
Computer Vision and Image Understanding 115 (2011) 177–193. Elsevier.
DOI:10.1016/j.cviu.2010.11.012.

Robust Sequence Alignment for Actor-Object Interaction Recognition: Discovering
Actor-Object States

Roman Filipovych and Eraldo Ribeiro*

Computer Vision and Bio-inspired Computing Laboratory,
Florida Institute of Technology,

Department of Computer Sciences,
Melbourne, Florida, U.S.A.

Abstract

In this paper, we address the problem of recognizing atomic human-object interactions from videos. Our method is based on the
observation that, at the moment of physical contact with the object, both the motion and appearance (i.e., shape) of the interacting
person are constrained by the target object. We introduce the concept of actor-object states as the instantaneous configuration
of actor and object that usually corresponds to the moment of physical contact. We argue that the information content in frames
belonging to the actor-object states is descriptive of the specific interaction. We use the actor-object state concept to propose
an approach in which human-object interactions are represented by a combination of image patches and velocity information
extracted along tracked body-point trajectories. However, determining the set of video frames corresponding to actor-object states
is challenging as, before and after physical contact, human motion and appearance may vary significantly for the same interaction
type. We address this issue by means of a robust sequence-matching algorithm that discovers actor-object states by matching pairs
of misaligned sequences of features. We then show how these discovered actor-object states can be used for the recognition of basic
interactions with objects. Finally, we evaluate the proposed concept on classification tasks performed on a new dataset of atomic
human-object interactions.

Key words: activity analysis, human-object interaction, sequence matching, dynamic programming

1. Introduction

Advancing automatic human-action recognition methods is
of relevance to both the scientific and industrial communi-
ties. Applications of action recognition algorithms include
surveillance, video indexing and summarization, etc. However,
despite significant efforts by the computer-vision community,
human-action recognition is still an open problem. Even for
scenarios with static single-view camera, spatio-temporal vari-
ations in actions performed by different individuals make ac-
tion recognition a challenging task. Additionally, the presence
of background clutter introduces irrelevant information that is
hard to be isolated.

In this paper, we focus on the problem of atomic (i.e., simple
and short-duration) human-object interactions. This is a dif-
ferent problem from that of traditional action recognition. In
fact, for videos containing interactions with objects, motion
cues alone may not be sufficient to achieve higher-level rea-
soning about the underlying activities. Consider for example
the “grasp a fork” and “grasp a spoon” interactions shown in
Figure 1(a). While the motions performed by the hands are
essentially the same, the static appearance of the two target ob-
jects has to be considered to disambiguate the interactions. On
the other hand, interactions such as “grasp a fork” and “touch
a fork” cannot be classified based on the object’s appearance
alone. Thus, it is natural to expect that recognition approaches

that use various types of video information (e.g., motion, struc-
ture, shape, etc) would perform better than, or at least at the
same level of, methods based on single information type.

Considering atomic interactions such as the ones depicted in
Figure 1, an interesting but relatively unexplored aspect in com-
puter vision is how the person’s perceived motion and shape
appearance are constrained by the target object during the in-
teraction. However, when different actors perform the same in-
teraction activity, their motions may differ considerably. Sim-
ilar uncertainty occurs for the spatial appearance properties of
the actors. Spatial appearance in this case represents the spa-
tial configuration or shape of the body part interacting with the
object as well as the object’s appearance itself. For example,
in the “grasp a cup” activity in Figure 1(b), the hands approach
the cups at different speeds and have different spatial properties
(e.g., clutched, in the black-cup sequence, and slightly open, in
the white-cup sequence). However, at the moment of physical
contact, the actors’ motions, appearances, and actor-object spa-
tial configurations become constrained by the target object (last
two frames on the right-hand side of Figure 1(b)). We argue that
the information content in these constrained motion and spatial
configurations of both actor and object is descriptive of the spe-
cific interaction. We refer to these instantaneous appearances
and joint actor-object configurations as actor-object states [1].
Indeed, actor-object states can be observed at different levels of

* Corresponding author: eribeiro@cs.fit.edu (E. Ribeiro)

grasp fork grasp spoon touch fork

(a) Insufficiency of single information source for recognition of actor-object interactions.

Mo#on and spa#al appearance proper#es are different Actor‐object states: mo#on and shape are constrained by the object

(b) Constrained actor-object states.

Figure 1: (a) Motion information alone may not be enough to discriminate between the “grasp a fork” and “grasp a spoon” interactions. On the other hand, object
information is not relevant for discrimination of the “grasp a fork” and “touch a fork” interactions. (b) On physical contact, the actors’ motions, appearances, and
actor-object spatial configurations are constrained by the target object.

detail (e.g., entire human body, body parts, etc.). For example,
consider the “push a car” interaction in Figure 2. The plot in
the figure shows the vertical velocity values extracted along the
trajectories of the point finger. Notice how these values become
constrained during the time of physical contact. This example
suggests that actor-object states can be considered at both the
entire body (e.g., Figure 1(b)) and individual body parts levels
(e.g., Figure 2).

Figure 2: Vertical velocities for tracked finger tips of two persons pushing a toy
car. The velocity curves coincide at the moment of physical contact.

In this paper, we present a method for recognizing atomic
human-object (actor-object) interactions from single-view
cameras. Our goal is to bridge the gap in the computer-
vision literature between lower-level action recognition and
higher-level interaction analysis. Our method is based on the
observation that, at the moment of physical contact, the actors’
motions and appearances are constrained by the target object.
We propose a deterministic approach where human-object
interactions are represented by a combination of image patches
and velocity information extracted along tracked body-point

trajectories. Here, an actor-object state is considered to be
an instantaneous configuration of the object and an individual
body part. Discovering the location of the actor-object states
is a challenging task. We propose a robust sequence-matching
algorithm that discovers the actor-object states as short-term
constrained interaction patterns by matching pairs of mis-
aligned sequences of features. The method iteratively removes
subsequences that do not represent the actor-object state
pattern. Finally, a distance measure between sequences is
computed based on the point-correspondences assignment
obtained for the discovered patterns. We introduce a novel
actor-object interactions dataset, and show that actor-object
states can effectively represent interactions with objects. Our
contributions in this paper are summarized as follows:

Contributions

• We introduce the concept of actor-object states. The vi-
sual information in frames belonging to these states are de-
scriptive instantaneous configurations of actor and object
that usually correspond to the moment of physical contact
with the object. We argue that actor-object states carry im-
portant visual information about underlying interactions.

• We develop a robust sequence-matching method that toler-
ates significant amount of noise in video sequences. This
method is based on a dynamic programming procedure
for robust alignment of time series. We propose a sub-
sequence pattern-discovery algorithm that extracts actor-
object states at the detail level of individual body parts.
Extract pattern subsequences are then used for interaction
recognition.

• We propose a solution to the problem of recognizing prim-

2

itive interactions between human and objects. Our method
combines motion and shape appearance information
extracted from videos. Our experiments are performed
on a new actor-object interactions database that is made
publicly available from the authors’ website:
http://www.cs.fit.edu/~eribeiro/actor_object_

interactions/

The remainder of this paper is organized as follows. In Sec-
tion 2, we comment on the related literature. In Section 3, we
introduce our interaction-representation approach. We describe
our interaction learning algorithm in Section 4. In Section 5,
we present our experimental results. Finally, conclusions are
presented in Section 6.

