−1 := {4m− 1, 0}.

The revised Star calculus consists of 2m + 1 basic relations. The converse of a basic relation
Ri can be computed by Ri

^ = Rj where j = i + m mod 2m. While it is quite easy to guar-
antee that a system of relations is closed under the converse operator, it is much more difficult
to show this for the composition operator. For the revised Star calculus the last composition
rule of Prop. 2 is problematic, according to which the result of the composition of two basic
relations is an open range. Therefore, the one-dimensional relations which are added to form
basic relations of the revised Star calculus are removed again when computing composition,
i.e., the revised Star calculus is not closed under composition. In order to fix this problem,
we use weak composition [3], which is defined as the minimal relation which contains the
actual composition, i.e., R ◦w S = {T |T ∩ (R ◦ S) 6= ∅ and T ∈ bas(A)}. It is clear that
the revised Star calculus is closed under converse, intersection and weak composition.



Proposition 4 (weak composition). Given a revised Star calculus A ∈ STARr
m. The weak

composition R◦w S of two basic relations R, S ∈ bas(A) can be computed as follows (again
we have R ◦w S = S ◦w R):

1. If R = id, then R ◦w S = S, 2. If S = id, then R ◦w S = R,
3. If R = S, then R ◦w S = R, 4. If R = S^, then R ◦w S = {∗},
5. Let X be the shortest distance between R and S, i.e., (R + X) mod 2m = S.

If X < m, then R ◦w S = [R − S]. If X > m, then R ◦w S = [S − R].

For revised Star calculi weak composition differs from actual composition only for points
located on the boundary of sectors of other points. If we can prove that for any consistent set
of constraints, there exists a solution where no point lies on a sector boundary of other points,
then weak composition can be used instead of composition for determining consistency.

Theorem 3. Let Θ be a consistent set of constraints over a revised Star calculus A. Then
there is an instantiation of all variables in Θ with points of P such that no point is located
on the boundary of a sector defined by another point.

Proof Sketch. Let θ be a consistent instantiation of Θ. We can transform θ to an instantiation
θ′ such that no two points in θ′ are located on each others sector bounding lines. We first
compute the set of constraints Θθ over bas(A) which hold between each pair of points in θ.
Since Θθ is consistent, each point of θ lies in the intersection of the corresponding sectors of
all other points. If the intersection forms an extended region and a point p is located at the
boundary of it, then p is moved by ε > 0 into the interior of the intersection. If the intersection
is a line (segment), then there must be at least two points which are located on each others
sector bounding line. If only two points are on the line, one can be moved by ε > 0 into the
interior of the others sector. If more than two points are on the line, the point which does
not lie between two other points is moved first. In all cases, no two resulting points of θ′ are
located on each others bounding lines while all constraints are still satisfied.

In order to determine tractable subsets of the revised Star calculus (the NP-completeness
results of the Star calculus also hold for the revised calculus), we can make use of Helly’s
theorem [1]: “Let F be a finite family of at least n+1 convex sets in Rn such that every n+1
sets in F have a point in common. Then all the sets in F have a point in common.” Applied
to our case of two-dimensional space, it is necessary that any three convex sets have a point
in common. Since any basic relation of the revised Star calculus (note: also any basic relation
of the Star calculus!) is a convex set, any 4-consistent set of constraints Θ over the basic
relations is consistent.4 This is because of the definition of 4-consistency which states that
for any consistent triple of variables of Θ a consistent instantiation of any fourth variable can
be found. In this case the fourth point must be located in the intersection of the three sectors
determined by the relations between each of the three points of the triple and the fourth point,
which is the requirement for applying Helly’s theorem. This holds for all “convex relations”.

Definition 4 (convex relations). Let A be a (revised) Star calculus. The set of convex re-
lations CA consists of {∗} and of all relations of A which correspond to a range of con-
secutive basic relations which does not contain a basic relation and its converse: CA =
{[R ± S] |R, S ∈ bas(A), R^, S^ 6∈ [R ± S]} ∪ {∗}

Theorem 4. Any 4-consistent set of constraints Θ over the set of convex relations CA of a
(revised) Star calculus A is consistent.

4 This is true for the Star calculus and for the revised Star calculus. In the following we write “(revised)
Star calculus” if something applies to the Star calculus and to the revised Star calculus.



Since this theorem results from Helly’s theorem, it is possible to compute an instantiation of
Θ without backtracking by starting with three points and sequentially adding the other points
in arbitrary order. For the Star calculus, this also applies to pre-convex relations (relations
whose topological closure are convex relations) [5], while this concept is not applicable to
the revised Star calculus. Unfortunately, this nice theorem is hardly useful for (revised) Star
calculi A ∈ STAR(r)

