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Abstract. We present a method for nonrigid registration of 2-D geo-
metric shapes. Our contribution is twofold. First, we extend the classic
chamfer-matching energy to a variational functional. Secondly, we in-
troduce a meshless deformation model that can adapt computation to
the shape boundary. In our method, 2-D shapes are implicitly repre-
sented by a distance transform, and the registration error is defined based
on the shape contours’ mutual distances. Additionally, we model global
shape deformation as an approximation blended from local fields using
partition-of-unity. The deformation field is regularized by penalizing in-
consistencies between local fields. This representation can be adaptive
to the shape’s contour, leading to registration that is both flexible and
efficient. Finally, shape registration is achieved by minimizing a varia-
tional chamfer-energy functional combined with the consistency regu-
larizer using an efficient quasi-Newton algorithm. We demonstrate the
effectiveness of our registration method on a number of experiments.

1 Introduction

Registering 2-D shapes that have been deformed by nonlinear mappings is a
challenging problem that has applications in many areas including medical imag-
ing [1] and shape recognition [2]. Similarities can be drawn between shape regis-
tration and general nonrigid image-registration problems, with variational meth-
ods marking the state-of-the-art for nonrigid image registration. On the other
hand, current variational shape-registration methods are sensitive to shape noise
and occlusion. In this paper, we extend the work in [3, 4], and propose a robust
and efficient variational shape-registration method using an implicit distance
transform representation and a meshless deformation model.

Shape registration is an ill-posed problem as there can be many ambiguous
solutions. Similarly to nonrigid image registration [5], the ill-posedness in shape
registration methods is often addressed by regularizing solutions through statis-
tical [6] or variational priors [3, 4]. In contrast with image registration, where
texture information may be abundant, shape registration often deals with im-
ages containing very sparse signal, that can be highly sensitive to image noise.
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Fig. 1. Meshless shape registration. (a) Source (red curve) and target (blue curve)
shapes. Nodes are placed along the contour. Three nodes are illustrated with their cor-
responding influence regions (Section 3). (b) Forward and backward registration error
(Section 2). (c) Blended global deformation map and correspondence after registration.

Although statistical priors help improve robustness, these priors are often tai-
lored to different classes of shapes, requiring a separate class-specific training
stage. On the other hand, while variational methods make fewer assumptions
about the shapes, these methods can be more sensitive to occlusion and noise.

Our focus in this paper is on variational shape-registration methods. In this
class of methods, existing approaches differ in three main aspects [4]: shape rep-
resentation, deformation model, and registration criterion. Implicit shape models
can be obtained by considering a shape to be a distance-transform’s zero level
set [3, 4]. Advantages of using implicit representations include fewer model pa-
rameters, and easy extension to higher dimensions. Moreover, distance functions
are redundant 2-D representations of 1-D shapes, and similar distance functions
lead to similar shapes. Thus, contour registration can be achieved using tradi-
tional image-registration techniques [3, 4]. Indeed, the underlining registration
criterion can be simply the squared-difference of distance functions, and the de-
formation model can be non-parametric [3], or parametric as B-splines [4]. How-
ever, distance transforms are sensitive to shape noise, and its redundancy leads to
unnecessary computation. These problems are only partially addressed [3, 4] by
limiting the registration around shape contours based on a proximity function.

In this paper, we adopt an implicit shape model based on distance functions,
and address some of the above problems by removing the redundancy from
both the registration criterion and the deformation model. First, we modify the
registration criterion by considering distance errors at shape boundaries only.
This criterion can be seen as a variational form of the classic chamfer-matching
functional. As in chamfer matching, the proposed functional is robust to both
spurious points and shape occlusions. Secondly, we propose a mesh-free deforma-
tion model to adapt registration around shape contours. In contrast to B-spline
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models that rely on a control-point grid with explicit connections, our meshless
deformation model represents shape deformation by blending together local de-
formations using partition-of-unity [7]. These local deformations can be centered
at arbitrarily distributed nodes (particles), allowing us to model shapes of differ-
ent topologies, and to handle irregular shape deformations. By aligning the nodes
along the shape contour, we can remove the redundancy in the registration pro-
cess. Since rigid shape alignment can be done using off-the-shelf methods such
as shape context [1], mutual information [4], and chamfer matching [2], we as-
sume that shapes are aligned beforehand using a rigid transformation, and focus
ourselves on the nonrigid registration part (i.e., global-to-local approach [1]).

