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Abstract: Suppose a group of mobile agents situated in some Euclidean space does not 
have any idea on where they are exactly located within that space. However, they do have some 
notion about their relative positions with respect to each other. This problem may be formulated 
as a multi-dimensional point-based qualitative reasoning problem with disjunctive constraints. 
In this article we have developed a set of incremental algorithms for finding feasible positions 
of a new agent relative to the other existing agents (located in 1D, 2D and the generalized d-D 
dimensional space for d>=1), given some qualitative spatial constraints between the new one 
and the other agents. Our approach is a domain-theoretic one, similar to that used in the 
traditional constraint-based reasoning works (CSP). This approach differs from the algebraic 
approach - that is traditionally deployed in the spatio-temporal reasoning areas. We have also 
obtained some tractability results here for the full binary constraint satisfaction problem (rather 
than the incremental problem, which is polynomial) based on a notion of strong pre-convexity. 
The article also hints toward many future directions for this work. 
 
ACM Category:  I.2.4: Knowledge Representation Formalisms and Methods 
 
Key Words: Multi-dimensional spatial reasoning, Reasoning with disjunction, Qualitative 
reasoning, Multi-agent reasoning 
 
1 Introduction 
 
Consider a situation where some of the agents are cell locations (as in mobile 
telephone communications) and others are mobile computers radio-connected via 
those communication-cells. A mobile agent in a real space may have to find its 
position from relative spatial constraints with respect to other agents. For example, in 
a 2-dimensional space one could think of nine such relative positions: {East, North, 
West, South, Northeast, Northwest, Southwest, Southeast, SameSpot}.  

Often an intelligent agent has to work under a noisy environment also. 
Within the field of Artificial Intelligence two types of noises are typically addressed: 
incompleteness and uncertainty. Incompleteness of information appears when it is 
disjunctive, e.g. agent A is located {East, Northeast, or North} of agent B. 
Uncertainty may be represented with additional certainty parameters over each of the 
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disjunctive elements. In this paper we will address some of the issues in incomplete 
qualitative (or relative) spatial reasoning in a multi-dimensional (d-D) Cartesian 
space. For an overview of spatial knowledge representation and reasoning with 
disjunctions see Cohn and Hazarika [2001]. 

It is difficult to provide appropriate syntax for the basic regions in a space 
with more than two dimensions. For a space with dimension d, the number of such 
basic regions is 3d. For example, one can easily verify that this number to be 27 for a 
3D case. In this paper we will desist from using any natural language elements for this 
reason (e.g., for the 2D case the elements are East, West, etc.), rather we will address 
the problem of reasoning from an abstract point of view. Although in reality it is 
difficult to perceive any agent's location in a space beyond 4 dimensions (e.g. 
submarines moving in 3D space and in time), our treatment here is targeted to any 
arbitrary number of dimensions. 
 The following section (2) introduces the incremental problem of adding a 
new point in a space with existing points and with a set of qualitative relations with 
the new point. Section 3 and 4 describe the problems of doing such reasoning in 1D 
and 2D space respectively. Section 5 generalizes them into a d-D space for arbitrary 
integer value of d. The two subsequent sections (6 and 7) delve into the incremental 
reasoning and into solving the full constraint-satisfaction problem (CSP) respectively 
in the d-D space. A separate section attempts to create two application scenarios 
where such constraint propagation techniques could be deployed. The article 
concludes with some discussion on our results and on some possible future directions 
of the work. 
 
 
2 The Incremental Problem 
 
A typical binary constraint satisfaction problem (BCSP) has a set of variables and 
some constraints between some pairs of them specifying what are the allowed pairs of 
values between the respective variables of each of these constrained pairs. The 
decision problem in BCSP is to check whether the variables may have any satisfiable 
assignments or not following the constraints. In the case addressed here, the variables 
are the points (agents) in a d-D space (d>=1) and the constraints are disjunctive 
subsets of the set of basic relations. However, the problems we are addressing in this 
article are not only the full BCSP version in the domain (points in d-D space), but also 
an incremental version of it.  

In the incremental problem we have (n-1) variables (point-agents) in a space 
having a complete (non-disjunctive) relationship with respect to each other. The 
variables' exact coordinate may not be provided (hence, qualitative reasoning). A new 
variable, the n-th one, needs to be entered in this space. Given are the disjunctive 
relations between the n-th variable and each of the (n-1) variables in the space. The 
decision problem is to find whether there exists any set of valid regions for the n-th 
variable in the space satisfying the constraints or not. Note that, in lack of quantitative 
values, the regions are specified only relative to the existing (n-1) points. In case the 
answer to the decision-question in the problem is "True," we would also like to know 
the set of valid regions for the n-th point. The reader may like to take a look at the 



Examples 3 and 4 for the 2D case in a subsequent section, for a clearer picture of this 
problem. 

The next step to solving such an incremental problem is obviously (for the 
user) to commit to one of the valid regions, where n would be located. This is 
equivalent to choosing one of the basic relations with respect to each of the (n-1) 
variables. After that, the space will contain n variables (point-agents), fixed relative to 
each other. In the next cycle the (n+1)-th variable would be introduced in the space in 
a similar fashion. Incremental problem is solved by an incremental algorithm. Such an 
incremental algorithm could be then used for solving a full BCSP, although that is not 
necessary. The full BCSP may use some short cut algorithms also without utilizing 
any incremental algorithm.   

