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Abstract

In this paper, we address the relatively unexplored prob-
lem of classifying texture surfaces undergoing significant
levels of non-rigid deformation. State-of-the-art texture
classification methods have demonstrated to be very effec-
tive for classifying fronto-parallel texture fields. Recently,
affine-invariant descriptors have been proposed as an ef-
fective way to model local perspective distortion in textures.
However, if the effects of local surface curvature distortion
are large, affine-invariant descriptors become unreliable.
Our contribution in this paper is twofold. First, we pro-
pose a method for learning representative basic elements of
non-fronto-parallel texture fields undergoing non-rigid de-
formations. Secondly, we demonstrate the effectiveness of
our texture learning method for the classification of non-
rigid deforming texture surfaces. We test our method on a
set of images obtained from man-made texture surfaces.

1. Introduction

In this paper, we address the problem of classifying im-
ages of non-rigid texture surfaces. In particular, we focus
ourselves on the case where the surface is covered with a
repetitive and sometimes sparse texture pattern. Addition-
ally, the observed surface is assumed to undergo significant
amounts of random curvature-induced deformation. This
distortion will cause the appearance of local texture to vary
in unpredictable ways. Perceiving and modeling the appear-
ance of repetitive textures are important visual tasks with a
number of applications including surface tracking, texture
classification, and texture synthesis. However, obtaining ac-
curate descriptions from non fronto-parallel texture fields is
not a trivial problem as the observed pattern appearance can

Figure 1. Deforming texture surfaces.

vary significantly with both the viewing geometry and the
surface orientation [17, 7, 12, 9]. This appearance variation
can be problematic for most standard texture classification
methods. Indeed, changes in local curvature produce non-
linear warping of some image regions. Consequently, tex-
ture descriptors evaluated on these warped image regions
are likely to be unreliable.

Our goal in this paper is twofold. First, we describe a
method for learning basic undistorted affine-invariant tex-
ture primitives from videos of a deforming surface. Our
texture modeling approach is similar to other methods based
on learning textons (i.e., primitive texture elements) [10, 9].
However, in our method, we propose to learn the appear-
ance of basic texture elements using distances calculated on
an isometric mapping representation [19]. This mapping al-
lows us to remove elements containing high levels of curva-
ture distortion from the learned models. A more detailed de-
scription of our texture learning method can be found in [6].
Secondly, we show how our texture model can be used for
classifying a set of novel videos of the same surface pat-
tern undergoing varying levels of free-form deformations.
Figure 1 shows samples of the textured surfaces used in the
study presented in this paper. To accomplish these goals,
we commence by investigating the distribution of extracted
affine-invariant texture descriptors on a nonlinear manifold
embedding. Here, we assume that the population of affine-



invariant descriptors lies on a lower dimensional manifold
describing mainly variations in surface orientation and cur-
vature. The learned manifold seems to describe the depar-
ture from local planarity of affine-invariant descriptors. Un-
der the low dimensional manifold assumption, we describe
a learning procedure that allows us to group repetitive tex-
ture elements while selecting the best set of candidates to
represent the actual undistorted repetitive texture compo-
nents [6]. Finally, we compare our approach with a K-
Means-based texton learning classification method for the
task of classifying videos of deforming texture surfaces.

The remainder of this paper is organized as follows.
Section 2 provides a survey of the related literature. Sec-
tion 3 describes the details of our texture primitive selection
method. The preliminary results of our study are shown in
Section 4. Finally, in Section 5, we present our conclusions
and directions for future investigations.

2. Related literature

Finding general representations for texture is a challeng-
ing problem. In fact, despite extensive research efforts
by the computer vision community, there is no currently
widely accepted method to model the complexity encoun-
tered in all available textures. State-of-the-art texture clas-
sification algorithms have successfully approached the tex-
ture representation problem by means of statistical descrip-
tors. These descriptors can be built from the response of
convolution filters [10, 20], image regions and pixel distri-
butions [9], and frequency-domain measurements [5, 2].

