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Abstract

In this paper we describe a statistical framework for
shape-from-shading. First, we commence by making least
squares estimates of local Hessian matrices using samples
of surface normals. These estimated Hessians are used to
perform parallel transport of the surface normals across the
surface. By transporting neighbouring surface normals in
this way we are able collect samples of votes for the sur-
face normal direction at each location. We select between
these alternatives on the basis of compliance with the image
irradiance equation.

1. Introduction

Shape-from-shading is a problem that has been studied
for over 25 years in the vision literature [1, 5, 7, 8]. Stated
succinctly, the problem is to recover local surface orienta-
tion information, and hence reconstruct the surface height
function, from information provided by the surface bright-
ness. Since the problem is an ill-posed one, in order to be
rendered tractable recourse must be made to strong sim-
plifying assumptions and constraints. Hence, the process
is usually specialised to matte reflectance from a surface
of constant albedo, illuminated by a single collimated light
source of known direction. To overcome the problem that
the two parameters of surface slope can not be recovered
from a single brightness measurement, the process is aug-
mented by constraints on surface normal direction at oc-
cluding contours or singular points, and also by constraints
on surface smoothness.

The observation underpinning this paper is that although
considerable effort has gone into the development of im-
proved shape-from-shading methods, there are two areas
which leave scope for further development. The first of
these is the use of statistical methods in the recovery of sur-
face normal information. The second is that relatively little
effort has been expended in the use of ideas from differen-
tial geometry for surface modeling.

Our aim in this paper is to develop a sample-based al-
gorithm for shape-from-shading which exploits curvature

consistency information. As suggested by Worthington and
Hancock [8], we commence with the surface normals po-
sitioned on their local irradiance cone and are aligned in
the direction of the local image gradient. ¢From the initial
surface normals, we make local estimates of the Hessian
matrix. This allows us to transport neighbouring normals
across the surface in a manner which is consistent with the
local surface topography. The resulting sample of surface
normals represent predictions of the local surface orienta-
tion which are consistent with the local surface curvature.
Moreover, each transported vector can be used to make a
prediction of the local image image brightness. We se-
lect from these alternatives the one which gives the lowest
brightness error.

Hence, we facilitate a direct coupling between consistent
surface normal estimation and reconstruction of the image
brightness. Moreover, our method overcomes the problem
of estimating surface normal directions in a natural way.
This offers two advantages over existing methods for shape-
from-shading. First, because it is evidence-based, unlike the
Horn and Brooks method, it is not model dominated and
does not oversmooth the recovered field of surface normal
directions. The data-closeness and surface-smoothness er-
rors are not simply compounded in an additive way as is
the case in the regularisation method. Second, and unlike
the Worthington and Hancock method, it relaxes the im-
age irradiance equation and hence allows for brightness er-
rors to be corrected. Another interesting property of the
method, is that we parameterise the local surface structure
using the Hessian matrix, rather than quadric patch param-
eters. Hence we exploit the intrinsic geometry of the Gauss
map rather than its extrinsic geometry.

2. Shape-from-shading

Central to shape-from-shading is the idea that local
regions in an image E(z,y) correspond to illuminated
patches of a piecewise continuous surface, z(z,y). The
measured brightness E(x,y) will depend on the material
properties of the surface, the orientation of the surface at
the co-ordinates (z, ), and the direction and strength of il-
lumination.



The reflectance map, R(p, q) characterizes these proper-
ties, and provides an explicit connection between the image
and the surface orientation. Surface orientation is described
by the components of the surface gradient in the « and y
direction, i.e. p = 42 and ¢ = . The shape from shading
problem is to recover the surface z(z,y) from the intensity
image E(x,y). As an intermediate step, we may recover
the needle-map, or set of estimated local surface normals,
Q(z,y).

Needle-map recovery from a single intensity image is
an under-determined problem [7] which requires a number
of constraints and assumptions to be made. The common
assumptions are that the surface has ideal Lambertian re-
flectance, constant albedo, and is illuminated by a single
point source at infinity. A further assumption is that there
are no inter-reflections, i.e. the light reflected by one portion
of the surface does not impinge on any other part.

The local surface normal may be written as Q =
(—p,—¢,1)T, where p = 22 and ¢ = 2. For a light source
at infinity, we can similarly write the light source direction
ass = (—pi,—q,1)T. If the surface is Lambertian the
reflectance map is given by R(p,q) = Q - s. The image ir-
radiance equation [3] states that the measured brightness of
the image is proportional to the radiance at the correspond-
ing point on the surface; that is, just the value of R(p, ¢) for
p, q corresponding to the orientation of the surface. Normal-
izing both the image intensity, E(z,y), and the reflectance
map, the constant of proportionality becomes unity, and the
image irradiance equation is simply E(x,y) = R(p, q).

Although the image irradiance equation succinctly de-
scribes the mapping between the z,y co-ordinate space of
the image and the p, ¢ gradient-space of the surface, it pro-
vides insufficient constraints for the unique recovery of the
needle-map. To overcome this problem, a further constraint
must be applied. Usually, the needle-map is assumed to
vary smoothly.