Incremental version of the d-D point-based reasoning, as stated above, is 
polynomially solvable. This is because the number of total regions grows 
polynomially with respect to the number of points existing in the space (it is easy to 
check that), and finding a valid region for the new point may constitute checking over 
all of these regions (in absence of any heuristics, in the worst case).  However, it is 
obvious that for solving the full BCSP one may have to run the incremental algorithm 
exponential number of times with backtracking. The full BCSP is NP-hard (true for 
d>1).  
 
 
3 Reasoning in 1-D Space 
 
 
3.1 The Language 
 
The simplest case is that for 1-D, which is a case of well-known point algebra [Vilain 
and Kautz, 1986]. The language for the point-based reasoning in 1D is designed to 
express constraints between a node An with some other nodes, say, A1, A2, … An-1.  
The set is {(An Ri Ai) | 1<= i <= n-1}, where any relation Ri is a non-null disjunctive 
subset of the set of qualitative relations between a pair of points {<, >, =}.  Thus, Ri is 
an element of the set {"<", "<=", ">", ">=", "=", "<>", "<=>"}. The first four relations 
indicate in which direction, left or right, the new point. An should lie with respect to the 
point Ai. The equality is a strict relation making An coincide with Ai, and thus, be 
ignored, subject to pointers between the two equivalent points (say, for the purpose of 
answering any query about An). The last two relations cause An to ignore Ai in the 
process of finding its position in the sequence. This issue will be further explained 
later.  
               A set of valid regions for An would be expressed as: {(xj1, xj2) | 1<=j<= m}, 
m being the total number of valid regions, with m <= 2n-1, since the total number of 
available regions is 2(n-1)+1 = 2n-1. Typically for any region: xj1< xj2. However, it is 
possible to have a region with xj1= xj2, which means that the valid region is a point 
only.  
 
Example 1:  
Input: S = {3, 7, 9, 11, 15, 18, 22}, R = {(An >= 3), (An <=> 7), (An >= 9), (An <> 
11), (An < 15), (An <> 18), (An <= 22)}.             



Output: ValidRegSet = {(9, 9), (9, 11), (11, 15)}. The box (see Lemma 1), which is 
not necessarily a complete valid region, here is [9, 15]. 
 
Example 2: 
Input: S = {3, 7, 9, 11, 15, 18, 22}, R = {(An >= 3), (An <=> 7), (An >= 9), (An <> 
11), (An < 15), (An > 18), (An <= 22)}.      
Output: ValidRegSet = Null. The relation (An > 18) in the input spoilt any attempt to 
find  a consistent box (see line 9 of the Algorithm-1D below). 
 
The following two Lemmas and the Theorem 1 [Mitra et al, 2001] describe some 
interesting results in 1D case. 
 
Lemma 1: Valid regions for a point (on a real line, under disjunctive constraints with 
respect to a sequence of points existing on the line) are contiguous, thus forming a 
convex interval (we call this interval the box), i.e., if it exists. However, some of the 
existing points within the box may be excluded themselves as valid regions.  
 
Inductive Proof:  
Base. When S = {A1}, only one point is in it, the lemma is trivially true. The box is [-
infinity, A1], [A1, +infinity], [A1, A1], or [-infinity, +infinity].  
Hypothesis: Suppose the lemma is true for n-1 points. Suppose, without the point An-1, 
i.e., for S = {A1, A2, .., An-2}, the boxn-1 for An, a contiguous valid regions subject to 
some excluded point boundaries between them, is [Ak, Aj], for 1<=k<=j<=(n-2).  
Step: The ignored point An-1 could be at one of the five regions with respect to this 
interval (when Ak =/= Aj) : (1) left of Ak, (2) on Ak, (3) within (Ak, Aj), (4) on Aj, and 
(5) right of Aj. Now, for cases (1) or (2), if (An ">=" An-1) or (An ">" An-1), then the 
boxn for An for all n-1 “previous” points {A1, A2, .., An-2, An-1}  remains the same as 
boxn-1. Alternatively, if the relation is (An "<=" An-1) or (An "<" An-1) for these two 
cases, then the boxn will vanish to Null - an inconsistent situation. Symmetrically 
opposite situations exist for cases (4) and (5).  For the case (3), if the relation is (An 
"<=" An-1) or (An "<" An-1), then the boxn shrinks to [Ak, An-1], or if the relations is (An 
">=" An-1) or (An ">" An-1) then the boxn shrinks to [An-1, Aj].  
               The last situation here is for (An "=" An-1) whence the boxn shrinks to [An-1, 
An-1] for case (3) and to Null (inconsistency) for other cases.  
               Note that the boxn remains unaffected for (An "<>" An-1) or (An "<=>" An-1). 
However, the set of valid regions gets split into more contiguous regions, subject to 
the exclusion of the point An-1, depending on if the relation is "<>" (An-1 is excluded 
from the boxn) or "<=>". 
               A last scenario is when the boxn-1 for An is a point [Ak, Ak] to start with, 
Then there are three regions for An-1: (1) left of Ak, (2) on Ak, or (3) right of Ak. It is 
trivial to see that An in that case either will remain coincided with Ak for (An "=" An-1) 
with case (2), for (An ">" or ">=" An-1) with case (1), for (An "<" or "<=" An-1) with 
case (3), or be inconsistent.  End of proof for Lemma 1. 

 
Lemma 2: There is no consistent region if the box does not exist (in other words the 
box is Null). 



 
Proof: Form the proof of the Lemma 1 it is clear that all the valid regions must lie 
within the box. Hence, if the box is Null, then there is no valid region or consistent 
solution for the problem.  End proof. 
 
