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Abstract 

Temporal interval algebra has generated strong interest for both theoretical and practical reasons. All its maximal tractable subalgebras 

(MTS) have been identified. Now is the time to make transition toward their practical applications. In this work we have proposed a 

formalism on how to classify an input temporal network in one of these MTSs, or decide its intractability. We have also proposed a linear 

algorithm for checking consistency when the input belongs to one of the seventeen MTSs, and for finding out the constraints responsible 

for inconsistency in case the network is unsatisfiable. 

 

1. Introduction 
 

Interval Algebra (IA) is possibly the most studied algebra related to automated reasoning, for its theoretical elegance and 

feasible practical applications in scheduling, natural language engineering, etc. Some of the hallmark works in the area are: 

Vilain and Kautz‟s [1986] proof of NP-hardness of IA; Nebel and Bürckert‟s [1995] detecting the first maximal tractable 

algebra, namely, the ORD-Horn algebra (OH); Ligozat‟s [1996] reinterpretation of that algebra in a canonical and 

geometrical representation space; and Krokhin et al.‟s [2003] discovery of the exhaustive set of eighteen non-trivial Maximal 

Tractable Subalgebras (MTS).  Sometimes we will use the word “algebra” or “subalgebra” synonymously with MTS. 

 A motivation behind studying the maximal tractable algebras is that an application domain may fall into one of these 

classes, or may be restricted to one of these classes making temporal reasoning more practical for that application.  Given 

such an expectation it is only reasonable to ask, how can we identify an input system of interval constraints whether it 

belongs to any of the MTSs? In this paper we develop a classification structure of the MTSs and we propose an algorithm for 

identifying an input network if it belongs to any particular MTS. We use a novel geometrical interpretation of the MTSs for 

this purpose. Although, polynomial-time Path Consistency algorithm (PC) is complete for any MTS, we show that each 

MTS, other than the OH, has a similar behavior as the point-based reasoning problem (van Beek, 1992, Drakengren et al., 

1997), thus, enabling one to apply a more efficient cycle-checking algorithm than the PC. This new algorithm also has an 

extension for detecting culprit constraints when the input is inconsistent. Culprit detection is equivalent to the diagnosis as a 

task.  

 In the following section we provide some background information on IA for uninitiated readers. Subsequently we 

will show the geometrical interpretation of the MTSs in Ligozat‟s canonical space. We will then introduce the classification 

algorithm for an arbitrary interval constraint network. Lastly we provide the scheme for checking consistency of some 

Qualitative Temporal Constraint Networks (QTCNs) belonging to any of the MTSs, other than the OH. 

 

2. Background on Temporal Reasoning 
 

Qualitative reasoning with intervals involves thirteen atomic relations, B: {before(p), after(p
-1

), meets(m), met-by(m
-1

), 

overlaps(o), overlapped-by(o
-1

), starts(s), started-by(s
-1

), during(d), contains(d
-1

), finishes(f), finished-by 

(f 
-1

), equal(eq)}, between any pair of intervals [Allen, 1983]. The corresponding relational algebra is comprised of the 

power set P(B), the power set of B, which is closed under the traditional reasoning operators like composition, converse, set 

union, and set intersection.  

 

Definition 1: A Qualitative Temporal Constraint Network (QTCN) is a graph G=(V, E), where each node denotes an interval, 

and each directed labeled edge (v1, v2, R)  E represents disjunctive constraint R between v1 and v2, where R  P(B). Two 

special relations are tautology (disjunction of all thirteen atomic relations or no constraint), and Ø (empty relation leading to 

inconsistency). Reasoning may be restricted to a subset , where R    P(B), in case  is closed under composition, 

converse and intersection, thus, forming a -subalgebra. 

Definition 2: Qualitative Temporal Reasoning Problem (QTR( )) is to answer, given a QTCN Q in which only relations 

form  occur, if a satisfiable assignment for each of the nodes exists, such that all the constraints R in Q are satisfied. For  



 

  

= P(B), the full algebra is called the Interval Algebra or IA. The reasoning problem over full IA is known to be NP-hard 

(Vilain and Kautz, 1986). For   P(B), restricted reasoning is interesting if such a -subalgebra is tractable.  

