Circle True or False (2 points each).

Answers in italics

T One major cause of security vulnerabilities is software bugs.
F Using hard to guess passwords will prevent buffer overflow attacks.
F Viruses cannot spread over an encrypted network connection.
F Keeping an encryption algorithm secret (in addition to the key) improves system security. \textit{(This is Kerckhoff’s principle. Algorithms that have not been publicly reviewed are almost always flawed)}.
T A digital signature proves to the recipient that the sender of a message knows a secret without revealing that secret.
F A symmetric key system uses two keys. \textit{(one key)}
F The strongest form of encryption is security against ciphertext-only attacks. \textit{(Chosen plaintext resistance is a stronger requirement)}
F AES has been proven to be secure.
F RSA has been proven to be secure.
T The one time pad has been proven to be secure against ciphertext-only attacks. \textit{(This is the only cipher proven to provide perfect secrecy)}.
F The Java Random class can be used to generate random keys securely. \textit{(A hardware source of randomness is required)}
T A MAC prevents a message from being tampered with.
T A MAC requires the sender and receiver to both know a secret key.
T "Nonce" means "number used once".
F If a stream cipher uses an IV, the IV must be kept secret. \textit{(The IV is normally appended to the ciphertext and is needed for decryption)}.
F X.509 is a standard for a secure hash function. \textit{(It is a standard for certificates)}.
F The SSL protocol requires a password.
T \{1,10\} is a subgroup of \mathbb{Z}_{11}^*. \textit{(10*10 = 1 (mod 11), 1 is the identity, $1^{-1} = 1$, $10^{-1} = 10$)}.
F \mathbb{Z}_{11}^* has order 11. \textit{(order 10 because 0 is not included)}
F If $a^{n-1} = 1 \pmod{n}$ then a must be prime. \textit{(it says n might be prime)}

Questions are 5 points each.

What SMTP feature is normally disabled to help stop spam? Relaying (to disguise the source address), or VRFY and EXPN (to verify email addresses). \textit{(Either answer is acceptable)}.

Which two block cipher modes effectively convert them to stream ciphers? \textit{OFB and CTR}.

Why does HMAC hash a message twice? To prevent a length extension attack. Otherwise an attacker can append to a message and compute the hash without knowing the key.

Why is ECB mode insecure? Because identical plaintext blocks produce identical ciphertext blocks, revealing some information.

Consider RSA with $p = 5$, $q = 11$, $e = 3$.
What is the public key? $n = pq = 55$, $e = 3$.
What is the ciphertext of the plaintext message 4? $4^3 = 64 \pmod{55} = 9$.
What algorithm (with what inputs) will find the decryption exponent? \textit{Extended-Euclid}(t, e) where $t = \text{LCM}(p-1, q-1) = \text{LCM}(4, 10) = 20$, and $e = 3$ to find the inverse of $e \pmod{n}$.
Consider Diffie-Hellman with \(p = 5, \ g = 2 \).

Alice picks secret key 2. What does she send to Bob? \(2^2 \mod 5 = 4 \).

Bob picks secret key 3. What does he send to Alice? \(2^3 \mod 5 = 8 \mod 5 = 3 \).

What is the shared secret? \((2^2)^3 = (2^3)^2 = 2^6 = 64 = 4 \mod 5)\)

Let \(p \) be the prime number \(2^{11213} - 1 \). What is \(2^p \mod p \)?

\[
2^p \mod p = 2(2^{p-1}) \mod p \quad \text{(by factoring out 2)} \\
= 2(1) \mod p \quad \text{(by Fermat's little theorem)} \\
= 2.
\]

Let \(h \) be a secure 128 bit hash function. How much work is required to find two inputs \(x_1 \) and \(x_2 \) such that \(h(x_1) = h(x_2) \)?

\(2^{64} \) computations of \(h \) (on average).