 
Theorem 1: A set of valid regions could be found for a new point An having point-to-
point disjunctive relations with a sequence of points {A1, A2,…, An-1}, as expressed in 
our language, if and only if a valid convex interval on the sequence (defined as the 
box before) exists for An. 
 
Proof: Trivial. Lemma 1 proves the "if" part, and the Lemma 2 proves the "only-if" 
part. End proof 
              

 The Theorem 1 is used to preprocess the constraints in finding the convex 
interval - the box. Lemma 1 provides additional power in extracting the valid regions 
within this box. The valid regions are created by splitting the box with respect to those 
points having "<>" and <=>" relations with respect to the new point An 
 
3.2 Algorithm   

Input: (1) A non-empty sequence of points S = {a1, a2,…, an}, with  n >= 1. (2) A new 
point anew with relations set {(ai  ri  anew): 1 <= i <= n} 
Output: A valid region set for anew, ValidRegSet = {(ai1, ai2): 1<= k <= i1 <= i2 <= j 
<= n}, for i1 and i2 within some bound between k and j (following Lemma 1), OR, 
ValidRegSet = Null, indicating inconsistency.  
              An example ValidRegSet = {(a3, a4), (a4, a4), (a4, a5), (a5, a6), (a6, a6)}, a 
region from a3 (k=3) through a6 (j=6) excluding points a3, and a5. Mathematically a 
correct notation for the second region above should have been [a4, a4], a closed 
interval, but we will ignore brackets in favor of parentheses in our syntax in the 
ValidRegSet, for the sake of uniformity.  
              We call the interval [ak, aj] as the box. 
Example 1:  
Input: S = {3, 7, 9, 11, 15, 18, 22}, R = {(An >= 3), (An <=> 7), (An >= 9), (An <> 
11), (An < 15), (An <> 18), (An <= 22)}.             
Output: ValidRegSet = {(9, 9), (9, 11), (11, 15)}. The box, which is not an output, 
here is [9, 15]. 
Example 2: 
Input: S = {3, 7, 9, 11, 15, 18, 22}, R = {(An >= 3), (An <=> 7), (An >= 9), (An <> 
11), (An < 15), (An > 18), (An <= 22)}.      
Output: ValidRegSet = Null. The relation (An > 18) in the input spoilt any attempt to 
find  a consistent box (see line 9 of the Algorithm-1D below). 
 
Algorithm-1D: 
(1) validRegSet  =  Null; 
(2) // FIND THE BOX FIRST:  PRE-PROCESSING 
(3)  l = - infinity; r = + infinity; 



// [l, r] is the box, initialized with the two extremes 
(4) state = "findLeft"; 
// the state variable to keep track of the status 
 
(5) for  each  ai  in the sequence S  do 
(6)    if  (ai  "<="  anew)  or  (ai  "<"  anew)  then 
(7) if (state  ==  "findLeft")  then 
(8)       l  =  ai 
 else 
(9)      return validRegSet;   // Null, INCONSITENCY; 
 end if; 
          end if; 
(10)    if  (ai  "="  anew)  then 
(11)  l  =  ai; r  =  ai; 
              state  =  "foundEq"; 
           end if; 
(13)     if  (ai  ">="  anew)  or  (ai  ">="  anew)  then 
(14)  if  (state  ==  "foundEq")  then 
  { } // ignore 
  else 
(15)  r  =  ai; 
(16)  state  =  "foundRight"; 
  end if; 
            end if; 
(17)     if   (ai  "<>"  anew)  or  (a  "<=>"  anew)  then 
   { }; // ignore 
       end for;  // from step 5 
 
(18) if  (l  ==  r)  then // case of equality, and consistent 
(19)    validRegSet = {(l, l)}; 
(20)    return  validRegSet; 
        end if; 
 
// FIND VALID REGIONS NOW 
(21) if  (anew  "<="  l)  then   
          validRegSet = {(l, l), (l, nextPoint (l) )}; 
 
(22)   for each ap starting from  nextPoint(al) through  previousPoint(r)  do   
               // this loop may never execute when r is next point to l in S 
(23)      if  (anew  "<=>" ap)  then   

  validRegSet  =  validRegSet ∪{(ap, ap)}; 
             else  { };     // ignore ap as a region when   anew "=/=" ap 
             end if; 
(24)      validRegSet=validRegSet∪{(ap, nextPoint (ap))}; 
          end for; 
 
(25) if  (anew  ">="  r)  then   



          validRegSet  =  validRegSet ∪ {(r, r)}; 
 
(26) return  validRegSet; 
End Algorithm. 
 
              In the first part of the algorithm the for-loop runs over all the nodes, leading 
to an O(n) complexity, for n points in input S. The second for-loop in the last part 
runs over a subset of the points (only within the box), also having worst case 
complexity O(n). Hence, the asymptotic time-complexity of the algorithm is O(n).  
              The above algorithm inserts a new object/point in a sequence of 
objects/points. However, it has to also check for inconsistency while doing so. That is 
where it primarily differs from any traditional number-insertion algorithm, and that is 
the reason why it has to pass over all the points (in the first part) even when it has 
found the bound within which the solution is supposed to lie (finding the box in the 
first part). Also, it has disjunctive relations like "<>" or "<=>". Points with those 
relations are ignored initially (in the first part), but they are used to extract separate 
valid regions from within the box in the second part. 
 