This paper is organized as follows. In Section 2, we review the general frame-
work for nonrigid registration using distance functions [3, 4], and then introduce
our variational dissimilarity function. In Section 3, we introduce our meshless
shape-deformation representation, and discuss the numerical minimization of the
proposed dissimilarity functional. Section 4 shows registration results on both
synthetic and real-world images.

2 Distance functions and nonrigid registration

The goal of shape registration is to deform a source shape onto a target shape.
This is achieved by searching for the best deformation field that minimizes a
dissimilarity measure between the shapes. Formally, if S and D represent source
and target shapes, respectively, and F is a dissimilarity measure between the two
shapes, we seek for a warping field u(x) that satisfies the following equation:

arg min
x�

F (D(x�), S(x),x�), x� = x + u(x), (1)

where x is a coordinate vector. The dissimilarity measure F usually depends on
the shape model. In this paper, we implicitly represent a shape S as the zero
level set of its distance transform ΠS [3, 4], where S defines a partition of the
image domain Ω. The model is given by:

ΠS =






0, x ∈ S

+DS(x) > 0, x ∈ RS

−DS(x) < 0, x ∈ [Ω −RS ]
, (2)

where DS is the minimum Euclidean distance between location x and shape S ,
and RS is the region inside S . Here, F can be defined as the squared-sum of
distance transform differences, and registration is achieved by minimizing:

E(u) =
�

Ω
Nδ(ΠD −ΠS)2dx

� �� �
data term

+α

�

Ω
Nδ

�
�∇ux�2 + �∇uy�2

�
dx

� �� �
smoothness regularizer

. (3)

In (3), ΠS and ΠD are distance transforms of the source and target shapes, re-
spectively. The proximity function Nδ limits the data-term evaluation to be near
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the shape’s boundary, and the smoothness term penalizes for spatial variations
in the estimated deformation field.

The above representation facilitates the use of existing nonrigid registration
techniques to solve shape registration. However, two issues need to be considered.
First, although similar distance functions lead to similar shapes, similar shapes
may not necessarily produce similar distance functions. For example, a spurious
point located far from the shape can offset the distance transform, leading to dif-
ferent 2-D representations. In other words, This implicit representation’s redun-
dancy breaks the continuity between shapes and their representation domains.
This argument is supported in [3] by observing that scaling affects distance func-
tions. In fact, a scaling factor is estimated separately in [3], and shape noise is
only partially addressed in [3, 4] by using the proximity function Nδ. Secondly,
registering 2-D distance functions leads to extra computation as deformation
models register the whole image plane. The use of the proximity function [3, 4]
reduces these problems but the formulation becomes more complicated.

Next, we propose a dissimilarity measure by using a novel variational formu-
lation of the chamfer-matching energy that does not use a proximity function.

2.1 Variational chamfer-matching energy

When the source shape S is aligned with the target shape D, the deformed shape
S(x + u) will coincide with the zero level set of ΠD , i.e., S(x + u) ΠD = 0.
Here, we represent shape S by a binary contour map, and enforce alignment
between shapes by minimizing the squared sum

�
Ω |S(x + u) ΠD |2 dx, which

corresponds to the classic chamfer-matching energy function [2]. However, this
functional can be ill-posed. For example, the energy function will vanish for
any deformation field that shrinks the source shape to a single point on shape
D. Similarly to symmetric chamfer-matching energy [8], we can address this
problem by including a symmetric term that measures the distance-error between
target and source shapes. Additionally, we compensate for scaling by dividing
the distance-error by the contours’ length, and minimize the following functional:

Ed(u) =
1
A





�

Ω
|S(x + u) ΠD |2dx

� �� �
forward energy Ef

+
�

Ω
|D(x) ΠS(x+u)|2dx

� �� �
backward energy Eb




, (4)

where A =
�

Ω S(x + u)dx
�

Ω D(x)dx is a normalizing factor. Since Ed(u) is
independent on the sign of Π, we will assume that ΠS ≥ 0 and ΠD ≥ 0.

