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ABSTRACT

Certain 
lasses of negotiation problems lend themselves to

strategies ensuring that no agent 
an gain by lying. Truth

in
entive proto
ols, among whi
h Generalized Vi
krey Au
-

tion (GVA) is one of the most famous, 
an then be used

to 
entrally 
ompute fair and eÆ
ient solutions. However,

for problems that allow no truth in
entive proto
ols (e.g.

problems with false name bids), English Au
tions are pref-

ered to GVA. In this paper we show how the framework of

Distributed Constraint Satisfa
tion (DisCSP) with private


onstraints 
an be extended for modeling and solving ne-

gotiation problems su
h as English Au
tions with multiple-

items where bids 
an 
orrespond to 
omplex a
tions (selling,

buying, or both).

1. INTRODUCTION
Having agents represent the interests of their owners is

desirable in many pra
ti
al appli
ations. One advantage of

using software agents 
onsists in their speed of response. Au-

tomated negotiation is a pro
ess whereby a distributed net-

work of software agents agree on de
isions on behalf of their

owners. Agents negotiate on resour
es and their de
isions

are 
onditioned by 
onstraints (e.g. 
osts, existen
e,...).

When the available information is suboptimally used, lo-


al de
isions 
an lead to losses for some parties involved in

negotiations. Bad de
isions 
an also result in a de
rease of

the so
ial welfare by ineÆ
ient resour
e allo
ation. There

is 
onsequently a demand for automated negotiation te
h-

niques that are fair and a

eptable to ea
h of the involved

parties.

In the automated multi-agent setting the work des
ribed

in [21℄ has brought a new and revolutionary idea, based on


on
epts from Game Theory. It proves that 
ertain prob-

lems from the 
lass 
alled Task Oriented Domains 
an be

solved by truth in
entive proto
ols

2

. A proto
ol is truth in-


entive if any parti
ipant 
annot gain more than by telling

the whole truth about its problem. Additional problems

were shown to allow truth in
entive proto
ols and the best

known examples are the one item au
tions. They 
an be

1

An initial version of this arti
le has been previously dis-

tributed under the title: Negotiation by Relaxation in Dy-

nami
 Distributed CSPs with Private Constraints
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Also referred as in
entive 
ompatible me
hanisms.
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solved with the Vi
krey proto
ol [16℄. An extension of this

proto
ol, Generalized Vi
krey Au
tions (GVA) [15℄, has also

been proposed for multiple-items au
tions, namely au
tions

where individual pri
ing for items is di�erent from grouped

pri
ing. Truth in
entive proto
ols naturally allow automati



entralized resolution and this is a big su

ess of AI in gen-

eral. Unfortunately, even if the GVA proto
ol [15℄ guar-

antees a 
ertain degree of equity for many multiple-items

au
tions, it is not always truth in
entive [19℄. The out
ome

for this 
ompli
ation, illustrated in [20℄, is that with pub-

li
 
onstraints, the so
ial welfare is sub-optimally managed.

General au
tions as well as other types of negotiations may

be truth in
entive even if resour
es and parties are involved

in other known negotiations. However, if there exist un-

known 
onne
tions with future negotiations, revealing the

truth presents a risk for involved parties. The unknown


onne
tions of a given problem P 
onsist of all future nego-

tiations for whi
h not all details are known and that share

resour
es with P . In parti
ular, truth in
entive-ness is pe-

nalized by the following property, related to the theorem 7.1

presented in [7℄:

Property 1. If a parti
ular 
onstraint on a resour
e x of

an agent 
an ever be involved in an unknown future problem

that allows no truth in
entive proto
ol, then no truth in
en-

tive proto
ol 
an be safely used for any problem requiring x.

This property does not mean that no truth in
entive me
h-

anism exists for the known part of the problem. Rather it

states that involved parties might prefer not to reveal their


onstraints due to external unknown 
onditions. We there-

fore introdu
e the next de�nition.

Definition 1 (Globally truth in
entive). Let P

be a problem allowing a truth in
entive me
hanism. P is

globally truth in
entive if it does not have any unknown


onne
tion. The 
orresponding truth in
entive me
hanism

is then globally truth in
entive.

For example, a multi-provider bandwidth reservation

problem may not be truth in
entive with respe
t to the

stru
ture of the internal networks (e.g. due to the me
h-

anisms 
urrently used on the 
orresponding market). The

negotiation for buying 
ables for the providers may be truth

in
entive with respe
t to the same stru
tures of the internal

networks.

3

Therefore, if the au
tioneer of the 
able negoti-

ation 
annot be a trusted party for the routing negotiation,

3

A
tually it may not be truth in
entive when the reservation

pri
e of the au
tioneer for future au
tions 
an be 
hanged.



then the 
able negotiation is not globally truth in
entive.

This property has impli
ations in most problems. Making

abstra
tion of it, even if optimal in the present, may be fatal

for the near future. For simpli
ity, in the remaining part of

this paper we refer problems that do not allow global truth

in
entive me
hanisms due to unknown 
onne
tions as being

non-truth in
entive problems.

For this kind of problems and for problems with false name

bids, English Au
tions are prefered to GVA sin
e they do

not require the agents to reveal everything.

Definition 2 (GEA). English Au
tions for multi-

items au
tion problems where bids 
an 
orrespond to 
om-

plex a
tions (selling, buying, or 
ombinations) are referred

as Generalized English Au
tions (GEA).

In this paper we present how the framework of Distributed

Constraint Satisfa
tion (DisCSPs) 
an be extended to model

GEA.