 
4 Reasoning in 2-D Space 
 
 
4.1 The Language 
 
The 2D-case is the case of Cardinal-directions algebra [Ligozat, 1998]. In two 
dimensions the disjunctive relations on a particular dimension could not be expressed 
(in general) independent of the relations in the other dimension. Thus, ((Ax <> Bx) 
and (Ay >= By)) expresses four regions ((Ax < Bx) and (Ay > By)), ((Ax < Bx) and (Ay 
= By)), ((Ax > Bx) and (Ay > By)), OR ((Ax > Bx) and (Ay = By)). Dropping any one of 
these four relations will make it impossible to collapse disjunctive relations over 
different dimensions without losing information. For example, we might only have 
((Ax > Bx) and (Ay > By)) OR ((Ax < Bx) and (Ay = By)), that cannot be expressed as 
((Ax <> Bx) OR (Ay <= By)) or any such compact expression. 
               A constraint between a node An and a set of other nodes A1, A2,…,An-1 will 
be expressed as:  {((Anx  Rxij  Aix) AND (Any Ryij Aiy)): 1<=j<=9, 1<=i<n-1}, where a 
relation R is an element of the point-relations {<, >, =}, and j could run over up to 
nine (3x3) disjunctive possibilities on the two dimensions. (We have used a notation 
with flattened suffices/indices for the sake of convenience.) 
               A set of valid regions for An would be expressed as: {((Lxj, Lyj), (Rxj, Ryj)) | 
1<=j< m}, for m valid regions. L stands for the lower left corner of a rectangular 
region, and R stands for the upper right corner of that region. The corner points and 
the bounding line segments of the region are excluded from the latter (open region). 
Here, Lxj=Rxj and Lyj=Ryj indicates a point, whereas an equality on only one 
dimension indicates a line segment. 

The concept of Box in 2D (or in d-D, d>=2) is very similar to that of box in 
1D. It is the possible region in which the solutions may lie. Suppose all expressions 
like ((Ax > Bx) and (Ay > By)) OR ((Ax < Bx) and (Ay = By)) is “collapsed” to ((Ax <> 



Bx) and (Ay >= By)) (thus, loosing information). If we run the 1D algorithm on such 
projected relations on each axis i and take a cross product of the corresponding box_i, 
then that region in 2D (or in d-D) would be called the “Box”.  

 
Lemma 3: There does not exist any valid region if the Box is empty [Mitra et al, 
2001]. 
 
Proof: It can be trivially proved that the Box is empty if and only if its projections 
Boxx and Boxy are also empty. Any valid region will have valid projections on X and 
Y axes, such that all relations on X-axis (in Rx) and on Y-axis (in Ry) will support it. 
When either Boxx or Boxy is empty then there is no such universal support in Rx or in 
Ry, or in both of them. Thus, no valid region for the point aN can exist. End proof. 
This lemma is used in the Algorithm-2D to preprocess for checking inconsistency and 
extracting the Box. Lemma 3 is a 2D version of the Lemma 2. 
 
Alternative version of Lemma 3: No valid region can exist outside the Box. 
Proof: Can be easily proved by contradiction. 
 

A crucial aspect of the Lemma 1 for 1D-case, namely, the contiguous-ness 
(subject to the possible exclusions of some existing points) property, is not valid in 2-
D. That is, even if a Box exists, (1) the valid regions within it may not be contiguous 
(adjacent to each other with possibly separated by lines), and (2) no valid region may 
exist at all. This could be easily verified with the following examples. 

 
Example 3: S = {a1, a2}, such that Sx ={a2x, a1x}, Sy = {a1y, a2y}.  
R = {((a3x ">" a1x) and (a3y ">" a1y), OR (a3x "<" a1x) and (a3y "<" a1y)), 
 ((a3x ">" a2x) and (a3y ">" a2y), OR (a3x "<" a2x) and (a3y "<" a2y)) } 
The valid regions will be non-contiguous here (with the Box having projections [-
infinity, +infinity] on both axes). 
 
Example 4: S = {a1, a2, a3}, such that Sx ={a2x, a3x, a1x}, Sy = {a1y, a3y, a2y}. 
R = {((a4x ">" a1x) and (a4y ">" a1y), OR (a4x "<" a1x) and (a4y "<" a1y)), 
 ((a4x ">" a2x) and (a4y ">" a2y), OR (a4x "<" a2x) and (a4y "<" a2y)), 
 ((a4x ">" a3x) and (a4y "<" a3y), OR (a4x "<" a2x) and (a4y ">" a3y))}. 
One could find valid regions (for a4) independently for relationships with any pair of 
points from (a1, a2, and a3), but their overlap (set intersection) is Null. This makes the 
CheckRegion algorithm (see below) necessary within the Algorithm-2D. Once again, 
the Box is fully open infinite region in the 2-dimensions in this example. 
 
 
4.2 Algorithm    
 
Input: (1) A non-empty list of points in the 2D space: S = {(aix, aiy) | 1 <= i <= n}, 
with n >= 1. Note that aix and aiy are strictly ordered in their respective dimensions, 
although the orderings may not be the same. 
(2) A new point aN: (aNx, aNy) and its relations with the list in S,  



R  =  {((aix  ri1x  aNx) && (aiy  ri1y  aNy)) || … up to || ((aix  ri9x  aNx) && (aiy  ri9y  aNy)) | 1 
<=  i  <= n}, with any rikx  or  riky is one of the {"<", ">", "="}, k may run up to 9 
because those many combinations are possible for each of the three values over rikx 
and riky. ["&&" is the logical AND, and "||" is the logical OR] (note slight differences 
in notations with respect to those in the previous sub-section). 
Output: A valid region set for aN, ValidRegSet = {(vq1x, vq1y), (vq2x, vq2y) | 1 <= q <= 
m}, where m is the number of regions bound by (2n-1)2, the number of total regions 
created in two dimension by the points in S. A Null set for the validRegSet would 
indicate inconsistency.  Examples: see the examples 3 and 4. 
 