2. Related Work

In general, activity analysis can be performed at two different
levels of granularity. The first of these is the low-level activ-
ity recognition. This level focuses on the analysis of atomic
events (e.g., “walking”, “pushing a toy car”). The second
level is the higher-level activity analysis. Here, it is often as-
sumed that a series of low-level events have been previously
detected. The higher-level analysis is usually semantic-based
and aims at recognizing complex activities such as “greeting
a person” or “preparing a toast”. Despite various attempts by
the computer vision community to model complex human ac-
tivities [2, 3, 4, 5, 6, 7], limited attention has been dedicated
to human-object atomic interaction recognition. As a result,
higher-level activity recognition approaches tend to be based on
information regarding primitive interactions that is either pro-
vided manually, by means of reference points [5, 8] or by using
tag data [2]. At the same time, some recent works suggest that
combination of motion information with the information about
the context in which an activity is happening improves recogni-
tion [9].

Lower-level activity recognition is often named action recog-
nition, focusing mainly at recognizing primitive activities. Re-
lated approaches can be grouped into data-driven and model-
based methods. Data-driven approaches operate directly on
the data. For example, Dollar et al. [10] classify actions in
the space of extracted spatio-temporal features using a support-
vector machine classifier. Leo et al. [11] describe an unsuper-
vised clustering algorithm for motion classification using his-
tograms of binary silhouette’s horizontal and vertical projec-
tions. These methods are computationally efficient and achieve
good classification performance. However, data-driven meth-
ods may be inadequate in scenarios where local image features
are highly ambiguous. On the other hand, model-based ap-
proaches explicitly include higher-level knowledge about the
data. Despite their computational and mathematical elegance,
the performance of model-based approaches strongly depends
on both the choice of model and the availability of prior infor-
mation about the data at hand. Graphical models [12, 13] rep-
resent a suitable solution to this problem as they allow for ef-
ficient learning and inference techniques while simultaneously
providing a span of models with rich descriptive power.

Interest in the problem of recognizing primitive interactions
between humans and objects has increased in the past five years.
An effort in this direction was made by Gupta et al. [14]. They
present a Bayesian approach that unifies the inference processes
involved in object recognition and action recognition. The
method simultaneously estimates object type, location, move-
ment segments, and the effect of movements on objects. How-
ever, interactions here are limited to those that can be described
in terms of a sequence of reach motion, trajectory-like manipu-
lation motion, and object reaction. Similar interaction structure
was considered by Kjellstrom et al. [15]. Peursum et al. [16]
suggest the importance of action understanding in object recog-
nition tasks. In their object recognition method, they use human
activity to infer both the location and identity of objects without
any shape analysis. Similarly, Moore et al. [17] designed a sys-
tem where Hidden Markov models of human motion are com-
bined with object information within a Bayesian action recog-
nition system. While this early work is limited to object infor-
mation being manually provided in the form of bounding re-
gions, it is consistent with results obtained by Gupta et al. [14],
and suggests that both motion and object information should
guide interaction recognition. The idea that action information
improves object recognition is also supported by studies using
objects’ functional parts [18, 19, 20].

Video-based analysis of human activities is often performed
using trajectories of tracked objects (e.g., body parts, vehi-
cles, etc.) [21, 22]. Related learning and inference meth-
ods require reliable measures of trajectory similarity. In this
case, trajectories can be treated as sequential data that can
be analyzed by pattern-matching methods such as Hidden-
Markov Models (HMM) and Dynamic-Time Warping (DTW).
HMM is a powerful probabilistic time-series representation
commonly used in motion recognition approaches [23, 24].
Another popular sequence-matching approach used in human-
motion recognition is the Dynamic-Time Warping (DTW) al-
gorithm [25, 26]. DTW provides a way to match temporally
misaligned sequences using dynamic programming [27]. Sensi-
tivity to abrupt changes in amplitude is a key problem in DTW-
based sequence matching. A less sensitive sequence alignment
method is the Longest Common Subsequence (LCSS) algo-
rithm [28].

In this paper, we focus ourselves on the problem of recogniz-
ing human-object atomic interactions. We propose an algorithm
that, given two misaligned sequences of static features, dis-
covers short-term constrained interactions pattern subsequences
that are associated with actor-object states as defined in this pa-
per. The output of our method is expected to serve as an input
to higher-level activity recognition algorithms.

3. Actor-object States at the Body-Part Level

We will now make use of the actor-object state concept to
develop an algorithm for the recognition of atomic actor-object
interactions. We commence by summarizing the actor-object
state concept based on the description and example provided in
Section 1.

3

A

C

A

B
C

time

x

y

B

D

D

Figure 3: Interaction representation. Blue curve represents a spatio-temporal trajectory (image coordinates + time). Red curve shows the actual tracked trajectory
superimposed on a frame of the video sequence (dynamic information).

Actor-Object States – Let us consider a number of different
persons (actors) performing the same physical interaction with
an object (e.g., touching, manipulating). The actors’ motion
and spatial appearance configuration (shape) may differ consid-
erably before and after the interaction. However, at the moment
of physical contact, the actors’ motion and appearance become
constrained by the target object. We call this constrained spatio-
temporal configuration the actor-object state.

In this section, we propose an approach in which human-
object interactions are represented by a combination of image
patches and velocity information extracted along tracked body-
point trajectories. Measurements performed on body-point tra-
jectories provide a good description of the underlying motion.
By extracting spatial subregions around each tracked body-
point, we can obtain a representation of the appearance infor-
mation in the video. Thus, a human-object interaction can be
represented by two main components. The first component con-
sists of point-trajectory measurements describing the underly-
ing motion. The second component consists of a sequence of
local appearance descriptors extracted along the corresponding
trajectory.

LetV = {T1, . . . ,TK} represent a set of body-point trajecto-
ries tracked from videos of a human-object interaction. We as-
sume the availability of a set of trajectories obtained by tracking
interest points on the body. These trajectories can be obtained
using a feature-tracking method [29]. According to the actor-
object state concept, trajectories Ti will be constrained during
the physical contact with the target object. We argue that sub-
sequences containing static and motion features extracted along
the trajectory Ti occurring during these constrained actor-object
states are descriptive of the specific interaction type. As a re-
sult, a human-object interaction can be represented by the set

Figure 4: Sequence of extracted patches (appearance). First row: patches; Sec-
ond row: edge maps; Third row: distance transform of the edge maps. Dashed-
line rectangle include frames describing the moment of contact. Number of
frames was reduced for illustration.

of feature subsequences {Ti} extracted along the trajectories at
the moments of constrained actor-object states, and given by
Ti = {(ai,1, . . . , ai,Ni), (vi,1, . . . , vi,Ni)}, where Ni is the number of
body part-level actor-object states for the trajectory Ti. Here,
ai = (ai,1, . . . , ai,Ni) is the sequence of feature vectors repre-
senting the local image appearance, and vi = (vi,1, . . . , vi,Ni) is
the sequence of instantaneous velocities obtained from Bezier
approximations of the underlying trajectory. Figure 3 illustrates
our actor-object interaction representation. Notice that different
trajectories may have different number of actor-object states.
This leads to a flexible interaction model as different body parts
may be constrained by the target object at different time peri-
ods during a single interaction. For simplicity, we assume that
the trajectory-correspondence problem is resolved, and the ex-

4

tracted trajectories are continuous. Additionally, representing
the motion-dynamics information with velocities allows for a
translation-invariant representation. It is worth pointing out that
the feature vector a can be obtained in a number of ways [30].
We use the distance transform described in [31] to represent
image subregion appearance. Figure 4 shows an example of the
sequences of static features extracted along the tracked point-
finger trajectories for two individuals performing “push a car”
interaction. Frame subregions corresponding to actor-object
states are indicated by the dashed-line rectangles.