Definition 3 (Maximal tractable subalgebra, or MTS): A tractable subalgebra  is maximal if it has no super-algebra ‟ that 

is tractable, other than the full algebra P(B). 

Eighteen MTSs for the IA have been found such that the list is exhaustive – no other MTS of IA exists [Theorem 2.3 of 

Krokhin et al. 2003]. This is true at least from linguistic perspective, i.e., we do not know if the graph structure of temporal 

network may provide more MTS. The list includes ORD-Horn MTS, which is the only MTS that includes all thirteen atomic 

relations in B. We call the set of MTSs other than OH as the Krokhin-MTS. 

Ligozat [1996] developed a canonical way of representing time interval relations geometrically, which appears as a 

useful tool for understanding the MTSs (Fig 1): An intervals is placed as a point in a 2D-Cartesian space, where the starting 

point of the interval is X-coordinate, the ending point is Y-coordinate, and the valid space is Y>X, forbidding the interval 

ending point to occur before the starting point. For instance, if interval A „precedes‟ interval B, then A will be located as a 

point anywhere in the angular open space „p‟ while B is at the position designated as „ .‟ The topological relationships 

between the regions corresponding to the atomic relations in this space constitute a lattice (Fig 1b, “p” as inferior (0,0) and 

“p
-1

” as superior (4,4)).  
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Figure 1a and 1b: Canonical representation of interval relations 

 

We need the following definitions from Ligozat [1996]. 

Definition 4 (Convex relation): A convex relation is a closed lattice-interval on the lattice in Fig 1b.  

Example 1: An interval between (0,2) and (2,4) in the lattice, which is a disjunctive set {o, s, d, f 
-1

, , f, d
-1

, s
-1

, o
-1

} is a 

convex relation.  

Example 2: An interval from (0,3) to (2,3): { f
-1

, , f}. 

Definition 5 (Convex closure Cl(r)): Convex closure of a relation p is the disjunction of all atomic relations within the 

minimum lattice-interval over the lattice enclosing r. 

Example 3: Cl({o, d
-1

, }) = {o,  f
-1

, d 
-1

, s, , s
-1

}, or the range (0,2) through (1,4). 

Definition 6 (Dimension dim(l)): For an atomic relation b, dim(b) is the dimension of b in the Canonical representation in Fig 

1a. For any relation r, dim(r) = max{dim(b) | b  r}. 

Example 4: “p” is adjacent to “m,” dim(p)=2 and dim(m)=1. 

Definition 7 (Preconvex relation): A preconvex relation l is such that dim(cl(l) \ l) < dim(l).  In other words, missing atomic 

relations from cl(l) are of relatively lower dimensions.  

Example 5: {o, s, d, d
-1

, o
-1

} is a preconvex relation, where the missing relations are ( f, , f
-1

, s
-1

) in order to form the 

respective convex closure. The convex closure being {o, s, d, f, , f
-1

, d
-1

, s
-1

, o
-1

} with the range from (0,2) to (2, 4) on the 

lattice. 

Example 6: { f
-1

, f} is another preconvex relation. Missing lower dimensional relation is ( ) from the convex closure. The 

Cl({ f
-1

, f}) is { f
-1

, , f} with the range from (0, 3) to (2, 3). 

ORD-Horn relations are the same as the preconvex relations [Ligozat, 1996]. Set of ORD-Horn relations form a MTS (OH) 

of IA. 

 

3. Geometrical representation of MTSs 

 
The following Figures (Fig. 2(a), (b), (c), (d)) visualize the seventeen MTSs. 
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Figure 2a: Lattice representation of MTSs Alj 1-8 

 