The registration error is directly measured using the shape contours without
resorting to a proximity function as in [3]. As in chamfer matching, the usage of
distance transform facilitates optimization by providing an energy gradient. For
example, the gradient of the forward-energy term can be calculated as follows:

∂Ef (u)
∂u

= 2
�

Ω
[S(x + u) ΠD ]ΠD

∂S(x + u)
∂x

dx. (5)
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Since S is a binary map, then ΠD
∂S(x+u)

∂x = ∂ΠD
∂x S(x+u) and S(x+u)S(x+u) =

S(x + u). Substituting these identities into (5), we have:

∂Ef (u)
∂u

= 2
�

Ω
[S(x + u) ΠD ]

∂ΠD

∂x
dx. (6)

For the backward-energy term in (4), its derivative involves calculating the dis-
tance transform of the deformed source shape, i.e., ΠS(x+u). Fortunately, by
substituting variables, Equation 4 can be re-written as

�
Ω |D(x) ΠS(x+u)|2dx =�

Ω |D(x− u) ΠS(x)|2dx, and then expanded as we did in Equation 6 to have:

∂Eb

∂u
= −2

�

Ω
[D(x− u) ΠS ]

∂ΠS

∂x
dx = −2

�

Ω

�
D(x) ΠS(x+u)

� ∂ΠS(x+u)

∂x
dx. (7)

In the final step of Equation 7, we have substituted D(x−u) by D(x) to keep the
target shape unchanged during registration. Note that, in the chamfer-matching
energy functional in (4), we could also use the L1 norm instead of the squared-
sum (i.e., L2 norm). However, our experiments showed that the L1 norm is more
sensitive to local minima, and leads to slower minimization convergence.This
observation echoes a similar finding in classic chamfer matching [2].

Given the above chamfer-matching energy, different regularizers and deforma-
tion representations can be used for shape registration. In fact, the second-order
regularizer of Equation 3 will still be valid when combined with our data term.
Alternatively, the B-Spline representation in [4] can also be used. However, non-
parametric estimation may not handle some large deformations [4], while spline-
based models are limited by the need to explicitly maintain a regular control-
point grid (mesh) and connections. Next, we address some of these issues by
adopting a meshless representation that approximates the shape’s deformation
field by blending together local polynomial models using partition-of-unity.

3 Meshless deformation model

A limitation of B-spline models is their reliance on a explicit-connected control-
point grid (i.e., mesh). Inspired by recent developments in computer graphics [9]
and mechanical engineering [10], on building shape functions of arbitrary topol-
ogy from scattered sample points, we propose a meshless deformation model
for shape registration. Although there are meshless shape-deformation models
based on thin-plate splines and radial basis functions (RBFs) [1], they are less
accurate than polynomial-based representations, as radial basis functions cannot
exactly represent polynomial deformations (lack of reproducibility) [10]. In our
method, local deformation fields are modeled around scattered nodes (particles)
as polynomials, and then blended together into a global deformation field us-
ing partition-of-unity. In the following subsections, we first introduce the local
deformation model, and then explain how to blend them into a global model.
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3.1 The node’s influence domain

We commence by modeling shape deformation around scattered nodes using
polynomial approximation. These nodes can be placed along the shape’s contour.
As polynomials lack compact support, the approximation is restricted to the
node’s proximity, a region called the node’s influence domain. The influence
domain also serves to limit the interaction range between neighboring nodes.
Let us define the influence domain M around a node p as a disk of radius rp

(ball in 3-D1). M can be modeled by a weighting function wp(x) with local
support. Various types of weighting functions exist [10]. We define wp(x) as:

wp(x) =

�
αp exp

�
−κ�p−x�2

r2
p

�
,x ∈ M

0 ,x /∈ M
, (8)

where p denotes the coordinate vector of node p, κ = 1
9 , and αp ∈ (0, 1] is the

node’s predefined influence factor in the final global blending. Thus, a node p is
defined by three parameters (p, rp, αp), i.e., its spatial position, the radius (scale)
of its influence domain, and its influence factor. Note that while the weighting
function in (8) is a radial function, its usage is different from previous RBF
models such as thin-plate splines [1]. Here, RBFs are used for blending the local
polynomial models, instead of directly representing the shape deformation.