m with m ≥ 3. Not because it appears to contradict Theorem 2 (which it
doesn’t), but because 4-consistent sets are very rare and because it is not possible to enforce
4-consistency on every set of constraints over the (revised) Star relations, i.e., there are con-
sistent sets of constraints for which there exists no corresponding 4-consistent set. Even for a
revised Star calculus with m = 3, there are always consistent sets of constraints where not all
consistent instantiations of three variables can be extended to a fourth variable: Consider the
set of constraints involving the variables p, q, r, s in Figure 3(c). The set is clearly consistent,
but when assigning p = (0, 0), q = (0, 1), and s = (2, 1) it is not possible to find a consistent
instantiation for r, hence the set is not 4-consistent and cannot be made 4-consistent. In any
case, we are mainly interested in consistency, i.e., whether at least one consistent instantiation
exists. 4-consistency is too restrictive for that purpose. It turns out that the path-consistency
method (also known as enforcing 3-consistency, see Section 4) is sufficient in some cases.
Theorem 5. Given a revised Star calculus A ∈ STARr

m with m ≤ 3. Consistency of a set
of constraints Θ over bas(A) can be decided by the path-consistency method.
Proof Sketch. Proof by induction over the number of variables n of Θ. It clearly holds for
n = 3. Assume (a) that it holds for n = k. Given a path-consistent set Θ with n = k + 1
variables V = {v1, . . . , vk+1}. The set Θ′ ⊂ Θ contains all constraints over the variables
V \ {vk+1}, it is path-consistent and by assumption consistent. Θ is consistent if there is
an instantiation θ′ of Θ′ such that all sectors of the points in θ′ which are supposed to con-
tain θ′(vk+1) have a non-empty intersection. Assume (b) that there is no such θ′. Because
of Helly’s theorem there must then be three variables vi, vj , vl such that the corresponding
sectors of θ′(vi), θ

′(vj), θ
′(vl) do not have a common intersection. By a case analysis and

a proof that the cases are the same for all possible angles of the given lines, we can show
that for a Star calculus with m ≤ 3 every path-consistent set of atomic constraints over four
variables is always consistent, and, furthermore, that there is a subset of three variables such
that for each consistant instantiation of the subset, there is always a consistent instantiation
of the fourth variable. This fact (it is not because of assumption (a)) contradicts assumption
(b). Therefore, there is a θ′ which can be extended to a consistent instantiation θ of Θ.

6 Applications
All real-world objects are three-dimensional extended entities rather than points, so many ap-
plications of qualitative spatial direction relations require calculi developed for more complex
spatial entities than points. For these calculi, the Star calculus will definitely be an important
basis. Nevertheless, there are also quite some applications where direction relations between
points are necessary. Whenever the distance between two extended spatial entities is large
relative to their extension, it is more convenient to treat them as point-like entities. Naviga-
tion tasks consider almost always point-like entities which have to be navigated from one
location to another. For vehicles with automatic navigation devices it is possible to follow an
exactly specified direction. When using “normal” vehicles like a car or when hiking, then it
is not possible to follow an exact direction. Depending on the navigation tool which is avail-
able (if any), a direction can only be specified within a certain angular range. This is where
the Star calculus turns out to be useful. It allows to use the finest granulation which can be
distinguished by the user. Navigation assistance such as a route description can then be given
in terms of Star relations, e.g., “go towards direction R1 until landmark A can be seen in



direction R2, then turn to direction R3 and go until...” As briefly described in this example,
Star calculi can also be used to locate positions relative to the directions of landmarks, which
is one possible qualitative spatial reasoning task. This kind of navigation and reasoning is
particularly useful in the open field. A similar task is to reason about positions and routes
relative to (cell phone) transmitters. The cells formed by a transmitter cover zones with dif-
ferent angles which can be exactly represented by a Star calculus. Another application is the
automatic recognition and interpretation of route sketches. Depending on the precision with
which this recognition should be obtained, the granularity of the Star calculus can be chosen.
For all these applications revised Star calculi can be used instead of full Star calculi.

7 Discussion
Qualitative directions between points are at the heart of qualitative spatial representation and
reasoning. Directions are one of the most important spatial aspect and directions between
points are the basis for any calculus over more complex entities. Moreover, there is also a
number of applications where directions are required between points. In this paper we pro-
posed a class of direction calculi, the Star calculi, which are a generalization of several exist-
ing calculi for representing and reasoning about the qualitative direction between points in a
plane. Although it is an important property of qualitative representations that the qualitative
relations can be chosen on a level of granularity which is useful for a certain application,
previous approaches did not offer the possibility of selecting basic relations on the desired
level of granularity. Star calculi offer this possibility and they do so in an unrestricted way.
Basic direction relations can be chosen on an arbitrary level of granularity. Star calculi can
therefore be adopted to applications in an optimal way. We give general rules for comput-
ing composition and converse for the whole class of calculi. This enables us to apply the
well-known qualitative reasoning methods. It turns out that Star calculi are so powerful that
it is even possible to emulate coordinate systems. The disadvantage of this expressiveness is
that qualitative reasoning methods cannot be complete for most Star calculi, but only provide
approximate solutions to the reasoning problems. Developing complete reasoning algorithms
is a matter of future research. We proposed a less expressive version, the revised Star calculi
which do not contain relations corresponding to lines but only to two-dimensional sectors. We
analyzed the computational properties and identified tractable subsets for certain classes of
the revised calculus. Future work on revised Star calculi should analyze other classes, identify
maximal tractable subsets and develop algorithms for finding consistent instantiations.
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