As described in the last section Ligozat [1996] provided the geometrical representation of the OH MTS. In this work we 

provide similar representation of the other seventeen non-trivial MTSs on the same canonical lattice over the atomic 

relations. Each MTS (except Alj[17]) M splits the lattice into up to four partitions (for the lack of any better term we will call 

them as “sublattices,” although mathematically that is not necessarily accurate): sublattices L1, possibly L2 and L3, and a set 

of “free” atomic relations F (explained shortly, see Fig. 2a). In each sublattice we call a specific atomic relation as “pivot,” 

pvi (i=1, 2, and possibly 3). Any disjunctive relation R  M has the following property: if R  Li  Ø, then pvi  R, i.e., the 

corresponding pivot to the lattice must be in R. Any atomic relation belonging to the “free” set F (not in any sublattice) may 

be in R. Alj[17] has the whole lattice as the only sublattice and  as the pivot. Presence of respective pivots is imperative for 

a relation to be in an MTS. Sublattices and pivots characterize each MTS. The left column in the figures (Fig 2) contains the 

lattice representation and the right column shows the original Krokhin et al.‟s definition along with the counting of the 

algebra elements. 
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Figure 2b: Lattice representation of MTSs Alj 9-14 

 

The lattice representation shows the corresponding sublattices enclosed by dashed lines, and the pivots as dark circles. Each 

algebra in Fig 2a (Alj 1 through 8) has 
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Figure 2c: Lattice representation of MTSs Alj 15-16 

 

one dimensional pivots (s
±1

 and f
±1

), and  as the only free atom, in Fig 2b (Alj 9–14) has two-dimensional pivots and three 

free atoms each, in Fig 2c (Alj 15-16) has three lattices, lower dimensional pivots (s
±1

, f
±1

 and ) and no free atom, and in Fig 

2d the trivial “equality” Alj[17] has no free atom, the whole lattice is the only sublattice and the pivot is the . Note that OH 

cannot be visualized with a static depiction over the lattice as these seventeen MTSs could be. 

 



 

  

 

 

Alj[17] or A 

{r | r ≠ Ø  ( )  r 
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Figure 2d: Lattice representation of the MTS Alj 17 

 

 We will call OH algebra as Alj[18], which has no static geometrical representation as those of the Krokhin algebras. 

 

4. MTS classification 

 

As one can clearly see from the above discussion - there are only a few lattices and pivots that together comprise the 

seventeen MTSs. In Table 1 we tabulate the algebras according to these criteria. The table clearly visualizes the clustering of 

the algebras. Algebras appearing in a cluster have many similar properties, e.g., the number of elements.  
Sub-

lattice 

struct 

 
Pivots 

 

         

(s)(s-1) Alj[1] Alj[3] Alj[5] Alj[7]      

(f)(f-1) Alj[2] Alj[4] Alj[6] Alj[8]      

(p)(p-1)     Alj[9] Alj[12]    

(d)(d-1)     Alj[10] Alj[13]    

(o)(o-1)     Alj[11] Alj[14]    

(f)( ) 

(f-1)  

      Alj[15]   

(s)( ) 

(s-1) 

       Alj[16]  

( )         Alj[17] 

Table 1: Algebra clusters 

 

 A given QTCN C belongs to an algebra A if each constraint R (R  C) belongs to A. A QTCN C may belong to 

multiple MTSs, or none - in case the input is intractable. For this reason we initially presume that C belongs to all the 

algebras (step 1 of the algorithm in Fig 3).  For any atomic relation r to belong to a relation R in an algebra, the algebra 

demands a strict inclusion of the corresponding pivot pv in the relation R unless r is a free atom (in F). This information led 

us to develop a 13x13 table (AljTable as Table 2) over the set of atomic relations (B). The rows indicate the atomic relations 

(r), columns indicate the absence of the pivot (!pv), and an entry in the AljTable indicates the algebras that the relation R may 

not belong to if r  R and pv  R. (See example 7 in section 5). Only first seven of the thirteen columns are shown in the 

table 2, the rest of the entries can be derived from the symmetry. For example, Alj[o][!f 
-1

] = Alj[o
-1

][!f]. 