3.2 Local approximation model around a node

The local deformation field up = (u, v) around node p can be expressed as a
linear combination of monomials xsyt as follows:

u(x) =
s,t=m�

s,t=0

as,tx
syt and v(x) =

s,t=m�

s,t=0

bs,tx
syt, (9)

In other words, the local deformation field up(x) = [u(x), v(x)]
T

is represented as
a linear combination of monomial basis functions φ

T

(x) = [1, x, y, xy, x2, y2, . . . ,

xmym] with coefficient vector dp = [a0,0, b0,0, · · · , am,m, bm,m]
T

. The sequence of
monomials in φ is arranged in a Pascal-triangle manner [10].

3.3 Blending local models into a global deformation field

Once the local deformation models are at hand, the deformation at a point x
is obtained by blending local fields of nodes around x, that contain x in their
influence domains. These nodes are called the support domain [10] of x, denoted
by Nx = {p | x ∈ M}. The blended global-deformation field is given by:

u(x) =
�

p∈Nx

rp(x)up(x), with rp (x) =
wp(x)�

p�∈Nx
wp�(x)

. (10)

1 A 3-D extension is straightforward.
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Here, rp (x) ensures the partition-of-unity (PU), i.e., nodes’ contributions at x
must add to one. This blending scheme is equivalent to the Arsigny’s polyaffine
model [11], and Makram-Ebeid’s meshless model [7]. Next, we introduce a novel
regularizer to penalize undesired fluctuations in the estimated deformation field.

3.4 Consistency enforcement

We have shown that the global deformation can be obtained by blending local
deformation fields using Equation 10. In spline-based methods [4], estimated
deformation fields are consistent across the control points, and regularization
is obtained using Sobolev’s norm that penalizes the deformation field’s spatial
variation. In our method, global deformation fluctuations lead to inconsistencies
among local deformation fields. As a result, we penalize the local deformation’s
spatial inconsistency, leading to simpler optimization procedures, as well as to a
regularizer that is not biased towards the deformation field’s lower-order fluctu-
ations, provided that the fluctuation itself is spatially consistent.

Consistency between two local deformation fields, up and uq, can be mea-
sured from parameters dp and dq. However, up and uq lie on different local
coordinate systems, and therefore need to be aligned. Aligning the basis func-
tions φ by ∆x = [δx, δy] leads to:

φ(x + ∆x) = [1, x + δx, y + δy, (x + δx)(y + δy), . . . , (y + δy)m]
T

= S
T

(∆x)φ(x), (11)

where S
T
(∆x) is the linear basis-shifting-operator. Therefore, shifting the local

coordinate system leads to shifted polynomial coefficients, and the local defor-
mation consistency between two nodes p and q can be defined as:

Ec
p,q = [S�(p− q)dq − dp]

T

[S�(p− q)dq − dp] . (12)

Here, an equivalent shift operator S�(p− q) is created by duplicating and shifting
the elements of the basis-shifting-operator. For N nodes, the global consistency
regularizer is obtained by penalizing the average pairwise inconsistency in (12):

Ec =
1
N

�

p




�

q∈Np

wq(�p− q�)Ec
p,q



 . (13)

3.5 Quasi-Newton registration algorithm

We now combine both the chamfer and consistency energies into the following
functional minimization problem:

dp = arg min
dp

�
Ed(u) + λEc

�
, (14)
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where parameter λ defines the relative importance of the deformation’s spatial
consistency. Minimizing (14) can be efficiently achieved using gradient descent [4,
2]. In this paper, we use a quasi-Newton method [12] for its improved convergence
speed. The calculation of the required partial derivatives ∂Ed(u)

∂dp
and ∂Ec

∂dp
is

straightforward following Equations 6,7,12, and 13.
Using the derived gradients, we implemented an optimization algorithm based

on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [12]. At each itera-
tion of the algorithm, the source shape is first warped using the deformation field
reconstructed from local field parameters (Equation 10), and then its distance
transform ΠS(x+u) is updated. Both the destination shape D and its distance
transform ΠD remain constant. We experimentally determined the search step’s
lower bound to be 0.2, and that helps avoid getting trapped in local minima.
Additionally, we handle large shape deformations by adopting the hierarchical
multi-scale registration strategy used in [4] (i.e., a coarse-to-fine approach).