Our interactions classification method is based on a robust
sequence-matching technique. There are two main tasks in our
algorithm. First, we discover the subsequences of Ti that cor-
respond to the actor-object states. Secondly, we classify inter-
actions by determining the similarity between the discovered
subsequences. Each of the two components in Ti is a sequence
representing local appearance changes and motion dynamics of
the underlying interaction. The information in each sequence
is compared individually based on a weighted average of sim-
ilarity scores obtained from our pattern discovery method de-
scribed later in this paper. In the description that follows, the
subsequences containing actor-object states are the pattern sub-
sequences in our approach. Depending on the type of informa-
tion under consideration, the patterns are subsequences of the
motion measurements or appearance descriptors. We will re-
fer to the subsequences that do not contain actor-object states
as non-pattern subsequences. Next, we present an iterative al-
gorithm for extracting subsequence patterns corresponding to
actor-object states.

4. Discovering Actor-Object States Using Robust Sequence
Alignment

Our pattern-discovery method is a robust sequence-
alignment algorithm based on dynamic programming. Our
main goal is to be able to discover actor-object states repre-
sented by data sequences extracted from the tracked body-part
trajectories as described in Section 3. Sequence alignment has
been widely used for human motion recognition [32, 33, 34].
However, in the case of human-object interactions, only limited
portions of the sequences will align. These portions usually cor-
respond to the constrained actor-object states, and are the tar-
get pattern sequences we aim at discovering with our method.
Additionally, real-world tracking data can be distorted by track-
ing errors, abrupt variations in illumination, and other sources
of noise. This will cause significant problems for DTW-based
methods as these methods will necessarily assign correspon-
dences to points outside the pattern of interest. We illustrate
this problem with an alignment example. Let us consider the
pattern described by the two sequences X and Y shown in Fig-
ure 5(a). A good-quality alignment is produced by the DTW
algorithm (Figure 5(b)). As an example, we corrupted both pat-
tern sequences with 10% random additive noise and inserted
them into arbitrary sequences. The noise distorted parts of the
sequence into non-pattern sequences. Resulting sequences are
shown in Figure 5(c). The time interval corresponding to the
pattern subsequence is shown in the plots’ non-shaded central

region. Figure 5(d) shows the point-correspondences produced
by DTW. Notice how points outside the central pattern of inter-
est, as well as noisy points, are involved in the DTW’s warping
function.

The data presented in the above example is similar to that
obtained for human-object interactions and shown in Figure 2.
More specifically, at the moment of physical contact with
the object, the tracked trajectories are more likely to become
aligned as the actor is constrained by the target object. In
this paper, we assume that actor-object states mostly appear
in the inside portions of the tracked trajectories. Our pattern-
discovery algorithm is divided into two main steps. First, it
performs an approximate sequence alignment using a dynamic
programming forward-alignment technique. This alignment is
achieved while minimizing the inclusion of points outside pat-
tern subsequences (i.e., points in the grey region of Figure 5(c)).
In this step, the initial location of the pattern subsequence is
determined. In the second step, a backward alignment is per-
formed on the subsequence extracted from the previous step.
The algorithm iterates between these two steps until conver-
gence. Details of the steps are provided as follows.

4.1. Step 1 – Approximate Sequence Alignment

4.1.1. Dynamic Time Warping
We begin by describing the traditional dynamic-time warping

algorithm (DTW) [25]. The alignment between two time series
X = {xi}

M
i=1 and Y = {y j}

N
j=1 of lengths M and N, is given by the

point-correspondences W = {wk}
K
k=1 (also called warping path),

where max{M,N} ≤ K < M + N. Here, wk = (ik, jk), and ik and
jk are indices from X and Y, respectively. The elements of W
are chosen to minimize some criterion (e.g., average pairwise
point distance). The DTW’s warping path is subject to three
main constraints: (i) every point in both time series is used in
the warping path, (ii) points in W must be monotonically spaced
in time, and (iii) the warping path must be continuous. The
optimal warping path is the one that minimizes the following
warping cost:

C(X,Y) = min

√√√ K∑

k=1

Dwk

 , (1)

where D is a matrix of the pairwise distances between all points
in X and Y. Equation 1 can be solved by dynamic programming
using the following recursion:

Ci, j = Di, j + min
{
Ci−1, j,Ci, j−1,Ci−1, j−1

}
, (2)

where C is a M×N warping cost matrix, and Ci, j is the minimum
warping cost between time series of lengths i and j. Once C is
computed, the warping path W = {wk}

K
k=1 can be obtained by a

greedy search starting from CM,N and ending in C1,1. With the
point-correspondence assignments at hand, the distance mea-
sure between two sequences can be determined by:

d(X,Y) =

∑K
k=1 Dwk

K
. (3)

5

(a) Original sequences. (b) Standard DTW Alignment (Original sequences).

(c) Distorted pa<ern inside non‐pa<ern sequences.

(d) Standard DTW Alignment (Altered sequences)

X
Y

X
Y

X
Y

X
Y

Figure 5: Applying the traditional DTW algorithm to noisy sub-pattern matching. (a) Original pattern subsequences. (b) DTW Correspondence assignment. (c)
Pattern subsequences were perturbed with 10% random noise and inserted into non-pattern sequences. (d) DTW correspondence assignment for the sequences in
(c). Non-shaded regions correspond to the noisy original pattern subsequences. (Sequences in (b), (c), and (d) were vertically shifted for display purposes only)

Here, Dwk is the cost of assigning correspondences wk, and is
usually calculated as the Euclidean distance between points xik
and y jk . Next, we describe the details of our sequence matching
algorithm.

4.1.2. Robust Sequence Matching
We propose a Robust Sequence-Matching algorithm (RSM)

that produces approximate alignment of sequences. In compar-
ison with the DTW, our algorithm produces fewer matches on
the subsequences without actor-object states (i.e., non-pattern
subsequences), and is less sensitive to noise. We impose two
constraints that improve the alignment robustness. The first
of them is the strict temporal monotonicity given by ik <
ik+1, jk < jk+1, ∀ k. This constraint ensures the original se-
quences’ temporal order, and prohibits multiple correspondence
assignments for a single point. The second constraint in our
alignment method helps produce fewer matches on points be-
longing to the non-actor-object state portions of the sequences
by allowing for non-continuous correspondences along the time
series.

Our method uses dynamic programming, and consists of two
main steps. First, a cost matrix C is built using a recursive ac-
cumulation function of the pairwise point distances Di, j. Sec-
ondly, the optimal warping function is determined by tracing
back the minimum cost path in C. In order to produce fewer
matches on the non-pattern subsequences, we relax the warp-
ing path continuity constraint of the original DTW algorithm.

(a) (b) (c)

Figure 6: Components of the RSM algorithm. (a) Cost matrix computation
strategy for r = 3. (b) Form of the cost matrix for r = 2 with only dark region
elements computed. (c) Example of the slity matrix R computed for r = 2.

This is accomplished by the following cost matrix calculation:

Ci, j = Di, j + min
m, n

Ci−m, j−n, (4)

where m = 1, . . . , r and n = 1, . . . , r, and r is the size of a lo-
cal constraint window representing the range of points that the
algorithm is allowed to involve in the computation. The graph-
ical representation of the scheme for the cost matrix element
Ci, j is shown in Figure 6(a). The form of Equation 4 does not
require computation of all elements in matrix C. Figure 6(b)
displays the structure of the cost matrix with the dark region
corresponding to the filled elements. Equation 4 prohibits mul-
tiple correspondence assignments to a single point while allow-

6

ing for discontinuities in the warping path. The procedure for
computation of matrix C is given in Function 1.