 
 !b !m !o !s !d !f !  

b     11,14 3,5,7,16 13 6 17 
m 9,12   11,14 3,5,7,16 13 6 17 
o 9,12     3,5,7,16 13 6 17 
s 12   14   13 2,6 15,17 
d 12   14 1,5,7,16   2,4,6,15 17 
f       1,5 10   16,17 

               
f-1 9   11 3,7     16,17 
d-1 9   11 3   8 17 
s-1           4,8 15,17 
o-1       1 10 2,4,8,15 17 
m-1       1 10 2,4,8,15 17 
b-1       1 10 2,4,8,15 17 

Table 2: AljTable[][] 

 

Lines 2-5 of the algorithm FindMTSs excludes all the seventeen Krokhin-MTSs that the input QTCN C cannot belong to. A 

relation R belonging to OH algebra may not have any dimension 2 atomic relation in cl(R)\R, where cl(R) is the convex 

closure of R. Lines 6-10 checks for that. The X and Y coordinates on the lattice (Fig 1) of an atomic relation r, namely the 

r(X) and r(Y) are used for this purpose. The inverse function rel(X, Y) indicates the corresponding atomic relation on the 



 

  

lattice. If dimension 2 atomic relation is found in cl(R)\R, C does not belong to the ORD-Horn MTS, and is removed from the 

Algebras set (line 10). Finally, if C does not belong to any MTS, then C is an intractable problem (line 11). Fpr a proof of the 

intractability, see Krokhin et al.[2003]. 

Proposition 1: An entry in Table 2, AljTable[x][!y], correctly shows the respective MTS to be excluded if any relation R in a 

TCN has an atomic relation x, but not the corresponding pivot y.  

This is easy to verify from Table 1. For example, any relation R in Alj[11] may not have „p‟ (from left vertical sublattice), 

while the corresponding pivot „o‟ is absent from R (see Table 1).  

 
Theorem 1: Algorithm FindMTSs identifies a TCN C with the respective MTSs, or declares C to be intractable, in O(|C|) 

time, where |C| = the number of non-trivial relations in C (not tautology, or not Ø ). 

Proof: Algorithm utilizes the defining characteristics (proposition 1) of the MTSs. The two for-loops on lines 3 and 8 are 

bounded by constant integers. Hence, the complexity from the loop on line 2 is O(|C|). 

  

Algorithm FindMTSs 

  Input: A QTCN C 

  Returns: Find the set of algebras C belongs to, or 

“intractable” 

(1)  Initialize Algebras = {all eighteen MTSs}; 

(2)   relations R  C do { 

      // check for the  seventeen Krokhin-MTSs 

(3)        atomic relation r, p  B do 

(4)            if r  R && p  R then 

(5)                 Algebras := Algebras\ AljTable[r][!p]; 

       // check for the OH MTS 

(6)      (lowX, lowY) := Min {r(X), r(Y) | r  R }; 

(7)     (highX, highY) := Max {r(X), r(Y) | r  R }; 

          // computed cl(R),  the convex closure of R 

(8)      for (X:=lowX, Y:=lowY;  

                       X  highX, Y  highY; X++, Y++) do 

(9)         if rel(X, Y)  R  && dim(rel(X, Y)) = = 2 then 

         // cl(R)\R has a higher dimensional atomic relation  

(10)            Algebras := Algebras\ Alj[18]; }; 

(11)  if Algebras ==   then return “intractable”; 

Figure 3: Algorithm FindMTSs 

 

5. Consistency checking and Culprit detection for seventeen Krokhin-MTSs  
 

Drakengren et al. [1997] suggested an algorithm to solve 21 large tractable subclasses of Allen’s Interval algebra. The 

algorithm practically converts the input QTCN to a directed graph and looks for cycles to detect inconsistency. In that work, 

only nine of the algebras were identified as maximal. Those are the algebras we named Alj[i] for 1 ≤ i ≤ 8 (Fig. 2a) and the 

OH algebra (ORD-Horn [Nebel and Bürckert, 1995]). The remaining 12 algebras were actually subalgebras of Alj[j] for   9 ≤ 

j ≤ 14 mentioned in Figure 2b. For those algebras, excluding the ORD-Horn Algebra, Drakengren et al. [1997] suggested a 

polynomial time algorithm, which runs in linear time in the number of intervals input.  

 In this section, we first modify the existing algorithm to fit our terminologies, and enhance the former in two ways, 

(1) make sure that it is applied over all the Krokhin-MTSs, (2) suggest how the algorithm may be extended with new 

development toward OH MTS, so that one can com up with a complete algorithm for all MTS, and (3) store the constraints 

responsible for inconsistency (culprits) when the system is not satisfiable [Algorithm SAT-TR in Fig. 4]. To repeat, this 

algorithm can be applied to the remaining algebras (than the ones for which Drakengren et al. [1997] developed their 

algorithm for) presented in Figs. 2c and 2d, and for OH algebra. Identifying culprits is also a new direction in this line of 

work.  

