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Abstract. Pollen identification helps forensic scientists solve elusive
crimes, provides data for climate-change modelers, and even hints at
potential sites for petroleum exploration. Despite its wide range of appli-
cations, most pollen identification is still done by time-consuming visual
inspection by well-trained experts. Although partial automation is cur-
rently available, automatic pollen identification remains an open prob-
lem. Current pollen-classification methods use pre-designed features of
texture and contours, which may not be sufficiently distinctive. Instead
of using pre-designed features, our pollen-recognition method learns both
features and classifier from training data under the deep-learning frame-
work. To further enhance our network’s classification ability, we use
transfer learning to leverage knowledge from networks that have been
pre-trained on large datasets of images. Our method achieved ≈94%
classification rate on a dataset of 30 pollen types. These rates are among
the highest obtained in this problem.

1 Introduction

The identification of pollen grains underpins the field of Palynology, which is
the study of pollen grains, spores, and some types of diatoms [1]. Palynology
is a valuable tool to many applications. For example, by analyzing fossil pollen
found in soil extracted from the bottom of ancient lakes, ecologists can map
past climate dated over thousands of years [2]. Because some pollen types may
only exist in certain geographical locations, forensics scientists use pollen found
in crime scenes to geolocate suspects [3]. Interestingly, pollen also helps the
petroleum-exploration industry map potential oil fields [4].

In many palynology applications, scientists build statistical distributions
of pollen species, a task done by trained operators who identify and count
pollen grains seen under a microscope. Common identifying attributes used
include shape, symmetry, size, and ornamentation [5,6]. Counting pollen can
take months to complete, sometimes occupying operators for some 16 h a week.
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This time-consuming step in palynology could be reduced from months to a few
hours by an automated identification system [1].

There are three main groups of approaches to palynology automation. Mor-
phological methods measure visual characteristics such as shape [2,7,8]. Treloar
et al. [2] measured grain’s roundness, perimeter, and area, which were input
into a Fisher linear discriminant for classifying 12 types of pollen. Xie and
OhEigeartaigh [9] measured 3-D geometrical features, radial and angular com-
ponents from a voxel representation of pollen grains. They classified 5 types of
pollen using support vector machine. Garcia et al. [8] used the changes along a
grain’s contour to train a Hidden Markov Model (HMM) for classification.

Texture-based methods use the grain’s surface texture. Fernandez-Delgado
et al. [10] classified 5 pollen types using measurements of gray-level co-occurrence
matrix, neighborhood gray-level dependence statistics, entropy, and the mean.
DaSilva et al. [11] transformed pollen images using wavelet coefficients represent-
ing the spatial frequency, and then calculated gray-level co-occurrence matrix to
classify 7 pollen species.

Hybrid methods combine multiple characteristics. Ticay-Rivas et al. [12] clas-
sified 17 plant species based on geometrical features (i.e., area, convex area, and
perimeter), Fourier descriptors, and color features. A multi-layer neural network
was used as a classifier. Chica [13] also combined textures and morphological
characteristics to detect 5 classes of bee pollen. The features included shape
(i.e., area, perimeter, diameter) and texture (i.e., mean, standard deviation, the
entropy of the gray-level histogram).

An alternative approach to using pre-designed features is to try to learn opti-
mal features from training data. This approach can be implemented using convo-
lutional neural networks (CNN), a class of pattern-classification methods known
as deep learning [14]. Deep learning has been shown to successfully solve chal-
lenging classification tasks [15]. In this paper, we present a pollen-classification
method that uses deep learning to classify 30 pollen types of two image modal-
ities: light-microscopy (LM) and scanning electron microscopy (SEM). Figure 1
shows example images from our dataset.

2 Method

Our CNN has seven learned layers. The first six layers are convolutional layers
and the final layer is a fully connected layer. The convolutional layers share the
same architecture, where each convolutional layer includes a filters unit, a rec-
tified Units (ReLUs), a pooling unit, and a local normalization unit. Network
configuration, such as network depth and filters’ size, determines computational
speed. Although increasing the depth and filters size of CNN improves the recog-
nition rate, it consumes more CPU and memory.

In our work, image resolution, network depth (i.e., number of layers), filters’
size for each individual layer, and the training window size (i.e., number of images
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Fig. 1. One sample from each pollen type of our LM dataset. The dataset consists of
some 1,000 images of 30 pollen types, provided by the our Paleoecology Laboratory.
(a) LM dataset (b) SEM dataset.
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used in the training process of each step to update networks parameters) were
determined experimentally by maximizing the classification rate and using the
available resources. For parameter initialization and learning rate, we followed
[15]. The input of the first layer is 274× 274 (i.e., the input image) with 50 filters
of size 19× 19. After the response is normalized and pooled, the second layer
takes the output of the first layer and filters it with 75 filters of size 11× 11. The
number of filters and their size of the rest of layers are: 100, 8× 8, 250, 5× 5,
500, 4× 4, 2000, 4× 4, 30, 1× 1. Stochastic gradient descent was used for the
training process with window size of 25 images.

2.1 Training

The network has some 20 million parameters. Our dataset is small when com-
pared to the number of learned parameters of the CNN. Training directly for
all parameters using a small dataset may lead to over fitting. Therefore, a data-
augmentation technique was used to artificially increase our dataset from 1,000
to 14,000 samples and 1,161 to 15,000 samples for LM and SEM respectively by
applying different rotation transformations. Additionally, drop-out layers were
attached to the last two layers by a 0.5 factor to reduce the over-fitting effect.
Removing some units of a network during training prevented excessive parame-
ter updating. This drop-out technique may help reduce over fitting [16,17]. Our
results showed that data augmentation increased the classification rate by 24%
and 27% for LM and SEM respectively. A zero-mean Gaussian distribution was
used to initialize the weights in each layer. Biases were initialized with constant
values of 1, and the learning rate equaled 0.001. We trained our network using
the MatConvNet toolbox [18]. We trained our network for 60 epochs using our
dataset, which took about three days to converge on a single machine with a
core 7 processor and 16 G of memory.