Function 1: ComputeCostMatrix(D, r)
Input: Distance matrix D for sequences X and Y
Size r of the local window
Output: Cost matrix C
Declare C = ∞ of size M × N1
C1,1 = D1,12
for i = 2 to M do3

for j = 2 to N do4
Ci, j = Di, j + minm,n Ci−m, j−n, where m = 1, . . . , r and5
n = 1, . . . , r

end
end

Intuitively, an element Ci, j of the cost matrix C represents the
cost of matching subsequences up to the pair of points (i, j) such
that the temporal distance between two consecutive matches
does not exceed r. Stated more formally, we have wk = (i, j)
and wk+1 = (i′, j′), where i < i′ ≤ i + r and j < j′ ≤ j + r.
The procedure in (4) is biased towards short but good matches.
Overly sparse matchings may not provide optimal performance
and bias toward longer matches must be introduced. This bias
is enforced at the stage of computing the path through the cost
matrix C, and is described in detail in Function 2. The ap-
proach is depicted in Figure 7. Figure 7(a) represents two se-
quences distorted by noise. The figure assumes that the cor-
respondences were traced from the end of the sequences up to
the pair of points (Z, z). The submatrices in Figure 7(b) corre-
spond to the subsequences (A, B,C,D, E,Z) and (a, b, c, d, e, z),
and are as follows: pairwise distance submatrix Ds, dynamic
programming cost submatrix Cs, and the reachability subma-
trix Rs. The M × N reachability matrix R establishes the notion
of proximity of pairs of matches, and for any given pair, Ri, j

encodes the direction of motion in the cost matrix toward the
origin of the matrix. In practice, Ri, j represents the maximum
number of point-correspondence pairs that is possible to assign
for a subsequence starting with the pair (1, 1) and ending with
(i, j). The reachability matrix R is given by the following recur-
sive equation:

Ri, j = 1 + max
m,n

Ri−m, j−n, (5)

where m = 1, . . . , r and n = 1, . . . , r. An example of the reach-
ability matrix computed for r = 2 is shown in Figure 6(c). The
regions marked with −∞ correspond to the locations in the cost
matrix C that cannot be reached from the matrix origin. The
reachability matrix can be computed efficiently using the corre-
spondences computation procedure given in Function 2. Note
that, in Figure 7(b), both Cs and Rs are computed for r = 2.

For a non-square matrix, R, there will be several elements
that have the maximum value. We begin computation of the
warping path starting with the element (i, j) that corresponds
to the largest value in the reachability matrix while having the
smallest associated cost. Formally, let Ω = {(̂k, l̂) : (̂k, l̂) =

arg maxk,l Rk,l} be a set of matrix elements corresponding to the
largest values in R. For non-square matrix R there will be more
than one element in Ω (e.g., Figure 6(c)). Then, the starting

Function 2: TraceCorrespondences(D, C, r, σ)
Input: Distance matrix D for sequences X and Y
Cost matrix C
Size r of the local window
Threshold σ on the maximum tolerable distance between
two correspondence points
Output: Point-correspondences W

// Initialize Reachability Matrix R
Declare R = −∞ of size M × N1

R1,1 = 12

for k = 2 to min {M,N} do3

Ri,k = k, where i ∈ [k, ..., k + (k − 1) ∗ r]4

Rk, j = k, where j ∈ [k + 1, ..., k + (k − 1) ∗ r]5

end

// Calculate correspondences W
Declare empty lists W of point-correspondences6

(i, j) = arg mink,l Ck,l, s.t. Ri, j = maxk,l Rk,l7

Add pair (i, j) to the head of list W8

while i > 1 and j > 1 do9

Obtain a set of candidate coordinates (m, n), where10

m ∈ [i − r, ..., i − 1] and n ∈ [j − r, ..., j − 1]
if Dm,n ≥ σ,∀m,∀n then11
// Distance values too high. Choose the direction
of smallest cost.
(i, j) = arg minm,n Cm,n12

else
// Some distance values are acceptably small.
Select the pair that locally maximizes the
number of matches.
(i, j) = arg maxm,n Rm,n, s.t. Di, j < σ13

end
Add pair (i, j) to the head of the list W14

end

element is found using the following equation:

(i, j) = arg min
(k,l)∈Ω

Ck,l. (6)

If the two sequences under consideration are of the same length,
then there will be a single maximum element in the square ma-
trix R, and, the solution of Equation 6 will correspond to the
end-points of the sequences. For two sequences of different
lengths, the starting element (i, j) will correspond to the end-
point of the shorter sequence, and a point from the longer se-
quence that may not necessarily be the end-point. For example,
consider two sequences whose matrix R is shown in Figure 6(c).
There are two elements in the matrix R that correspond to the
largest value in R (i.e., element (16, 15) and element (15, 15)).
Depending on the associated costs, the starting element can be
either (16, 15), which corresponds to the end-points of the two
sequences, or (15, 15), which corresponds to the end-point of
the shorter sequence, and to the next to end-point of the longer
sequence.

When tracing point-correspondences using the cost matrix
C, we introduce the parameter σ to represent the maximum tol-
erable distance between pairs of points in the final correspon-
dences set. In this case, when tracing the sequence of matches
for a given correspondence pair (i, j), we obtain candidate

7

Figure 7: Point-correspondence assignments using RSM. (a) Two perturbed sequences. (b) Data structures in our algorithm: distance submatrix Ds, cost submatrix
Cs, and reachability submatrix Rs. (c) Example values of the algorithm parameters. The magnitudes of parameters σ and r in (c) are at the same scale as the figures
(d,e,f). In addition, the color value of σ is also provided. (d,e,f) Example of obtaining the next three correspondence pairs given the most recent correspondence.
The tables in (d,e,f) show the next candidate correspondence pairs. The cells for the correspondence pairs assigned so far are marked with the cross. (The figure is
best viewed in color.)

matches (m, n) where m ∈ [i−r, ..., i−1] and n ∈ [j−r, ..., j−1].
The selection of candidate correspondence pairs is performed in
the same way as in Function 1. Among the values Dm,n such that
Dm,n ≤ σ, we select the pair (m, n) that satisfies the following
equation:

(i, j) = arg max
m,n

Rm,n , s.t. Di, j < σ. (7)

Equation 7 can be interpreted as selection of the “nearest” cor-
respondence that satisfies Di, j < σ, where the proximity be-
tween points is encoded in matrix R.

The maximization in (7) results in the selection of the next
acceptable pair of matches that is closest to the last assigned
correspondence pair (i, j). This introduces the necessary bias
towards denser matchings. Consider the example in Figure 7.
Assuming that the most recent point-correspondence assign-
ment was (Z, z), Figures 7(d), (e) and (f) provide an example
of obtaining the next three correspondence pairs given the pa-
rameters in Figure 7(c). Figure 7(d) shows the case for which
more than one candidate matches have acceptable distances. In
the example, the pairs (A, a) and (A, b) have corresponding dis-
tance values DA,a < σ and DA,b < σ. However, the pair (A, a)
is preferable as it maximizes the local matching density. The
fact that pair (A, a) is closer to the pair (Z, z) is reflected in the
corresponding values of the slity matrix (i.e., RA,a = 13 and
RA,b = 12). In the case when all values Dm,n are greater that
σ, we select the pair corresponding to the smallest cost Cm,n.
The use of the cost matrix C (rather than the distance matrix D)
when no candidate pairs have acceptable distances is key to our
algorithm. Intuitively, the cost matrix C encodes the smallest
cost of matching highly noisy subsequences. Thus, when none
of the values Dm,n are acceptable, the algorithm selects the di-

rection of the smallest cost. In this way, the matching algorithm
is able to balance dense and low-cost matchings. An example
of the above scenario is depicted in Figure 7(e). Here, none of
the pairs (B, b), (B, c), (C, b) and (C, c) have the acceptable dis-
tance. Therefore, the candidate pair with the smallest cost is se-
lected (i.e., the pair (D, c)). Here, the pair (D, c) also represents
the smallest distance DD, c. Finally, the example in Figure 7(f)
displays another case in which more than one candidate pair
have acceptable distance values. Again, the pair locally maxi-
mizing the matching density is chosen.