 For the purpose of OH algebra, the Proposition 4.8 of Drakengren et al. [1995] may be used: 

Proposition 2. The only maximal acyclic relations (MAR) in IA are (b d o m s f), (b d o m s f
-1

), (b d
-1

 o m s f
-1

), and (b d
-1

 o 

m s
-1

 f
-1

), and their respective converses. 



 

  

An acyclic relation is such that iff all the arcs in a QTCN are labeled with a particular acyclic relation or its subsets, then the 

presence of a cycle in the QTCN indicates inconsistency. Maximal acyclic relation is maximal for all such acyclic relations in 

the usual sense of maximality.  Let us call (b d o m s f), (b d o m s f
-1

), (b d
-1

 o m s f
-1

), or (b d
-1

 o m s
-1

 f
-1

) as a Forward MAR 

or FMAR, and an inverse of an FMAR as Backward MAR or BMAR. 

 

Algorithm SAT-TR 

 Input: a temporal constraint network C over θ-subalgebra, where θ (Alj[i], 1≤i≤ 18) 

 Output: accept, or a set of culprit constraints 

(1)   let C‟ := C, Culprit := ; 

(1)   if i<18 in the input Alj[i]   // a Krohin-MTS 

(1)     let pv be the forward non-zero dimensional pivot of Alj[i]  

(3)       constraints (n1R n2)   C do 

(4)         if pv  R and pv
-1

  R do 

(5)             redirect (n1R n2)  to (n2 R
-1 

n1); 

(6)         if pv  R and pv
-1

  R do 

(7)             C‟ := C‟ – R; 

 

 

(8)     SC := the set of all nodes of all strong components in C‟; 

(9)     constraints (n1R n2)  C   do { 

(10)        if R   { } ==   do 

(11)          if n1 and  n2  SC do 

(12)              Culprit := Culprit  (n1R n2); 

(13)        if R  ==  

(14)         Culprit := Culprit  (n1R n2)}; 

(15)  if Culprit ==     return „accept‟; 

(16)  else return Culprit 

 

Figure 4: Algorithm SAT-TR 

 

           Note that a culprit edge may exist in two different strong components or may belong to the same strong component 

(line 12). This is why we collect all nodes belonging to the strong components in SC in line 8, which are the only important 

information for our purpose.  

 

Theorem 2: Algorithm SAT-TR correctly solves satisfiability for Alj[i] for 1 ≤ i ≤ 17. 

Proof: Drakengren & Jonsson‟s [1997] proof is trivially extendable for all the first 14 MTS. Alj[15] and Alj[16] has three 

sublattices each (Fig. 2c), and the proof relies on the correctness of the theorem for some of those algebras. First, we must 

assume that no edge is labeled with , otherwise, the problem is not satisfiable. For Alj[15], it is easy to see that if no 

relation from the middle sublattice including ( ) is present, then the problem can be solved using Alj[1] or Alj[3]. If on the 

contrary, the middle sublattice is present, then so is the ( ) relation on every concerned labeled edge that is the pivot for 

middle lattices. Therefore, the output set „Culprit‟ will not be populated on this iteration, since the conditional statement in 

line 13 is not true, as long as the relation contains the ( ) relation. Similarly for Alj[16], the two algebras that can be used are 

Alj[5] or Alj[7]. For Alj[17] every relation must include the ( ) and the problem is satisfiable for any input (as long as   

C). 

 Proof for Alj[18] (OH) is somewhat tricky for absence of any fixed pivots. Thus, the arcs here may not be directed as 

in line 5. Also, even if in some cases MAR‟s are used for directing the arcs the existence of the strong connected components 

are not sufficient condition for unstaisfiability of a network.  This is because „equality‟ and „inequality‟ of the end points may 

for an inconsistent cycle. For example, Interval1 {f, f 
-1

} Interval2 {s, s 
-1

} Interval3 { } Interval1, no directed cycle exists in 

this case, but „equality‟ relations over the end points of the respective intervals conflict.  