3. Differential Surface Structure

In this paper we are interested in the local differential
structure of surfaces represented in terms of a field of sur-
face geometry. In the differential geometry this representa-
tion is known as the Gauss map. The differential structure
of the surface is captured by the second fundamental form
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of the Hessian using samples of surface normals. Let Q,
represent the surface normal at the position (z,,y,) and
let Q,, be a neighbouring surface normal with position
(Zm,ym). Suppose that A,, = Q. — Q, is the differ-
ence in surface normal direction at the locations o and m,
and that Az,, = z,, — z, and Ay, = Ym — Y, are
the co-ordinate displacements between the locations. Let
N = ((AQ1)a: (AQ1)y, (AQ2)s, ) and
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By performing a first-order Taylor expansion, on the direc-
tional derivatives of the surface normals, it is a straightfor-
ward task to show that the least-squares estimator of the
elements of the Hessian is
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We are interested in using the local estimate of the Hes-
sian matrix to provide curvature consistency constraints for
shape from-shading. Our aim is to improve the estimation
of surface normal direction by combining evidence from
both shading information and local surface curvature. As
demonstrated by both Ferrie and Lagarde [2] and Worthing-
ton and Hancock [8], the use of curvature information al-
lows the recovery of more consistent surface normal direc-
tions. It also provides a way to control the over-smoothing
of the resulting needle maps. Ferrie and Lagarde [2] have
addressed the problem using local Darboux frame smooth-
ing. Worthington and Hancock [8], on the other hand, have
employed a curvature sensitive robust smoothing method.
Here we adopt a different approach which uses the equa-
tions of parallel transport to guide the prediction of the local
surface normal directions.

Our idea is as follows. At each location on the surface
we make an estimate of the vector of curvature parameters.
Suppose that we are positioned at the point X, = (z,,,)”
where the vector of estimated curvature parameters is @,
and that the resulting estimate of the Hessian matrix is H,.
Further suppose that Q,, is the surface normal at the point
X = (@m,ym)T in the neighbourhood of X,. We use
the local curvature parameters &, to transport the vector
Q,, to the location fo. The first-order approximation to
the transported vector is

Q% = Qu + Ho( X — X0) 3)

This procedure is repeated for each of the surface nor-
mals belonging to the neighbourhood R, of the point o. In
this way we generate a sample of alternative surface normal
directions at the location o. The geometry of the parallel
transport procedure is illustrated in Figure 1.



4. Statistical Framework

We would like to exploit the transported surface-normal
vectors to develop an evidence combining approach to
shape-from-shading. To do this we require a probabilistic
characterization of the sample of available surface normals.
We assume that the observed brightness E, at the point X,
follows a Gaussian distribution. As a result the probability
density function for the transported surface normals is
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where o2 is the noise-variance of the brightness errors. With
this distribution to hand, we can use the image irradiance
equation to compute the expected value of the image bright-

ness at the location X, for the sample of transported surface
normals. The expected brightness is given by

P(Eo|Qum, ®o) = :| 4

Eo = Z p(Eo|Qma CI)O)an.S (5)
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To update the surface normal direction, we select from the
sample the one which results in a brightness value which is
closest to E,. This surface normal is the one for which

2
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This procedure is repeated at each location in the field of
surface normals.
We iterate the method as follows:

e 1: At each location compute a local estimate of the
Hessian matrix #, from the currently available surface
normals Q,.

e 2: At each image location XO obtain a sample of sur-
face normals S, = {Q¢,|m € R,} by applying paral-
lel transport to the set of neighbouring surface normals
whose locations are indexed by the set R,,.

e 3. From the set of surface normals S, compute the
expected brightness value E, and the updated surface
normal direction QO. Note that the measured intensity
E, is kept fixed throughout the iteration process and is
not updated.

e 4: With the updated surface normal direction to hand,
return to step 1, and recompute the local curvature pa-
rameters.

To initialise the surface normal directions, we adopt the
method suggested by Worthington and Hancock [8]. This
involves placing the surface normals on the irradiance cone
whose axis is the light-source direction S and whose apex

angle is cos—! E,. The position of the surface normal on the
cone is such that its projection onto the image plane points
in the direction of the local image gradient, computed using
the Canny edge detector. When the surface normals are ini-
tialized in this way, then they satisfy the image irradiance
equation.

Figure 1. Parallel transport used for predict-
ing the surface normal vector using local cur-
vature estimation.

5. Experiments

In this section, we present some experimental evaluation
of the new method.

We commence by exploring some of the iterative prop-
erties of the method. Here use experiment with an image
of a toy duck from the Columbia COIL data-base. Figure
2 shows the effect of re-illuminating the final needle-map
with different light source directions. This highlights the
curvature detail on the surface, which appears to be well

reconstructed.
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Figure 2. Reconstructed image with different
illumination directions

In Figure 3 we show results for images of marble statues.
In the left-hand column we show the original image. In



the right-hand column we show value of EO. In each case
the reconstructed brightness images reproduce the curvature
structure well, at all but the points of highest curvature.

Finally, in Figure 4, we show the re-illumination of the
statue Venus. This captures the surface detail well. In par-
ticular, the folds in the draping around the legs is well re-
produced.

Figure 3. Results for classical statuary.

6. Conclusions

In this paper we have described a new method for shape-
form-shading which relies on vector transport to accumulate
evidence for surface normal directions which are consistent
with the observed image brightness. The method uses a
two-step iterative algorithm. First, estimates of the Hessian
matrix are made using the available surface normals. These
Hessian matrices are used to perform vector transport on the
surrounding surface normals to accumulate a sample of ori-

Figure 4. Re-illumination of Venus

entation hypotheses. These putative directions are used to
compute an expected value for the image brightness. In the
second step of the algorithm, the surface normal direction
is updated. The direction is taken to be that of the trans-
ported vector which yields the brightness which is closest
to the expected value. The method is evaluated on a variety
of real-world images where it provides promising results.
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