Our sequence alignment algorithm is effective in discarding
noisy points. As an example, consider the two noisy sequences
from Figure 8(a). The figure shows alignment results obtained
for values r = 2 and r = 3. In both plots, discontinuities in the
matches represent noisy data points. When r = 2, a disconti-
nuity cannot span over more than one point (i.e., frame). Thus,
one of the noisy points at t = 11 was assigned a correspon-
dence (Figure 8(a)). Increasing the value of r allows us to filter
out noisy points (Figure 8(b)). The results also depend on the
choice of the parameter σ. An empirical strategy for selecting a
good σ value will be discussed in the end of this section. With
point-correspondence assignments at hand, we can calculate the
distance measure between two sequences using Equation 3.

4.1.3. Empirical Selection of Parameter σ
For noise-free well-aligned sequences X and Y, and for all

M × N corresponding pairwise distance values, we expect at
most min{M,N} pairs to have close-to-zero distance values.
Consequently, the value of σ is selected such that at least
min{M,N} elements in matrix D are below σ. Following this
strategy, σ will be different for different pairs of sequences,
and will depend on the level of correlation between the data

8

(a) RSM alignment for r = 2. (b) RSM alignment for r = 3.

(c) RSM alignment for r = 2. (d) RSM alignment for r = 3.

Figure 8: Example performance of the RSM algorithm for the sequences in Figure 5. Point-correspondences obtained for r = 2 (a) and r = 3 (b).

points. We acknowledge that this empirical approach to select-
ing σ may be not optimal for a particular dataset. Moreover,
from our experience, one can achieve a slightly better recog-
nition performance on leave-one-out cross-validation experi-
ments by performing a sweep over possible σ. Nevertheless,
the improvement in recognition performance using optimal σ
in our experiments was not significant.

4.2. Step 2 – Extracting Actor-Object States

The sequence matching procedure described above provides
low-density correspondence assignments for highly dissimilar
subsequences. We use this property to help discard highly dis-
similar portions of sequences. More specifically, we propose
to iteratively remove subsequences that produce low-matching
densities. For this, we define the following measure of match-
ing density at position i in sequence X:

ρX
i =

1
s + 1

s−1∑
i=0

δ̃(i − s,WX), (8)

where s ∈ N is the moving window size, and WX is the set of
indices in X that were assigned correspondence pairs. The func-
tion δ̃ is a presence function that tests whether a given integer
is an element of a specific integer-valued vector, and is defined
as:

δ̃(i,WX) =

{
1, i ∈ WX
0, otherwise. (9)

The matching density ρY
j at position j of sequence Y is de-

fined similarly in terms of WY (i.e., the set of Y indices that
were assigned correspondence pairs). We use the above density
measures to guide a subsequence-removal process based on a
minimum density threshold, λ. We remove low-density match-
ing subsequences from the beginning and end of both sequences
X and Y. In practice, we perform the sequence matching back-
ward and forward while removing the low-density regions at

the end of both sequences. The iterative pattern discovery pro-
cedure is described in Function 3.

Figure 9 shows four iterative steps of the pattern-discovery
algorithm for two bell-shaped patterns. Here, the bell-shaped
patterns correspond to the actor-object states of interest. While
there is a distinct bell-shaped pattern inside the sequences, the
subsequences outside the pattern of interest are considerably
different. The figure shows iterations for r = 3 and matching
density threshold λ = 0.8. For each iteration, the plots display
the point-correspondence assignments, distribution of matching
densities calculated for s = 1, and, finally, the sequences with
low-matching density regions removed. During Iterations 1 and
3, matching is performed in a forward manner, while matching
in Iterations 2 and 4 takes place backward. Notice that, in the
matching density plot of Iteration 1, there are regions both at
the beginning and the end of the sequences that have matching
densities below the acceptable valueσ. Nevertheless, since Iter-
ation 1 is performed in a forward manner, only the low-density
regions at the end of sequences are removed. As shown in Fig-
ure 9, the pattern subsequence was correctly recovered during
the fourth iteration.

Function 3: DiscoverPattern(D, λ)
Input: Distance matrix D for sequences X and Y
Threshold λ on the acceptable matching density
Output: Pattern-based sequence distance d

repeat1
//Match current sequences
W = MatchSequences(D)2

// Extract pattern subsequence
Calculate matching densities ρX and ρY3
Assign eX = max k, s.t. ρX

k ≥ λ4
Assign eY = max k, s.t. ρY

k ≥ λ5
D = DeX ...1,eY ...16

until W does not change ;

Calculate sequences distance d =

√∑K
k=1 Dwk

K

9

Figure 9: Example of the iterative pattern discovery.

4.3. Actor-Object Interaction Classification

Once a similarity measure between trajectories is established,
a nearest-neighbor classification score can be obtained for every
trajectory and every information type (i.e., motion and appear-
ance). Given a set of L training video sequences (V1, ...,VL)
and a test sequence V̂, the final classification score is obtained
as the weighted linear combination of individual scores:

γ =

K∑
i=1

αA
i dA

i +

K∑
i=1

αM
i dM

i , (10)

where dA
i is the nearest-neighbor classification score obtained

for the appearance data (A) extracted for the i-th subtrajectory
Ti, and is given by:

dA
i = min{d(̂ai, a1

i), . . . ,d(âi, aL
i)}. (11)

Similarly, dM
i is the nearest-neighbor classification score ob-

tained for the motion data (M) extracted for the i-th sub-
trajectory Ti, and is given by:

dM
i = min{d(̂vi, v1

i), . . . ,d(̂v j, vL
i)}. (12)

The coefficients αA
i and αM

i are calculated as the inverse of the
average distance between the test sequence and the training se-
quences:

αA
i =

1
1
L
∑L

j=1 d(̂ai, a j
i)

and αM
i =

1
1
L
∑L

j=1 d(̂vi, v j
i)
. (13)

Equations in (13) are the normalizaters for classification scores
obtained for the two information types.

5. Experimental Results

Our experiments are divided into three main parts. In the
first part of our experiments, we test our method on a set of
synthetic sequences as well as on sequences of human motion
silhouettes disturbed with synthetically generated occlusion ef-
fects. Then, we demonstrate the effectiveness of our pattern
discovery method for actor-object interaction recognition.

5.1. Synthetic Sequences
While our proposed RSM algorithm is designed to be a

part of the pattern-subsequence discovery process, it is worth-
while to evaluate its performance for the alignment of noisy

10

(a)

(b)

Figure 10: Pattern discovery on synthetic sequences. Final point-correspondence assignments obtained for r = 2 (a) and r = 3 (b).

sequences. We began by testing our pattern extraction method
on two synthetic patterns disturbed by noise. The first pattern
is shown in Figure 10. In this experiment, we show the effect
of the choice of r in the pattern discovery process. For both
r = 2 and r = 3 the inside pattern was correctly discovered.
Additionally, most of the noisy points were automatically ex-
cluded from the final matching. However, due to small value
of r in Figure 10(a) a correspondence pair with large cost was
included into the final matching.

Another experiment on synthetic sequences was performed
to evaluate the method for matching noisy and misaligned se-
quences. Here, 15% of the points in the original sequences from
Figure 9 were perturbed with random noise (Figure 11(a)). Fig-
ure 11(b) displays the final correspondence assignments pro-
duced by our pattern-discovery algorithm. Figure 11(c) dis-
plays the interpolation of the matches over missing points in-
side the pattern. The figure suggests that the target pattern can
be well discovered even in the presence of noise.

Figure 11: Pattern discovery for sequences in Figure 9 distorted by noise: (a)
Noisy input sequences, (b) correspondence assignment, and (c) missing points
interpolation.

