Fast Text Compression with Neural Networks

Matthew Mahoney
Florida Institute of Technology

http://cs.fit.edu/~mmahoney/compression/

• How text compression works
• Neural implementations have been too slow
• How to make them faster
How Text Compression Works

Common character sequences can have shorter codes

Morse Code

\[
\begin{align*}
e &= . \\
z &= --.. \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Shorter code</th>
<th>Longer code</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>z</td>
</tr>
<tr>
<td>dog</td>
<td>dgo</td>
</tr>
<tr>
<td>of the</td>
<td>the of</td>
</tr>
<tr>
<td>roses are red</td>
<td>roses are green</td>
</tr>
</tbody>
</table>

Text compression is an AI problem
Types of compression

From fast but poor... to slow but good

Limpel-Ziv (*compress, zip, gzip, gif*)

Context Sorting (*Burrows-Wheeler* (*szip*))

Predictive Arithmetic (*PPMZ* (*boa, rkive*) and neural network)
Arithmetic Encoding

P("THE") = 0.005
Compress("THE") = .8

Binary code for x is within 1 bit of $\log_2 1/P(x)$
(Theoretical limit, Shannon, 1949)

Compression depends entirely on accuracy of P.
Schmidhuber and Heil (1994)
Neural Network Predictor

- 80 character alphabet
- 3 layer network
- 400 input units (last 5 characters)
- 430 hidden units
- 80 output units
- Trained off line in 25 passes by back propagation
- Training time: 3 days on 600KB of text (HP-700)
- 18% better compression than gzip -9
Fast Neural Network Predictor

- Predicts one bit at a time
- 2 layer network
- \(2^{22}\) (about 4 million) input units
- One output unit
- Hash function selects 5 or 6 inputs = 1, all others 0
- Trained on line using variable learning rate
- Compresses 600KB in 15 seconds (475 MHz P6-II)
- 42-47% better compression than gzip -9
Prediction

\[P(1) = g(\Sigma_i w_i x_i) \]

Weighted sum of inputs

\[g(x) = \frac{1}{1 + e^{-x}} \]

Squashing function

Training

\[N_i(y) \leftarrow N_i(y) + x_i \]

Count 0 or 1 in context i

\[E = y - P(1) \]

Output error

\[w_i \leftarrow w_i + (\eta_S + \frac{\eta_L}{\sigma^2_i})x_i E \]

Adjust weight to reduce error

\[\sigma^2_i = \frac{(N_i(0) + N_i(1) + 2d)/(N_i(0) + d)(N_i(1) + d)} \]

Variance of data in context i

\[d = 0.5 \]

Initial count

\[\eta_S = 0 \text{ to } 0.2 \]

Short term learning rate

\[\eta_L = 0.2 \text{ to } 0.5 \]

Long term learning rate
Compression Results

Compression in bits per character

- η_S and η_L tuned on *Alice in Wonderland*
- Tested on *book1* (Far from the Madding Crowd)

- P5 - 256K neurons, contexts of 1-4 characters
- P6 - 4M neurons, contexts of 1-5 characters
- P12 - 4M neurons, contexts of 1-4 characters and 1-2 words (unpublished)
Seconds to compress and decompress *Alice* (152KB file on 100 MHz 486)
Summary

Compression within 2% of best known, at similar speeds

50% better (but 4x-50x slower) than *compress, zip, gzip*

Fast because
- Fixed representation - only output layer is trained (5x faster)
- One pass training by variable learning rate (25x faster)
- Bit-level prediction (16x faster)
- Sparse input activation (5-6 of 4 million, 80x faster)

Implementation available at
http://cs.fit.edu/~mmahoney/compression/