4 Experiments

We tested our method on the Brown University shape dataset [13], and on a cell
morphing sequence. Due to the lack of ground truth for shape registration, we
demonstrate the results visually in a similar way as in [4, 3, 1]. For the Brown
university dataset, the images were first normalized to 150× 150 sizes, and the
shapes were globally aligned beforehand using the rigid registration method im-
plemented in [5]. Then, an initially regular grid of nodes was adapted to the
shapes by removing nodes that do not overlap with the shape contour. This
adaptation reduced the execution time for about 80 percent on average. In the
hierarchical registration algorithm, the space between nodes was 5 pixels at the
finest scale, and the node’s radii were 12.5 pixels, i.e., each node interacted with
around 20 neighbors. For all shapes, we selected the regularizer weight λ = 10.
Figure 2 shows registration results obtained using our method. As in [1], we se-
lected three different shapes (person2, hand, and fish), and quantitatively evalu-
ated the registration results. The average pixel distances after local registration
for person, fish, and hand were 0.14,0.24, and 0.08, respectively. This result was
better than the one reported in [1], and indicates that shapes were well aligned
by our method. Additionally, for most cases, the maximum pixel distance was
around 3 pixels showing that registration quality was consistent along contours.

Our method was able to register shapes undergoing large deformation (e.g.,
bending arm in the person’s sequence). The method also appears to be quite
robust to partial occlusion. Figure 3 shows two examples of aligning occluded
shapes. Due to severe occlusion, the shapes’ distance transforms (Figure 3(b)
and Figure 3(c)) were so distorted that the method in [4] would fail without
a proper proximity function (Figure 3(e)). Using only distance values at the
shape’s boundary, our method was less sensitive to this distortion (Figure 3(d)).

In the case of the cell-morphing sequence, we manually initialized nodes along
the cell’s contour with roughly equal intervals, and the radii of the nodes were
2 Named dude in the original dataset.
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(a) (b) (c) (d) (e)

Fig. 2. Brown university shape dataset. (a) Target images. (b) Overlaid target (in
black) and source images (in red) before registration. (c) After registration. (d) Corre-
spondence between target and source images. (e) Deformation fields as distorted grids.
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(a) (b) (c) (d) (e)

Fig. 3. Registration under partial occlusion. (a) Overlaid target and source images.
(b) and (c): Distance transforms of target and source images. (d) Our method handles
occlusions well as the registration error is only defined along shape contours. (e) The
method in [4] would fail to align shape contours without a suitable proximity function.

chosen such that each node had approximately two neighbors. Figure 4(d) shows
the distribution of nodes. Here, the node’s positions are indicated as blue crosses,
and their radii by circles. This way, the computation cost was significantly re-
duced. In Figure 4, we show three frames of the cell sequence, and our registration
results. The cell’s deformation consisted of its contour bending inwards in the
middle. The living cell’s surface exhibited random Brownian motion, with many
spurious points, but our method was still able to register their boundaries.

Despite promising results, our method still encounters problems in register-
ing shapes that have large curvatures, and undergo high-degree deformation,
causing local minima in the registration error. We believe that this problem
can be addressed by adopting global-optimization algorithms such as simulated
annealing [12], or by including statistical priors [6].

5 Conclusions

A meshless nonrigid shape-registration algorithm was presented. The registra-
tion functional is a variational extension of the classic chamfer-matching energy.
As in chamfer matching, distance transforms provide registration-error gradi-
ents, facilitating efficient registration. Also, we modeled shape deformation us-
ing a meshless parametric representation. This model does not rely on a regular
control-point grid, and can be adapted to arbitrary shapes. Thus, registration
can be focused around the shape contours, greatly improving computational ef-
ficiency. We tested the proposed method by registering a number of synthetic
shapes, and a deforming cell sequence. Future work includes a 3-D extension of
the method, the handling of topological changes, and extensive comparison with
state-of-the-art shape registration methods.
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(a) frame 1 (b) frame 40 (c) frame 60

(d) nodes (e) 1 to 40 (f) 40 to 60

Fig. 4. Cell-morphing sequence. (a-c) Frames of a cell morphing sequence. (d) Sample
nodes and corresponding influence regions. Nodes are placed along the contour. (e) and
(f) Deformation vectors (green arrows).
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