5.2. Human Action Classification Under Occlusion

We tested the robustness of our algorithm on a human action
classification task. Here, we were especially interested in ob-
serving the effect of the presence of occlusion and prolonged
loss-of-track. To accomplish this goal, we provide a compar-
ison between our sequence-matching algorithm with existing
alternative approaches (i.e., DTW and longest common subse-
quence (LCSS) algorithms) using motion patterns acquired by
a single static camera. Motion sequences from the Weizmann’s
action dataset [35] were used for evaluation. We want to em-
phasize that in this specific set of experiments we assess the per-
formance of of the sequence alignment component (i.e., RSM)
of our pattern-discovery approach.

5.2.1. Video Data Preparation
In this experiment, pose registration was performed by iso-

lating the foreground silhouette using a simple background-
subtraction operation. A more robust foreground-segmentation
method can be used [36] whenever a static background is not
available. A bounding box enclosing the foreground pixels was
constructed for each frame, and the largest frame size was cho-
sen to represent the standard frame size for the entire sequence.
Finally, all remaining frames were aligned (w.r.t. the center
pixel) to the center of the standard selected frame. Once reg-
istration was completed, all silhouettes were converted into a
smooth gray-level gradient using a distance transform [31]. In
our method, the highest distance transform values are assigned
to the silhouettes’ most medial-axis points. The values in all
resulting images were then re-scaled to a predefined maximum
value (e.g., 255). The result of this preprocessing step is illus-
trated in Figure 13(bottom row).

11

5.2.2. Classification
The medoid [37] of a set of training sequences was obtained

to serve as the model for a specific motion. We adopted a leave-
one-out evaluation scheme by taking videos of one subject as
testing data, and using sequences of the remaining subjects for
training. Additionally, only the best match for each model was
considered when making the labeling decision. Short-term loss-

(a)

(b)

Figure 12: (a) Evolution of recognition performance with the occlusion level for
randomly occluded individual silhouettes; (b) Simulation of prolonged loss-of-
track due to moving rigid occlusion; The percentages indicate the amount of
consecutively perturbed frames.

of-track was simulated by adding vertical bars to some video
frames (Figure 13).

In order to assess the robustness of our method, we grad-
ually increased the percentage of perturbed silhouettes in the
sequences (i.e., silhouettes with vertical bars at random posi-
tions). The distance-transformed silhouettes were resized to
40×40 pixels. The dimensionality of the data was further re-
duced to 40 using principal component analysis. For a given
pair of sequences, the threshold value σ on the maximum tol-
erable distance was selected following the empirical selection
procedure described in Section 4.1.3. Matching results for dif-
ferent values of r are presented in Figure 12(a).

Figure 13: Simulated loss-of-track and its effect on the major eigenvector PCA
projection. Occluded frames: 16 through 20.

This experiment was repeated 25 times. The curves show
the evolution of the average recognition rates. Our method
achieved 98.8% accuracy for the noise-free silhouettes. This
was higher than 96.3% accuracy obtained using the standard
DTW approach. As the amount of occlusion increases, our ro-
bust matching approach significantly outperforms the classical
DTW. For example, our method was able to achieve 63.7%
recognition rate even when 50% of the silhouettes were oc-
cluded, while the DTW could only achieve a 50.6% recogni-
tion performance. Additionally, Figure 12 shows a comparison
with the LCSS algorithm. LCSS’s performance is affected by
the choice of its parameters (i.e., threshold on the maximum
tolerable inter-point distance, and the width of a lookup win-
dow [28]). We performed a parameters sweep to find LCSS
parameters such that the average recognition accuracy using
LCSS is the highest. The plot in Figure 12(a) suggests that for
smaller noise amounts, the LCSS algorithm performed better
than our proposed RMS algorithm. At the same time, when the
noise level exceeded 35%, our sequence-alignment algorithm
outperformed both DTW and LCSS.

In our second experiment, we simulated prolonged loss-of-
track caused by a slow moving rigid object. In this case, the
occluding object was assumed to be moving with horizontal
velocity v relative to the person. Figure 13 shows an exam-
ple of the effect of the moving occlusion with relative veloc-
ity of 10 pixels/frame in the direction opposite to the person’s
motion. It can be seen from the figure that the occlusion sig-
nificantly distorts the input signal. However, unlike the previ-
ous experiment, the occlusion spans over a non-unit period of
time and is equivalent to the prolonged loss-of-track. Loss-of-
track duration was proportional to the percentage of occluded
silhouettes. Figure 12(b) shows the evolution of the recogni-
tion rate as the percentage of occluded frames increases. Re-
sults are shown for the classical DTW, LCSS, and for the RSM
with local window r = 3, r = 5, and r = 7. Here, our RSM
consistently outperformed the classical DTW algorithm by a
large margin. Also, for short-duration loss-of-track that corre-

12

sponds to the low noise levels, LCSS outperformed our RSM
algorithm. However, as the number of consecutively occluded
silhouettes increases (i.e., prolonged loss-of-track), our method
was able to outperform both classical approaches. Notably, Fig-
ure 12 also suggests that both DTW and LCSS algorithms per-
formed worse when perturbed (i.e., occluded) silhouettes ap-
peared in consecutive frames. As the result, the performance of
the classical algorithms is significantly worse in Figure 12(b)
for the same occlusion noise levels as in Figure 12(a).

5.3. Recognizing Human-Object Interactions
5.3.1. Dataset

The goal of our next set of experiments is twofold. First,
we focus on assessing the validity of our proposed interaction
representation concept. Secondly, we demonstrate the effec-
tiveness of our pattern discovery method for classifying basic
human-object interactions. Vision-based human-object interac-
tion recognition is a novel problem with no widely available
datasets. We acquired our own dataset of human-object inter-
action with complex scenarios deliberately chosen to motivate
future improvements of human-object interaction methods. Ex-
ample frames from our dataset are shown in Figures 14 and 15.
It consists of eight different actor-object interaction types per-
formed by ten individuals in two different scenarios.

The interactions are “grasp a cup”, “grasp a fork”, “touch
a fork”, “grasp a spoon”, “touch a spoon”, “grasp a toy car”,
“touch a toy car”, and “push a toy car”. Every individual in-
teracted with a unique set of objects (i.e., different cups were
used by different individuals in a “grasp a cup” interaction).
The two scenarios had clean and cluttered background, respec-
tively. In the “cluttered background” scenario, the background
was changed for every individual and every interaction type.
Any two interaction types in the dataset differ in one of three
aspects: (1) different objects and different motions (i.e., “grasp
a cup” vs. “touch a fork”); (2) similar objects and different
motions (i.e., “grasp a fork” vs. “touch a fork”); and (3) differ-
ent objects and similar motions (i.e., “grasp a fork” vs. “grasp
a spoon”). The choice of interactions was inspired by experi-
ments using functional neuro-imaging in humans [38, 39] to in-
vestigate human perception of hand-object interactions. These
experiments revealed the presence of specialized neuronal re-
gions for visuomotor actions such as reaching, grasping, and
touching. Sequences in our dataset were acquired with a CCD
camera at thirty frames per second rate, and video frames were
downsized to 144×180 pixels. The average number of frames in
the sequences is 24.6, with the videos of “grasp a fork” interac-
tion containing the smallest number of frames (i.e., 20 frames
on average), and videos of “push a car” interaction being the
longest (i.e., 29.4 frames on average). The dataset is publicly
available from the authors’ website 1.

5.3.2. Video Pre-Procesing and Feature Extraction
For each video from our dataset, we manually obtained point-

finger and thumb trajectories. Velocities were then extracted to

1http://www.cs.fit.edu/~eribeiro/actor_object_

interactions/

represent motion dynamics. Object appearance (i.e., fork and
spoon objects) was captured by means of subregions of size 40×
100 pixels. For each subregion, we extracted edges using the
Canny edge detector. We applied Gaussian filter smoothing to
the original edge maps. Finally, distance transform was applied
to obtain a final representation of the subregions.