 
Algorithm-2D: 
 
// BOX EXTRACTION:  PREPROCESSING 
// sort the x-projections 
(1) Say, Sx = {Ax1, Ax2, … Axn} = Sort(aix , 1<= i <= n);    
(2) Say, Rx = {(Axi  rix  aNx) | 1 <= i <= n}, where rix = (ri1x ∪… up to ∪ ri9x); 

// Union x-relations with respect to each point (collapsing) 
// run Algorithm-1D to find the x-component of the box 
(3) Boxx = Algorithm-1D (Sx, Rx, aNx);  
(4)  if  (Boxx  ==  Null)  then 
(5)    ValidRegSet  =  Null; 
(6)     return  ValidRegSet;  // INCONSISTENCY DETECTED 
       end if; 
(7*) /// Repeat steps (1) through (6) for finding Sy, and  
            Ry, and for finding and checking Boxy 
        // Now the solution regions must lie within the  

Box = (Sx X Sy), if both Sx and Sy exist 
 

(8) ValidRegSet = Null; 
(9) for each  vpx  in Sx starting from  lx  through  previousPoint (rx, Sx) do 

// linear regions on the  x = vpx line 
(10)   if  (aNx  "<="  vpx) ∈ Rx  then 

// initialize corners, see "output" above  
(11)      vq1x = vpx;  vq2x = vpx;  
(12)   else  if (aNx  "<"  vpx) ∈ Rx  then 
(13)      vq1x = vpx;  vq2x = nextPoint(vpx, Sx); // ignore the line on vpx 
 
(14)     for  each vpy  in Sy  starting from ly  through  previousPoint(ry, Sy)  do 
(15)          if  (aNy  "<="  vpy) ∈ Ry  then 
(16)  vq1y = vpy;  vq2y = vpy; 
(17)          else  if (aNx  "<"  vpx) ∈ Rx  then 
(18)  vq1y = vpy;  vq2y = nextPoint(vpy, Sy); 
          end if; 
(19)          if  CheckRegion ((vq1x, vq1y),  (vq2x, vq2y))  then 



(20)  validRegSet  =  validRegSet ∪ {((vq1x,  vq1y),  (vq2x, vq2y))}; 
     end for;   // from line 14 
(21)           if  (aNy  ">="  ry) ∈ Ry  then  //boundary point 
(22)         vq1y = ry;  vq2y = ry; 
 end if; 
(23) if  CheckRegion ((vq1x, vq1y), (vq2x, vq2y))  then  
(24)         ValidRegSet = validRegSet ∪ {((vq1x, vq1y),  (vq2x, vq2y))}; 
      end for; // from line 9  
 
(25)if  (aNx  ">="  rx) ∈ Rx  then // right boundary point 
(26) vq1x = rx;  vq2x = rx; 
 
(27*) /// repeat the for-loop from steps (14) through (26); 
 
(28) return  validRegSet; 
End Algorithm. 
 
Algorithm CheckRegion ((x1, y1), (x2, y2)) 
(1) for each  Ax ∈ Sx  (where Ax  ≡ aix in S)  do 
(2)      if  (aix  is before x1  in Sx)  then 
(3)   say,  ((aix  "<"  aNx)  &&  (aiy  r  aNy)) ∈ R,  and say, (aiy  r2 y2) in Sy; 

// aNy and y2 are not having the same rel with aiy 
(4)    if  (r =/= r2)  then     
(5)         return  False;   // INCONSISTENCY 
 end if; 
(6)        if  (aix  is after x2  in Sx)  then 
(7)     say,  ((aix  ">"  aNx)  &&  (aiy  r  aNy)) ∈ R,  
                   and say, (aiy  r2 y2) in Sy; 
(8)      if  (r =/= r2)  then 
(9)  return  False;   // INCONSISTENCY 
       end if; 
       end for;   // from line 1 
 
(10) return  True; 
End Algorithm. 
 
               The Algorithm-2D first collapses x-relations and y-relations. For example, 
((Ax > Bx) and (Ay > By)) OR ((Ax < Bx) and (Ay = By)) becomes ((Ax <> Bx) OR (Ay 
<= By)). Next it extracts Boxx and Boxy from the corresponding total orders on the 
axes and their collapsed relations with respect to aNx and aNy. If the Box is not empty 
then it picks up the regions within it, one by one, in order to check each of the regions 
validity. These regions within the Box are created by the points with "<>" and "<=>" 
relations on each axis with respect to aNx and aNy. Checking a region's validity is done 
by noting where does it lie with respect to each point, and if aN could lie in that space 
with respect to that point. All such valid regions are collected in the ValidRegSet. 



               CheckRegion has O(n) complexity with the for-loop at line (1), and because 
lines (3) and (7) can be performed in constant time. Algorithm-2D has O(n logn) 
(actually O(n)+O(n logn)) complexity for lines (1) through (6) and for lines in (7*). 
Its main loops run for extracting regions from within the box with complexity O(n2), 
within which the CheckRegion runs. Hence the total asymptotic complexity of the 
Algorithm-2D is O(n3). 
 