 

Theorem 3: Algorithm SAT-TR runs in linear time in the size of C. 

Proof: See Drakengren et al. [1997] for the constraint checking parts of the algorithm. The culprit detection part (line 18) 

does not increase the asymptotic complexity of the algorithm. 



 

  

 Note that the consistency checking may terminate after detecting the first culprit, whereas SAT-TR runs through all 

edges in C to find all the culprits. 

 

Example 7: Consider the following set of constraint over intervals {A, B, C, D, E, F}: A (oo
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The corresponding interval constraint network C is shown in Figure 5 below. 
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Figure 5: The constraint network C 

 

Algorithm FindMTSs will find out which algebras this problem does not belong to. For example, constraint C1 excludes the 

following algebras, Table[o][!b]  9, 12; Table[o][!s]  3, 5, 7, 16; Table[o][!b]  9, 12; Table[o][!d]  13; Table[o][!f] 

 6; Table[o][!eq]  17; Table[o][!f]  2, 4, 8, 15; Table[o][!d
-1

]  10; and Table[o][! s
-1

]  1. 

Algorithm FindMTSs will finally return a set for which only the value for Alj[11] remains true. The problem is tractable, and 

some possible pivots (oo
-1

) have been identified. We can now use Algorithm SAT-TR to decide satisfiability of the problem. 

First, we must redirect every edge so that C does not have any arc labeled only with o
-1

 pivot (lines 4-5). The new constraint 

network C is shown in Fig. 6. C‟ is the graph C where every arc labeled with both the pivots are removed (lines 6-7). C‟ is 

shown in Fig. 7. The next step consists in finding every strong component in C‟. These components are shown in Fig. 8. 
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Figure 6: C revised 
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Figure 7: C‟ 

 

Finally, for every arc A in C that does not include the ( ) relation, return „reject‟ if A connects any two nodes in the set of 

nodes of strong components. This is the case for the arcs labeled (ob) and (of 
-1

) in bold on Figure 8b. Therefore, the original 

problem is not satisfiable and the culprits are detected to be {(C (od) D), (A (of 
-1

) C)}. 
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Figure 8: Strong component 

 

 The arcs in the culprit set are not individually responsible for inconsistency, rather they together cause 

inconsistency. Since we are detecting all the SCCs leading to an inconsistent TCN, and only the SCCs are responsible for 

inconsistency (Theorem 3), the culprit set is unique.  

 

6. Discussion 

 

In this paper we have completed some gaps left in Drakengren, Krokhin, Jeavon, and Johnsson's series of works 

[Drakengren et al. 1997, and Krokhin et al. 2003] on the Interval Algebra identifying all its MTSs but the OH. We have 

proposed a mechanism (FindMTSs) to classify a network in some or possibly none of the eighteen MTSs. In case it does not 

belong to any one of them, the problem is intractable [Krokhin et al., 2003]. We have adapted an algorithm from those works 

to check for consistency when a network does belong to any of those MTSs (except the OH). Even though OH is expected to 

be the most “useful” algebra because it contains all the atomic relations as its elements, other MTS‟s may also be useful in 

practical situations where all the basic relations are not needed (e.g., 1D-atomic relations like „meet‟ are often impractical). 

Our algorithm not only checks for consistency but in case of inconsistency it returns the arcs (culprits) that are responsible 

for inconsistency. Although Allen's path consistency algorithm (less efficient than Drakengen et al.'s and our algorithms) can 

check for consistency over tractable problems, it is not easy to modify Allen's algorithm (1983) for identification of culprits 

or detect intractable problems. In a future work we will develop an algorithm toward the OH MTS that is not covered by the 

SAT-TR algorithm. Algorithm SAT-TR is not suitable for OH because there is no fixed pivot in the latter case. A different 

strategy and more involved algorithm are warranted and we have provided hints on how to address the problem.  

An objective of this work is to demonstrate how one may find culprits in case of any inconsistent Qualitative Spatio-

temporal Network, and we hope that this article provides a new direction of research in the latter area, as detection of culprits 

will make a reasoning system more useful. 
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