In this paper, we focus ourselves on the problem of
classifying texture surfaces undergoing non-rigid deforma-
tions. This a relatively unexplored computer vision prob-
lem. Indeed, most texture classification methods are based
on measurements obtained from planar fronto-parallel tex-
ture fields [10, 20, 5]. For example, Leung and Malik [10]
introduced a filter bank-based descriptive model for textures
that is capable of encoding the local appearance of both nat-
ural and synthetic textures. This method achieves impres-
sive classification rates of natural textures due to their abil-
ity to learn representative statistical histogram-based mod-
els of each texture. However, it is unclear how they would
perform on non-rigid deforming surfaces.

There has been some recent attempts to address the clas-
sification problem from images of non-rigid, non fronto-
parallel textured surfaces [17, 7, 12, 9]. For exam-
ple, Chetverikov and Foldvari [3] use a frequency-domain
affine-invariant representation for local texture regions. Re-
cent work by Lazebnik et al. [9] describe an effective al-
gorithm for retrieval and classification of non-rigid and non
fronto-parallel textures. They propose a texture classifica-
tion method based on learned texture primitives (i.e., tex-
tons) using affine-invariant descriptors. Once the texture

primitives are at hand, Lazebnik et al. perform classification
by using the Earth Movers Distance similarity measure [16]
between learned model descriptors and descriptors of new
images. This signature-based approach is indeed very ef-
fective under the assumptions of orthographic viewing ge-
ometry and low-curvature surfaces. However, for surfaces
presenting high levels of curvature deformation, the folds
and bends of the surface will significantly reduce the ability
of affine-invariant descriptors to capture accurate local tex-
ture representation. As a result, the learned appearance of
basic texture components is likely to be less representative
of the actual texture.

Depending on the curvature of the surfaces, the defor-
mation of texture elements can present a significant de-
gree of nonlinearity. This inherent non-linear behavior may
cause the clustering metrics to be incorrect. Nonlinear man-
ifold learning techniques such as Isomap [19], Local Linear
Embedding (LLE) [15], and Laplacian Eigenmaps [1] are
suitable candidates for the analysis of such deformations.
For example, Souvenir and Pless [18] characterize defor-
mations in magnetic resonance imaging. Nonlinear mani-
fold learning is also a useful technique for the synthesis of
dynamic textures. Liu et al. [11] approach the dynamic tex-
ture synthesis problem using nonlinear manifold learning
and traversing. In [6], Filipovych and Ribeiro proposed the
use of non-linear manifold learning methods for modeling
the texture deformations caused by surface curvature.

3. Our method

The method proposed in this paper extends our previ-
ous work in [6] by applying the texture learning method
to the problem of classifying non-rigid deforming surfaces.
For completeness, the main steps of the learning method are
also summarized in this section. Our classification method
is divided into two main stages. In the first stage, a model
of the basic repetitive texture primitives is learned from a
set of video frames from a training dataset. This stage does
not require the availability of fronto-parallel views of any
of the textures to be learned. The learning step aims at cre-
ating a dictionary containing the most representative prim-
itives while removing texture components that are highly
distorted by surface curvature. This learning stage contrasts
with the method proposed by Lezebnik et al. [9] in two main
points. First, we express the appearance variation in the
population of local texture affine-invariant descriptors us-
ing nonlinear manifold distances rather than the standard
Euclidean distance. Secondly, we propose a selection pro-
cess that removes learned components highly distorted by
surface curvature. The second stage of the method is a clas-
sification step that measures the similarity between texture
models. Here, the model having the maximum similarity is
considered to represent the class of the novel texture.