2.2 Transfer Learning

We improved classification performance by adopting the transfer-learning tech-
nique to leverage the learned knowledge from previous models [19]. A different
architecture is used to apply the transfer learning where the input of the first
layer is 294× 294 (i.e., the input image) with 50 filters of size 19× 19. The num-
ber of filters of the second layer is 48, of size 11× 11. The number of filters
and their size for the rest of layers are: 100, 5× 5, 250, 3× 3, 256, 3× 3, 2048,
6× 6, 30, 1× 1. The first two layers were initialized from the previous model
and the rest of layer were initialized from ImageNet model [20]. Basically, we
selected the size of the filter of these layers to match the ImageNet model but
we decreased the number of the filters because that model has a large number
of parameters. We trained the CNN again to perform fine tuning to refine the
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network parameters. Additionally, we increased our dataset from 1,060 to 25,000
samples and 1,161 to 28,000 samples for LM and SEM respectively using data
augmentation by applying different rotation and scale transformations.

3 Results

By using transfer learning, we increased the recognition rate to nearly 90%.
Figure 2 shows the misclassification error and the objective energy of our net-
work during training. The error rate and the objective energy were computed at
each epoch and visualized to monitor the network’s convergence. Figure 3 shows
the learned filters of the first layer of our networks. We also compared the perfor-
mance of our network with the traditional approaches that used the pre-designed
features. Results of this comparison are shown in Table 1. These approaches are
based on pre-processing the pollen grain images (i.e., enhancement and seg-
mentation), pre-defined feature extraction, and classification. We used the fol-
lowing features: histogram features (i.e., mean and variance of histogram), gray
level statistics (i.e., mean, variance and entropy), geometrical features (i.e., area,
perimeter, compactness, roundness, and aspect ratio based on minor and major
axises), fractal dimension, gray level co-occurrence matrix (GLCM), moments
invariant, Gabor features, histograms of oriented gradient (HOG) descriptors,
and local binary pattern histogram (LBP). After we performed features extrac-
tion, we trained a support vector machine classifier based on these features.

We also compared our method with two approaches in the literature that
combined multiple features: Marcos’s method [21] and Silva’s work [11]. Marcos
combined gray-level co-occurrence Matrix, Gabor features, local binary patterns,
and discrete moments features. Silva decomposed the pollen grain into four layers
using wavelet transform and then gray-level co-occurrence matrix was computed
to create features vectors using statistical measurements. Table 1 shows the clas-
sification rates.

To prove statistically that our CNN is significantly better than traditional
approaches, we computed the P-value. Based on Table 1, we compared our results
with the best method that combined histogram, gray level statistics, fractal
dimension, and LBP. The P-value was 2.56× 10−4 and 9.76× 10−6 for both
LM and SEM respectively, which means null the hypothesis can be rejected.
Additionally, we computed the average of precision, recall, sensitivity, specificity,
and F score [22], which are shown in Tables 2 and 3.
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Fig. 2. Error and objective energy of the training process. At each iteration, feed
forward technique is used to compute the objective function of the network, and the
predictions of the training and testing samples to calculate the error rate. (a) LM
dataset (b) SEM dataset.
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Fig. 3. Learned filter of the first layer of CNNs. Basic features such as corners, edges,
and blobs were learned. (a) LM dataset (b) SEM dataset.
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Table 1. Classification rates

Method Classification rate
of LM dataset

Classification rate of SEM datset

Histogram features, Gray
level statistics

70.97% 61.20%

Geometrical features, fractal
dimension

71.97% 60.59%

Gray level co-occurrence
matrix

51.34% 48.24%

Moments invariants 44.59% 42.63%

Gabor features 67.36% 60.12%

HOG 62.34% 50.29%

LBP 77.07% 71.49%

Silva’s Method 67.36% 59.55%

Marcos’s Method 78.92% 74.96%

Histogram, Gray level statis-
tics, fractal dimension, LBP

80.19% 78.11%

CNN 84.47% 90.56%

CNN (with transfer learning) 89.95% 93.99%

Table 2. Evaluation measurements of LM dataset

Method Precision Recall Sensitivity Specificity F score

Features combination 81.16% 79.68% 79.68% 99.31% 79.31%

CNN 85.15% 84.28% 84.28% 99.48% 83.82%

CNN (with transfer learning) 92.04% 90.26% 90.26% 99.65% 89.13%

Table 3. Evaluation measurements of SEM dataset

Method Precision Recall sensitivity specificity F score

Features combination 81.03% 77.83% 77.83% 99.24% 78.30%

CNN 93.12% 90.45% 90.45% 99.70% 91.17%

CNN (with transfer learning) 95.00% 93.92% 93.92% 99.79% 94.05%

4 Conclusion and Future Work

In this paper, we proposed an approach to identify 30 types of pollen grain.
The approach is implemented using a convolutional neural network. We trained
a convolutional neural network to learn discriminating features such corners,
blobs, and edges. The set of the learned features are used to classify the pollen
grain images. Data augmentation and a drop-out techniques were used to reduce
over fitting. Moreover, we adopted a transfer-learning technique to leverage
learned features to improve classification rates. Experimental results showed that
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extracting features automatically using CNN has superior performance over the
traditional techniques. Even though our approach offers promising classification
rate, the training time of the convolutional neural networks becomes an issue
especially when it runs on standard PCs. Increased processing speed can be
achieved using parallel processing and GPU architectures.
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