5.3.3. Classification Results
Again, a leave-one-out evaluation scheme was used. In our

experiments, only the best match for each model was consid-
ered when making the labeling decision. First, we assessed our
method’s classification performance using only a single type of
information. Figure 16(a) and Figure 16(b) provide the confu-
sion matrices obtained using only either static or motion infor-
mation, respectively. The values of the algorithm parameters
were chosen to be r = 2 and λ = 0.6. Notice that, when only
motion information was used, the methods mostly misclassified
interactions having similar motion.

Finally, we combined the static and motion information re-
sults using the classifier in Equation 10. The algorithm achieved
72.5% and 58.8% recognition accuracy on the clean and clute-
tred backgrounds, respectively. In comparison, the best perfor-
mance of DTW on the clean scenario in the interactions dataset
was only 62.5%, and the best performance of the LCSS was
66.3%. We believe that the stronger performance of our method
in the interactions recognition experiment is largerly attributed
to the ability to discard irrelevant subsequences corresponding
to the beginning and to the end of interaction seqeunces. These
irrelevant subsequences do not contain information that is de-
scriptive of the specific interaction, and are misleading for tra-
ditional sequence-matching algorithms.

The method does not require a prolonged training stage and
the classifier is very simple. A more sophisticated classification
algorithm may be used to improve the recognition performance.

For two interactions of the same type performed by two dif-
ferent individuals, the lengths of the pattern subsequences (i.e.,
the number of actor-object states) extracted by our pattern-
extraction algorithm on average constituted 32.1% of the
lengths of the video sequences. In contrast, for any two se-
quences (whether or not of the same interaction type), the
length of the extracted pattern subsequence was on average only
28.3% of the original video lengths.

5.3.4. Effect of Method Parameters Selection
Next, we assesed the effect of our method’s parameters on

the recognition performance. Since the classification score in
Equation 10 is obtained as a linear combination of classifica-
tion scores obtained for static and motion information, the pa-
rameters of the pattern discovery algorithm may be different for
different information types. For these experiments, we obtained
classification results using only static appearance information
on the clean scenario of the interactions dataset.

Figure 18(a) shows evolution of the recognition performance
for different values of r. While the performance degrades with
the increase of r, it is worth pointing out that both for r = 2 and
r = 3 the recognition rates are acceptable. Decreased recog-
nition rates for large values of r may be due to the small du-

13

Figure 14: Example frames from video sequences in our interaction dataset performed in clean background scenario.

Table 1: Performance of our interaction recognition approach for appearance
subregions of different sizes (clean scenario).

subregion size recognition rate

40 × 40 55.0%
40 × 80 67.5%
40 × 100 72.5%
40 × 120 68.8%

100 × 100 62.5%

ration of the constrained motion in primitive actions (i.e., the
point finger is only in as few as six frames in the “touch car”
interaction). Figure 18(b) shows evolution of the recognition
performance for different values of the threshold λ on the min-
imum matching density. Again, one can observe several val-
ues of λ yielding high recognition rates. For large values of
λ (i.e., λ = 1), it was not always possible to achieve satisfac-
tory matching density. If the matching threshold is not met, the
algorithm will not produce a matching distance for two interac-
tion sequences. To avoid this, we prohibited the algorithm from
discarding more then 75% of the original sequences.

5.3.5. Effect of Subregion Size Selection
When performing static-subregion extraction required by our

method, the size of the subregions describing the actor-object
appearance needs to be defined. Due to the nature of interac-
tions in our dataset, the optimal subregion size in the above
experiments was found to be 40 × 100 pixels. Table 1 shows
recognition results for the clean scenario using different subre-
gion parameters.

The results in the table suggest that performance significantly
deteriorates when the size of the subregion is too small. The
main reason for this behavior is the fact that small subregions
cannot effectively capture the object’s and actor’s appearance.

Also, when using small subregions size the method learns in-
teractions with only a part of the object, rather than with the en-
tire object (i.e., learning “touch handle” interaction instead of
“touch fork” interaction). On the other hand, there are several
reasons why recognition performance drops for very large sub-
regions. First, due to small frame size in the videos it is some-
times impossible to extract requested subregion at the tracked
location. When a subregion is partially outside the frame’s
boundary, we extracted the closest valid subregion. As a re-
sult, when a tracked point is close to the frame’s boundary, the
corresponding extracted subregion may not correctly represent
the static information around the point. While we did not en-
counter this problem for smaller subregions, the classification
performance will necessarily degrade for subregions of large
sizes. Additionally, large subregions capture significant amount
of background information that can further reduce the recogni-
tion accuracy.

5.4. Detecting Interactions in Long Sequences

We also performed an experiment to access the potential of
our approach to detect specific video subsequences in longer
video sequences. We obtained a set of YouTube video se-
quences of a stirring interaction performed during cooking. We
extracted a short (i.e., 20 frames) stirring interaction in which
person performs counterclockwise stirring motion with a spoon.
Example frames along with the tracked finger trajectory are
shown in the top row of Figure 19. We then obtained a longer
sequence of stirring activity (middle rows in Figure 19) featur-
ing the same person stirring a different ingredient.

We then performed sequence matching using a sliding win-
dow of width equal to 25 frames. Figure 19 (bottom row) shows
example frames from a subsequence that yielded the closest dis-
tance measure to the counterclockwise stirring motion. Addi-
tionally, Figure 20 shows a plot of matching costs obtained for
some of the sliding windows. It can be seen from Figures 19

14

Figure 15: Example frames from video sequences in our interaction dataset performed in cluttered background scenario.

and 20 that the stirring motion subsequence that corresponds
to the lowest matching cost is visually similar to the original
counterclockwise stirring motion.

6. Conclusions

In this paper, we presented the concept of “actor-object”
states for recognition of atomic human-object interactions from
videos. We validated the concept by proposing a data-driven
approach for extracting actor-object states at the level of de-
tail of individual body parts. Interactions were represented by
a collection of image regions combined with motion trajecto-
ries velocities. Our method discovered these short-term con-
strained pattern subsequences by matching pairs of misaligned
sequences of features. We showed promising results obtained
on an acquired human-object interactions dataset. The experi-
ments suggest that the use of actor-object states allows for sat-
isfactory recognition performance.

Our pattern-discovery approach presents a deterministic sim-
ilarity measure for pairs of interaction videos and can be used
in the case of small training datasets. Although our proposed
approach is view dependent, it can be applied to many realis-
tic scenarios (e.g., static-camera surveillance systems). More-
over, complex activities often consist of sequences of primitive
actions. Obviously, allowing such system to recognize human-
object interactions significantly extends the number of target
activities that can be analyzed.

One of the promising directions for future research would
be an extension of the proposed algorithm to learning primi-
tive interactions from long video-sequences of activities, each
of which may contain many different interactions types. This
task is conceptually similar to the problem of extracting video
signemes from sign language sentences [40].

Acknowledgements

This research was supported in part by the U.S. Office of
Naval Research under contract: N00014-05-1-0764.

References

[1] Roman Filipovych and Eraldo Ribeiro. Recognizing primitive interac-
tions by exploring actor-object states. In Intl. Conf. on Computer Vision
and Pattern Recognition, Anchorage, Alaska, 2008.

[2] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. Rehg. A scal-
able approach to activity recognition based on object use. In International
Conference on Computer Vision, 2007.

[3] M. S. Ryoo and J. K. Aggarwal. Recognition of composite human activ-
ities through context-free grammar based representation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1709–1718,
2006.

[4] Masanobu Yamamoto, Humikazu Mitomi, Fuyuki Fujiwara, and Taisuke
Sato. Bayesian classification of task-oriented actions based on stochastic
context-free grammar. In International Conference on Automatic Face
and Gesture Recognition, pages 317–323, 2006.

[5] N.T. Nguyen, S. Venkatesh, and H.H. Bui. Recognising behaviours of
multiple people with hierarchical probabilistic model and statistical data
association. In British Machine Vision Conference, page III:1239, 2006.