                
5 Reasoning in d-D Space 
 
The language, the lemmas, and any relevant algorithm for two dimensions can be 
trivially extended toward any d-dimensional space with d>2. Most of the results will 
have a corresponding extension. However, the complexity of the corresponding 
algorithm for constraint processing will depend on the dimension (for d>1) of the 
space.  

Although the concept of contiguous-ness of regions is not very useful in 
higher dimensions (d>2), a related concept - that of "pre-convexity," developed by 
Ligozat [Ligozat, 1996] originally for the interval-based temporal reasoning domain, 
is useful here. A convex region in any Euclidean space is where the shortest path 
between any two points in the region is totally contained within that region. The idea 
of convexity in 2D space has been studied in detail by Davis et al [Davis, 1999]. In 
our d-dimensional Cartesian space a hyper-ellipsoid or a hyper-rectangle would be 
such a convex region. Following Ligozat [Ligozat, 1998] we define a pre-convex 
region as a region, which is convex except possibly for some lower dimensional 
regions within it. Lines and points are lower dimensional regions in the 2D space. 
This is a very similar concept as defined in [Ligozat, 1996; Ligozat, 1998] for the 
interval-based temporal reasoning domain and later for the 2D Cardinal-directions 
algebra.  

Note that a pre-convex region (or a convex region) in a d-D space could be 
lower dimensional as well. For example, a rectangular plane is a convex region not 
only in a 2D space but also in a 3D space or in a higher dimensional space. 
Correspondingly, a rectangular plane minus a straight line cutting it could be a pre-
convex region in a 3D or higher dimensional space. We will make a distinction of 
such regions with strictly d-dimensional pre-convex (or convex) regions in a d-
dimensional space. We will call such a d-dimensional pre-convex (or convex) region 
in a d-D space as a strongly pre-convex (or strongly convex) region. The necessity for 
this distinction will be explained later (in the Conclusion). 
 
Lemma 4: If the initial language is restricted (subset of the power set of the basic 
relations) in such a way that every element in it corresponds to a strongly pre-convex 
region, then the "Box" will always be a strongly pre-convex region. 
 
Proof sketch (by induction) for the strongly "convex" region case:  
Induction Base for the case of the second point to be inserted in a space with only one 
point in it: assumed to be true by the "if" part of the Lemma. 
Induction hypothesis: Assume to be true when there are (n-1) points in the space, and 
the n-th point is to be inserted. 



Induction Step: The final valid region for the n-th point is the set intersection of all 
the individual valid regions Vi for the n-th point with respect to each of the other 
points "i" (1<=i<=n-1), existing already in the space. Since every Vi is strongly 
convex their intersection has to be strongly convex also (by Helly's theorem [Chvatal, 
1983]).  
 
Extending the Lemma toward the strongly pre-convex region is based on the 
observation that excluded lines and points (hyper-regions of smaller dimensions) from 
each Vi  may exclude some lines and points from the final strongly convex valid 
region, but does not affect the validity of the lemma as outlined above. 
End proof of Lemma 4. 
 

Note that the Lemma 4 is not true if we replace the notion of the strongly 
pre-convex region with that of the "contiguous" region. One can introduce a language 
of contiguous regions but the Lemma 4 would not have any correspondence for such a 
language, i.e., the set of valid regions will not necessarily be contiguous for n>2. Try 
with two points A and B in the space such that (A Northeast of B), and then introduce 
C with (C {Southeast, East, Northeast, North, Northwest} A), and (C {North, 
Northwest, West, Southwest, South, Southeast} B), both relations being "contiguous". 
The resulting valid regions for C will be two non-contiguous regions (the most 
Northwest corner and the most Southeast corner regions) in the space. 

Another point to note here is that in the case of 1D the contiguous regions 
and the strongly pre-convex regions are identical.  
 
Lemma 5: For higher dimensions (d>=2), a strongly pre-convex region is exactly 
same as the Cartesian product of the regions' projections on the axes of the space. 
 
Proof: Firstly, note that a strongly pre-convex region is a region of highest dimension 
and so, has to have a linear (interval) projection on each axis. 
Secondly, the same lemma is trivially true for a strongly convex region. By definition 
[Chvatal, 1983] a convex region is such that all points on the shortest line between 
any two points within the region lie within that region also [Chvatal, 1983]. Hence, 
the projections of those intermediate points on any axis will also lie between the 
projections of the two end points on the same axis. Thus, the lemma is true for convex 
regions.  
Next, consider strongly pre-convex regions. Such a region may have some lower 
dimensional convex regions being absent from within it (e.g. a cross-section 
rectangular plane absent from a cube). Each such absent region will have a projection 
as a point only on a corresponding axis (e.g., a plane represented by Z=5, will have a 
projection on Z-axis at point 5). Thus, the projections of a strongly pre-convex region 
(P) will be linear intervals (Px, Py, …), but may have some points absent from them 
(from Px, Py, …). Taking a cross product of these projections will faithfully reproduce 
the original (strongly) pre-convex region eliminating the corresponding lower 
dimensional regions corresponding to the absent points from those linear-interval 
projections on the axes. End proof. 
 



The Lemma 5 may not be true for a lower dimensional (<d) pre-convex 
region in a d-D space, i.e., for not a strongly pre-convex region. 
 