3.1. Learning stage.

Step 1 - Extraction of affine-invariant regions. The first
step of our algorithm consists of extracting a large num-
ber of image subregions from a set of video frames of the
observed surface. This step is subdivided into two main
parts. First, a large set of affine-invariant interest points
is detected on each image or video-frame. Here, we use
the Kadir and Brady’s salient feature detector [8] as it pro-
vides information about the affine scale of the detected im-
age features. This detector outputs elliptical image subre-
gions centered at each feature of interest. The extracted
subregions are subsequently normalized to a common scale-
invariant shape (e.g., circle). The remaining rotation ambi-
guity can be removed by representing the normalized subre-
gions using the spin-image affine-invariant descriptor pro-
posed in [9]. This descriptor is essentially a pixel gray-
level intensity histogram calculated on a scale-invariant po-
lar representation of an image subregion. It represents the
radial frequency of normalized pixel intensities. The po-
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Figure 2. Spin-image construction.

lar mapping of the pixel intensity transforms rotations into
translations. The spin-image histogram representation that
follows is translation invariant. Figure 2 illustrates the spin-
image construction process. The representation allows for
full affine-invariance. Let S = (s1, s2, . . . , sN ) be the set
of affine-invariant descriptors obtained in this step, where
N is the total number of subregions.

Step 2 - Nonlinear manifold mapping of descriptors.
This step aims at obtaining a compact representation of the
most significant repetitive patterns on the image. However,
the nonlinear nature of the distortion in the set of extracted
affine-invariant descriptors does not always allow for cor-
rect distance measurements in the original feature space.
Additionally, the spin-image descriptor itself carries a sig-
nificant level of information redundancy. To obtain a better
description of the variation in the dataset, we assume that
basic texture elements along with their nonlinear deforma-
tions lie on a low-dimensional nonlinear manifold in which
the two intrinsic dimensions of variability describe mainly
local surface orientation and curvature distortion. Based on

this assumption, we perform Isomap [19] on the original
distribution S. Isomap allows for data dimensionality re-
duction while preserving the nonlinear manifold’s intrinsic
geometry. The reduced dimension set of subregions pro-
duced by this step is given by X = (x1,x2, . . . ,xN ).

Figure 3. 2-D Isomap embedding of texture
spin-images for a deforming surface.

Figure 3 illustrates two dimensions of the learned Isomap
manifold for the local affine-invariant patch distribution.
For clarity, only two dimensions of the manifold are
shown. Superimposed samples of embedded images are
also shown. We extracted a large number of affine-invariant
descriptors from a video of the patterned surface shown in
the first column of Figure 1. The plot shows a dense clus-
ter near the center containing mostly locally planar patches.
On the other hand, nonlinearly deformed patches tend to
group themselves into clusters with respect to deformation
similarity. Finally, occluded or distorted elements form rel-
atively sparse groups with large within-class variation.

Step 3 - Learning representative texture components.
The goal of this step is to determine the most representative
classes of texture elements in X given by the previous step.
We model the distribution of affine-invariant descriptors as
a mixture of K Gaussian densities given by p(x|Θ) =∑K

i=1 αipi(x|θi), where x is an affine-invariant descrip-
tor in the Isomap manifold space, αi represent the mixing
weights such that

∑K
i=1 αi = 1, Θ represents the collec-

tion of parameters (α1, . . . , αK , µ1,Σ1, . . . , µK ,ΣK), and
pi is a multivariate Gaussian density function parameter-
ized by µ and Σ (i.e., the mean vector and covariance ma-
trix, respectively). Each mixture component represents a
set of texture descriptors of similar appearance on the im-
age. The model parameters can be estimated by using the
Expectation-Maximization (EM) algorithm [4].



In order to obtain sharper representations of the learned
texture components, we select a single descriptor from each
cluster to represent a basic texture component in the image.
In other words, a set of texture components is selected as:

τ j = arg max
xi

pj(xi|j) j = 1, . . . ,K (1)

A set of basic components is obtained by this process
and is used to create a dictionary representation d =
{τ 1, . . . , τK}. However, the nonlinear nature of the sur-
face distortion will compromise the representativeness of
some of the learned mixture components. As a result, the
learned clusters might not represent actual texture compo-
nents but a geometrically warped version of them. Next, we
propose a way to remove these non-representative elements
from our dataset of learned texture primitives.