[6] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual and
ordering constraints for recognizing complex activities in video. In IEEE
International Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2007.

[7] Sangho Park and J. K. Aggarwal. Semantic-level understanding of human
actions and interactions using event hierarchy. In CVPRW, volume 1,
page 12, 2004.

[8] Ram Chelappa, Amit K. Roy-Chowdhury, and Shaohua K. Zhou. Recog-
nition of Humans and Their Activities Using Video. Morgan & Claypool
Publishers, 2005.

[9] M. Marszalek, I. Laptev, and C. Schmid. Actions in context. Computer
Vision and Pattern Recognition, IEEE Computer Society Conference on,
0:2929–2936, 2009.

[10] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition
via sparse spatio-temporal features. In VS-PETS, October 2005.

[11] M. Leo, T. D’Orazio, I. Gnoni, P. Spagnolo, and A. Distante. Complex
human activity recognition for monitoring wide outdoor environments. In
Intl. Conference on Pattern Recognition, Vol. 4, pages 913–916, 2004.

15

(a)

(b)

Figure 16: Clean scenario recognition results (single information type). (a)
Only static shape information (68.8% recognition accuracy). (b) Only motion
information (37.5% recognition accuracy).

[12] O. Boiman and M. Irani. Detecting irregularities in images and in video.
In Conference on Computer Vision and Pattern Recognition, pages I: 462–
469, 2005.

[13] J. C. Niebles and Li Fei-Fei. A hierarchical model of shape and appear-
ance for human action classification. In Intl. Conf. on Computer Vision
and Pattern Recognition, Minneapolis, USA, June 2007.

[14] Abhinav Gupta, Aniruddha Kembhavi, and Larry S. Davis. Observing
human-object interactions: Using spatial and functional compatibility for
recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31:1775–1789, 2009.

[15] Hedvig Kjellström, Javier Romero, David Martı́nez Mercado, and Dan-
ica Kragic. Simultaneous visual recognition of manipulation actions and
manipulated objects. In David A. Forsyth, Philip H. S. Torr, and Andrew
Zisserman, editors, ECCV (2), volume 5303 of Lecture Notes in Computer
Science, pages 336–349. Springer, 2008.

[16] Patrick Peursum, Geoff West, and Svetha Venkatesh. Combining image
regions and human activity for indirect object recognition in indoor wide-
angle views. In International Conference on Computer Vision, volume 1,
pages 82–89, 2005.

[17] Darnell J. Moore, Irfan A. Essa, and Monson H. Hayes Iii. Exploiting
human actions and object context for recognition tasks. Computer Vision,
IEEE International Conference on, 1:80, 1999.

[18] Ehud Rivlin, Sven J. Dickinson, and Azriel Rosenfeld. Recognition by
functional parts. Comput. Vis. Image Underst., 62(2):164–176, 1995.

[19] Louise Stark and Kevin Bowyer. Function-based generic recognition for

(a)

(b)

Figure 17: Recognition results obtained using combination of two information
types. (a) clean background (72.5% recognition accuracy). (b) cluttered back-
ground (58.8% recognition accuracy).

multiple object categories. CVGIP: Image Understanding, 59(1):1–21,
1994.

[20] Michael Pechuk, Octavian Soldea, and Ehud Rivlin. Learning function-
based object classification from 3d imagery. Computer Vision and Image
Understanding, 110(2):173–191, 2008.

[21] Lars Reng, Thomas B. Moeslund, and Erik Granum. Finding motion
primitives in human body gestures. In Sylvie Gibet, Nicolas Courty, and
Jean-François Kamp, editors, Gesture Workshop, volume 3881 of Lecture
Notes in Computer Science, pages 133–144. Springer, 2005.

[22] Cen Rao, Alper Yilmaz, and Mubarak Shah. View-invariant representa-
tion and recognition of actions. International Journal of Computer Vision,
50(2):203–226, 2002.

[23] Christoph Bregler. Learning and recognizing human dynamics in video
sequences. In International Conference on Computer Vision and Pattern
Recognition, page 568. IEEE Computer Society, 1997.

[24] Andrew D. Wilson and Aaron F. Bobick. Parametric hidden markov mod-
els for gesture recognition. Trans. Patt. Anal. Mach. Intell., 21(9):884–
900, 1999.

[25] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cyber-
netics and Systems Analysis, 4(1):52–57, 1968.

[26] Donald J. Berndt and James Clifford. Finding patterns in time series: a
dynamic programming approach. Advances in Knowledge Discovery and
Data Mining, pages 229–248, 1996.

[27] Ashok Veeraraghavan, Amit K. Roy-Chowdhury, and Rama Chellappa.
Matching shape sequences in video with applications in human movement

16

(a)

(b)

Figure 18: Recognition results for the clean scenario obtained for various values
of r (a) and λ (b). (Obtained using static information only.)

analysis. Trans. Patt. Anal. Mach. Intell., 27(12):1896–1909, 2005.
[28] Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Ea-

monn Keogh. Indexing multi-dimensional time-series with support for
multiple distance measures. In ACM KDD, pages 216–225, 2003.

[29] Thad Starner, Alex Pentland, and Joshua Weaver. Real-time american
sign language recognition using desk and wearable computer based video.
IEEE Trans. Pattern Anal. Mach. Intell., 20(12):1371–1375, 1998.

[30] David G. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision, 60(2):91–110, 2004.

[31] A. Elgammal and C.-S. Lee. Inferring 3d body pose from silhouettes
using activity manifold learning. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, pages 681–688, 2004.

[32] Jaron Blackburn and Eraldo Ribeiro. Human motion recognition using
isomap and dynamic time warping. In Workshop on Human Motion, pages
285–298, 2007.

[33] S. Cherla, K. Kulkarni, A. Kale, and V. Ramasubramanian. Towards fast,
view-invariant human action recognition. In Computer Vision and Pat-
tern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society
Conference on, pages 1–8, 2008.

[34] Nazli Ikizler and Pinar Duygulu. Human action recognition using distri-
bution of oriented rectangular patches. In Workshop on Human Motion,
pages 271–284, 2007.

[35] Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen
Basri. Actions as space-time shapes. In Int. Conference on Computer
Vision, pages 1395–1402, 2005.

[36] Y.-L. Tian, M. Lu, and A. Hampapur. Robust and efficient foreground
analysis for real-time video surveillance. In In IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 1, page 11821187, 2005.

[37] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction

Figure 19: Detecting stirring interaction in longer sequence. (Top) Frames of a
counterclockwise stirring motion; (Middle rows) Frames of a prolonged stirring
activity; (Bottom row) Detected counterclockwise stirring in the longer activity.
The subsequence was detected inside a sliding window that starts at frame 24
of the longer sequence.

Figure 20: Sliding window detection of a stirring interaction. Matching costs
obtained inside sliding windows that start at the frames indicated by x-axis.
The minimum matching cost was obtained for a subsequence from the sliding
window that started at frame 24.

to cluster analysis. John Wiley and Sons, New York, 1990.
[38] J. C. Culham and K. F. Valyear. Human parietal cortex in action. Current

Opinion in Neurobiology, 16:205–212, 2006.
[39] Scott H. Johnson-Frey, Farah R. Maloof, Roger Newman-Norlund, Chloe

Farrer, Souheil Inati, and Scott T. Grafton. Actions or hand-object inter-
actions? human inferior frontal cortex and action observation. Neuron,
39:1053–1058, 2003.

[40] S. Nayak, S. Sarkar, and B. Loeding. Automated extraction of signs from
continuous sign language sentences using iterated conditional modes.
Computer Vision and Pattern Recognition, IEEE Computer Society Con-
ference on, 0:2583–2590, 2009.

17