 
6 Incremental Algorithm in d-D Space 
 
The simplest case of 1D has a simple incremental algorithm. Regions specified by the 
disjunctive relations on a line (strongly pre-convex by definition) are intersected to 
obtain a Null or a strongly pre-convex box as the output. An algorithm for the 2D case 
collapses the non-disjunctive relationships on the two axes (X and Y) to disjunctive 
relations (explained below), then runs the 1-D algorithm on each axes, to extract 
corresponding box_x and box_y on them, and then goes over each region in the 
resulting Box (which is a cross product of box_x and box_y), in order to check for the 
validity of each region with respect to the input constraints. Both of these algorithms 
are presented here before. An algorithm corresponding to d-D will extend the 2D 
version of the algorithm.  
 The idea of collapsing mentioned explained before is utilized to do some pre-
processing: as the Box-extraction task, which reduces the number of regions to go 
over, for the purpose of finding valid regions (according to the Lemmas 2 and 3). 
 
Algorithm d-D incremental: 
(1) Collapse non-disjunctive constraints from the new point An to the set of existing 

points in the space {A1, A2, …  An-1} over each of the d axes of that d-D 
Cartesian space. 

(2) Run 1-D algorithm (section 2) on each of the axes for extracting {box_1, box_2, 
… box_d}. 

(3) Create the   Box = {Cartesian product of all box_i's, 1<=i<=d}. 
(4) Check for the validity of each of the regions within the Box only. Return the set 

of valid regions (which could be a Null set, indicating inconsistency of the input). 
End algorithm. 
 

As discussed before, the total number of regions is always polynomial with 
respect to the number of points existing in the space, for a given number of 
dimensions of the space. The algorithm reduces the number further in steps 1 through 
3 (pre-processing), all of which runs in polynomial time. Hence, the complexity of the 
algorithm is polynomial. In fact, the complexity of the algorithm is O(nd+1) [Mitra et 
al, 2001]. 

In order to solve the full BCSP (given a set of point-agents and binary 
relations between them check the consistency of the constraints) the above algorithm 
has to be run incrementally again and again in order to introduce all the points in the 
system. Backtracking may be necessary when an inconsistency is detected while 
introducing any k-th point (1<k<=n) where (k-1) points are already placed. Thus, 
polynomial nature of the above algorithm does not guarantee that the full BCSP is a 
P-class problem. 
 
 



7 The Full BCSP 
 
Lemma 6: For a strongly pre-convex language (where the allowable input disjunctive 
elements represent strongly pre-convex regions only) the Box is identical to the union 
of the set of valid regions, minus possibly some lower dimensional regions.  
Proof sketch: The Box is nothing but the Cartesian product of the allowable segment 
on each axes separately (by definition). According to the Lemma 5, that is the set of 
valid regions also. Hence, the lemma is true. 
End proof. 
 
Algorithm d-D BCS: 
(1) Collapse all non-disjunctive relations as disjunctive ones on each axis, as was 

done in the Algorithm d-D incremental. 
(2) Do topological sort of the projections of points on each axis according to the 

disjunctive binary constraints derived in the step (1). 
(3) If a topological sort on any axes fails - detecting a cycle, then return Failure 

(Inconsistency), else return Success, with the Cartesian product of topo-sorted 
points on the axes as a consistent solution. 

End algorithm. 
 
Example 4 (Figure 1): [d=2 here] Constraints for a6 is such that a6x could be inserted 
between (a1x, a2x), on a2x, between (a2x, a3x), or between (a3x, a4x); and a6y could 
be inserted between (a2y, a4y), between (a4y, a1y), on a1y, or between (a1y, a3y). 
The set of valid regions here is the Cartesian product of these regions on the 
respective axes (the shaded area on the figure). 
 
Theorem 2: Reasoning with a strongly pre-convex language is tractable. 
Proof: The Algorithm d-D BCS for multi-dimensional point-based BCSP solves the 
problem in a polynomial time. 
 

The algorithm is clearly polynomial, running topological sort (O(n2)) d 
times, each time for n point-agents: O(dn2). Proving the algorithm's correctness is 
somewhat involved. 
 
Lemma 7: The consistent solutions are Cartesian products of all the topological-
sortings of the projections of the points on the axes. 
Proof sketch: 
Induction base: Trivially true for one point. 
Induction Hypothesis: Suppose true for k points, and the consistent solutions are {T1, 
T2, …, Tp}. Each Ti (1<=i<=p) is the Cartesian product of total orders of k points on 
all axes. 
Induction step: The (k+1)-th point is to be inserted in Ti (1<=i<=p) following binary 
constraints with all other k points. The set of valid regions is a rectangular strongly 
pre-convex region that is the Box (Lemma 6). It is easy to verify that each valid 
region can be obtained by inserting the projection of the point k on each axis in Ti and 
then taking a Cartesian product of the orderings on the axes. Not only that, since the 
set of valid regions together is a strongly pre-convex region no such Cartesian product 



of any set of valid sortings on axes will be left out of the set of valid regions. Hence 
the set of valid regions is exactly all the Cartesian products of all the valid orderings 
for inserting the projections of k on the axes (see the Example 4). 
End of proof sketch of lemma 7. 
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Figure 1: A solution space (shaded) for the point-agent a6 in 2-D 
 
According to the Lemma 7, if on any axis a topological sort of the point-projections 
does not exist, then there would be no solution, as is correctly returned by the above 
algorithm. On the other hand, if topo-sorts are found on each of the axes, then their 
cross product must be a solution. So, anything returned by the algorithm as a Success, 
is a correct solution. This proves the correctness of the Algorithm d-D BCSP, and 
hence, that of the Theorem 2. 
End proof of Theorem 2. 
 