Step 4 - Texture component model. Our main goal in
this step is to distinguish between distributions of affine
transformed basic texture elements and their nonlinearly
deformed counterparts. The nature of the nonlinear tex-
ture deformations is mostly anisotropic (i.e., directional ap-
pearance). Consequently, we expect the clusters of non-
affine distorted elements to have a relatively small number
of data points. Here, distributions with low prior probability
will most likely correspond to regions distorted by nonlin-
ear transformations. Elements falling within such distribu-
tions can be safely discarded and therefore removed from
the dictionary. The remaining distributions may represent
two cases. The first case corresponds to classes of affine
transformed elements that are representative of the texture.
The second case represents classes consisting of nonlin-
early distorted regions. Our experiments have shown that
the distribution of nonlinearly distorted elements have high
within-class variation. Based on this observation, we rank
the remaining dictionary elements based on the decreasing
order of the within-class variation of their classes (i.e., we
use value of the determinant of the covariance matrix for
the class, |Σj |). The top-ranked elements are selected as the
ones that represent classes of locally planar surface regions:

d = {sj} such that |Σj | ≥ |Σj+1| (2)

where sj ∈ S. The above procedure is performed for each
texture class and it is similar to signature generation [16].

We represent the appearance of each texture using the
learned set of basic components. Figure 4 shows the results
for a patterned fabric used in our experiments. Figure 4(a)
shows (from top to down) the ranked sequence of learned
texture components obtained by our method. Figure 4(b)
shows three frame images with the learned locally planar
texture components superimposed on the fabric’s surface.

Representing the local texture information using spin-
images permits to achieve a certain level of robustness

(a) (b)

Figure 4. Learned locally planar regions.

against non-rigid deformations [9]. The improvement pro-
posed in our method is to use nonlinear manifold embed-
ding to unwrap the texture nonlinear distortions and only
then eliminate classes representing the distorted regions.

3.2. Classifying novel texture sequences.

Once the appearance models for each texture in the train-
ing database are at hand, the classification stage consists
simply of performing the four steps of the texture model
learning for a novel texture sequence and measuring the
overall dissimilarity between the components in the appear-
ance model of the novel texture and the previously learned
models for each texture class. We use the following dissim-
ilarity measurement:

α(d1,d2) =
∑

i

min
j

‖s1i − s2j‖ (3)

The above dissimilarity measurement is a non-symmetric
variant of the Hausdorff measure [13].

4. Experimental results

Our experiments are divided into two main parts. First,
we evaluated our texton learning algorithm on video se-
quences of a number of texture surfaces for increasing levels
of deformation. The surfaces used in our experiments con-
sisted of patterned fabrics bought from a local shop. To pro-
duce the deformations, we have deformed the fabric manu-
ally while recording the video sequences. Three of these
patterns are shown in Figure 6. Secondly, we compare the
classification results between our method and the standard
K-Means learning method.

We commence by extracting a large set of subregions
from a sample of frames of video sequences for each texture
class. Our current method does not use any temporal infor-
mation and a sparse set of frames is usually sufficient for
the algorithm to work. We extracted approximately 2,000
local affine invariant descriptors from the set of images. The
feature extraction stage was followed by a ten-dimensional
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Figure 6. Dissimilarity matrix between K-Means learning and our method.
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Figure 5. Learned textons.