Pre-convexity is also the basis of finding a maximal tractable sub-algebra in 
the case of reasoning (full BCSP) with time-intervals [Ligozat, 1996]. Similar results 
have been observed for continuous domain CSP also [Faltings, 2000]. Our conjecture 
is that, this is the case for any domain where the space is a Cartesian product of some 
total orderings (as a real line is), and where the objects (locations of the agents) are 
expressed as points in the space. Note that in the 1D case the full language is strongly 
pre-convex (as mentioned before), and the full BCSP is tractable in the 1D case. Also, 
if "=/=" (inequality) is excluded from the full language in the 1D case it becomes 
convex, which leads to an even more efficient reasoning [van Beek, 1990].



 
Theorem 3: The full-BCSP is NP-hard. 
Proof: Trivial. Ligozat [Ligozat, 1998] has proved that the reasoning over a full 
network with constraints from Cardinal-directions algebra in 2D is NP-hard. A 
generalization over d-D has to be NP-hard then, since 2D is a special case of d-D 
with d =2. 
End Proof. 
 
 
8 Some Suggested Applications 
 
 
8.1 A Qualitative Database on Personalities 
 
This is a database recording some attributes of the individuals. The attributes are not 
measured quantitatively; rather they are recorded for their relative values with 
respect to other individuals in the database. The attributes (dimensions) recorded for 
this example are height, weight and smartness. Individuals already existing in the 
database are Mary, John and Sheila. A new individual Paul joins the group. Relative 
orientations of the existing three are as follows: (Sheila is taller than John, and Mary 
is taller than Sheila), (Sheila is heavier than Mary, and John is heavier than Sheila), 
and (John is smarter than Mary, and Sheila is smarter than John). The new 
relationships for Paul’s attributes are known (incomplete information) to be as 
follows: Paul is smarter than all three. However, with respect to Mary and John, 
either he is both taller and heavier than each, or he is both shorter and lighter.  With 
respect to Sheila, Paul is either (taller but lighter) or (shorter but heavier). Our 
consistency-checking algorithm will detect inconsistency in the information about 
Paul. 
 
8.2. Military Reconnaissance 
 
It is learnt that the enemy is planning for three diversionary and a major attack. They 
are communicating about three different aspects of the attack to their cells using 
different channels of communication. These three aspects are time of attack, latitude 
and longitude of the place attack. Intelligence sources picked up some information of 
the relative orderings on these aspects. Timings of the three diversionary attacks are 
in the order of first attack, then second attack, and then the third attack. The latitude 
of these attacks’ locations are in the same order as well. However, the longitude of 
the third attack is in between the other two. Now the information about the major 
attack has come in. It is within the first and second attacks for all the aspects. Its 
latitude is not same as that of the third attack but the longitude is. It will also not take 
place at the same time as that of the third.  

The constraint propagation technique proposed in this work will be able to 
identify that the major attack will be bounded within the box cornered by the first 
and the second attack in this 3D space, and that its latitude and timing must be less 
than that of the third diversionary attack. This type of capability may be useful in 



Command, Control, Communications, Computers, and Intelligence (C4I) 
architectures (http://www.fas.org/irp/agency/army/odcsint/org.htm#im). 
 
 
9 Conclusion 
 
In this article we have studied a framework for the multi-dimensional point-based 
spatial reasoning with incompleteness. This type of spatial reasoning is important 
when multiple agents would try to find their relative position in a real space (Rd) 
under a noisy environment. We have provided a polynomial incremental algorithm 
for the purpose of finding possible locations for a new agent in a space where some 
agents have already committed about their positions with respect to each other. Some 
intricately detailed algorithms for the 1D and 2D special-cases are also described 
here. 

A next higher level of the problem is when no position for the new agent is 
found. In that case the existing agents may have to backtrack and reorganize 
themselves in order to accommodate the new agent, under the same input disjunctive 
constraints that existed between themselves before. This demands consideration of 
all solution spaces for the new agent and not only the ones according to a committed 
space by the older agents. This problem is the framework for traditional binary 
constraint satisfaction problem (full BCSP), where the question is to find out if there 
exists any solution for a given set of n point-agents and binary relations between 
them. The full BCSP is an intractable problem, unless one restricts the type of input. 
We have provided here such a sub-language where the full BCSP in multi-
dimensional point-based disjunctive reasoning is tractable. An existing concept of 
pre-convexity in the literature is utilized for the purpose. We conjecture that the 
strong pre-convexity is the underlying basis for finding tractable sub-languages in 
many spatio-temporal reasoning domains. This is the future direction of our research. 

Recently [Balbiani and Condotta, 2002] have come up with a counter-
example that the pre-convex language is not closed under the set-intersection 
operation for d>2, and thus, it does not form a corresponding sub-algebra. However, 
their counter-example uses elements that are not strongly pre-convex as defined here. 
Our results presented here remain valid for the strongly pre-convex class.  

An interesting case of spatial reasoning is when the basic regions are 
angular (e.g., between every 60-degree lines from the origin - star-shaped zoning), 
rather than the quadrants as in the case presented here [Mitra, 2002]. Military 
reconnaissance often uses reasoning with such qualitative angular zones. A convex 
region in such a case is a region that is enclosed within lines forming 180-degrees or 
less at the center (true even in our case presented here). A strongly pre-convex region 
is a convex region minus the regions of lower dimensions within the latter. An 
interesting challenge would be to prove that the BCSP is tractable for a strongly pre-
convex language in this domain, as per our conjecture stated above. The technique 
used here to prove tractability (Theorem 2) does not work in a star-zoning case. One 
of the authors is also working on this problem. 
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