Isomap embedding of the corresponding affine invariant de-
scriptors. After the EM learning step was performed, we se-
lected classes with the highest prior probabilities such that
the sum of priors formed 60% of the total population. The
number of mixture components was experimentally deter-
mined, and was set to 10 (See [6] for details). For every such
class, the basic texture element was selected using Equa-
tion 1. Finally, the ranking stage was performed to remove
noisy components and rank the most representative ones.
Here, we selected the 75% top ranked elements. A single
patch descriptor was selected by the algorithm whenever
the calculations produced no resulting components. Our re-
sults were consistent for different numbers of mixture com-
ponents. It is common that among the top-ranked texture
primitives there will be several exemplars of a single ele-
ment. This might be caused by region detection errors or
illumination changes.

The learning step performed by our method determined
the repetitive texture elements consistently for various lev-
els of curvature distortion. Figure 5 shows a qualitative

comparison between the primitives learned by our algo-
rithm and a standard K-Means-based method. In the figure,
each row shows a sample video frame of each levels of dis-
tortion (i.e., low, medium, and high, respectively). The fig-
ure also displays three of the estimated basic texture primi-
tives besides each corresponding video frame. The appear-
ance of the primitives obtained by our method was quite
consistent for different levels of distortion. This contrasts
with the high-variance results obtained by the K-Means
learning method. It is worth noting that the textures shown
in our experiments have a relatively low complexity in terms
of the variety in both number and shape of textons. De-
spite this low appearance complexity, the K-Means-based
method was unable to extract correct representations of the
basic texture elements.

In the second part of our experiments, we provide a
quantitative comparison between the classification results
obtained by our algorithm and typical results obtained by
clustering the affine-invariant feature space using the K-
Means algorithm. Figure 6 shows an one-against-all clas-
sification dissimilarity matrix for a sample of textures in
our experiments. The columns of the matrix correspond to
the training dataset while the rows correspond to the dataset
of novel videos. From the results, our method consistently
obtained maximum dissimilarity values (i.e., minimum dis-
tance) for all the correct texture classes. In contrast, the K-
Means-based classification did not show any level of con-
sistency for the videos used in this experiment.

It is possible that some surfaces may have no prominent
textons. In general, there are two possible cases to consider.
In the first case, the texture does not actually have textons
and the proposed algorithm cannot be applied. In the sec-
ond case, the texture distortion is so high that the number of
actual locally planar regions is very small. As a result, the
current method would not be able to correctly extract undis-
torted textons. A possible solution might be to make use of
shading information whenever available.



The manifold learning stage is a crucial step of our algo-
rithm. Our experiments show that, for high level of surface
distortions, the use of spin-images without the non-linear
manifold embedding did not provide satisfactory results.

Overall, the results show that the proposed method is
able to distinguish between locally planar texture elements
and their nonlinearly distorted versions. Additionally, we
are able to accomplish promising classification results even
when significant levels of curvature distortion are present.

5. Conclusions and future work

In this paper, we proposed a classification method that
learns basic texture primitives of patterned surfaces dis-
torted by non-rigid motion. The algorithm uses nonlinear
manifold learning to capture the intrinsic dimensionality of
the distortion of non-rigid deforming texture surfaces. A
selection procedure for finding the most representative lo-
cal texture components was presented. The learned primi-
tives were used to create appearance models of the texture in
videos of deforming surfaces. We applied our texture learn-
ing method to the problem of classifying deforming texture
surfaces. Our experiments showed the effectiveness of the
method on a set of images obtained from patterned fabric
surfaces undergoing a range of non-rigid deformations.

There are several avenues for future work. First, experi-
ments demonstrating the limits of the proposed method as a
function of the amount of surface distortion should be per-
formed. To accomplish this, we need to devise a numerical
measure that reflects the amount of curvature-induced dis-
tortion present on an image. We have not encountered such
a measure documented in the literature. Additional inter-
esting future directions include further investigation of the
effects of curvature on local texture measurements as well
as the introduction of both spatio-temporal information and
inherent texture repetitiveness into the nonlinear manifold
learning stage [14]. Studies aimed at developing these ideas
are in hand and will be reported in due course.
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