In the next se
tion we introdu
e ba
kground de�nitions

and de�ne formally our goal. The se
tion 4 gives a global

view of the GEA and 
omments on the rational strategies

available to the agents. A new framework is introdu
ed in

se
tion 5 and a parallel is drawn with the well-known notions

from English Au
tions. The main te
hni
al 
ontribution

of the paper is 
on
entrated in se
tion 6 where a family

of distributed algorithm is adapted for generalized english

au
tions.

2. PROBLEM STATEMENT
The English Au
tion negotiation me
hanism is a good


andidate for non-globally truth in
entive problems sin
e

it o�ers a 
ertain degree of priva
y. For example, an agent

may win the au
tion without revealing the highest pri
e it


an pay. Contrary to GVA, English Au
tions are inherently

distributed. The one item English Au
tions me
hanism is

well understood and widely used in pra
ti
e. Due to the


omplexity of the English Au
tions for multiple-items au
-

tions, GVA has been the most used solving me
hanism even

when it leads to less suitable solutions.

We show in this paper how English Au
tions 
an be auto-

mated when multiple-items negotiation problems are mod-

eled using an extension of the Distributed Constraint Satis-

fa
tion framework.

Distributed Constraint Satisfa
tion (DisCSPs) as de�ned

in Arti�
ial Intelligen
e provides a 
exible framework for

representing stati
 distributed 
ombinatorial problems.

Definition 3 (DisCSPs). A DisCSP is 
omposed of:

(d1) A set of agents A = fA

1

; A

2

; :::A

n

g.

(d2) A set of k variables V = fv

1

; v

2

; :::v

k

g, ea
h of them

under the 
ontrol of the agents interested in it. The

variables in V are 
alled external variables.

(d3) A set of external variables V

i

= fv

i1

; v

i2

; :::; v

im

g,

V

i

� V , and a set of 
onstraints C

i

= f


i1

; 


i2

; :::


ik

i

g

for ea
h agent A

i

, su
h that any external variable 
on-

strained by a 
onstraint in C

i

is also 
ontained in V

i

.

The domain of a variable v

i

is D

i

. All the variables x

j


onstrained by 
onstraints in C

i

, and su
h that x

j

62 V

i

are said to be internal.

Solving a DisCSP amounts to assigning values to both

external and internal variables so that the 
onstraints of

all the agents are satis�ed. The agents therefore need to


oordinate their de
isions on the external variables.

Powerful 
omplete algorithms for solving DisCSPs have

been proposed re
ently [2, 14, 18, 11℄. In parti
ular, the

framework of Asyn
hronous Aggregation Sear
h (AAS) [11℄

allows for a natural modeling and a highly parallelized solv-

ing of general problems with private 
onstraints, whi
h is

adapted to non globally truth in
entive negotiation prob-

lems. In AAS, ea
h agent is interested in enfor
ing a set

of (private) 
onstraints. Ea
h agent 
an assign values to

the variables involved in its 
onstraints. The information

ex
hanged via di�erent types of messages 
oordinate assign-

ments on shared variables.

2.1 Negotiation using DisCSPs
We propose to implement automated negotiation us-

ing an extension of the Asyn
hronous Aggregation Sear
h

with Asyn
hronous Reordering AASR (also denoted

MAS

(+;�;+)

) [13℄. AASR has been 
hosen for its 
exibil-

ity and generality. However, as presently de�ned, it 
annot

model some important aspe
ts of negotiation:

� Dynamism: In negotiation, the existen
e of the 
on-

straints, as well as the parti
ipation of the agents are


onditioned by time and environment.

� Evaluation of alternatives: A fundamental element of

negotiation is the ability to asso
iate (ask) pri
es to al-

ternatives. In our 
ase, an alternative 
orresponds to

an assignment that 
an be agreed by an agent. Ea
h

agent must be able to ask a pri
e for any of its pos-

sible agreements. In pra
ti
e, an agent may also have

to pay something for ea
h alternative it 
hooses. This


orresponds to the 
ost, whi
h is often a hidden in-

formation. Moreover, two alternatives with the same

pri
e 
an be dis
riminated using preferen
es.

� Relaxation: Due to new information a
quired during

resolution, the agents will a

ept to relax their 
on-

straints. By 
onstraint relaxation we mean that an

agent 
an renoun
e to parts of its 
onstraints (e.g. 
an

redu
e pri
es).

We show how pri
es, preferen
es and 
onstraint relaxation


an be integrated in DisCSPs in order to provide the ne
es-

sary framework for multiple-items English Au
tions.

2.2 Fairness
The quality of an automated negotiation proto
ol mainly

depends on its ability to 
ompute fair solutions. In the fol-

lowing we give a set of de�nitions for 
hara
terizing solutions

in problems with hidden 
osts. These de�nitions mainly

adapt the 
ommonly used ones to our framework.

The 
ost of a solution is given by the sum of the 
osts

of the agents. Note that sin
e requested pri
es are negative


osts, the sum of all the 
osts paid by all the agents in A is

equal to the sum paid by the agents inA to fa
tors outside A.

Any negotiation is started by a subset of A 
alled initiators.

We assume that the initiators are self-interested. The sum

of the 
osts paid by the initiators to some agent is 
alled

pri
e.

Definition 4 (Solution Cost). The 
ost of a solu-

tion is given by the sum of the pri
es asked by the agents to



the initiators for agreeing on the alternatives 
omposing the

solution.

Definition 5 (Utility). The utility of an agent is de-

�ned as the di�eren
e between the pri
e it asks and the 
ost

it pays for the 
hosen alternative.

A rational agent prefers to o�er alternatives that in
rease

its utility

4

. Therefore, even if the utilities are hidden, it is

usually bene�
ial for the agents to reveal the order of their

preferen
es.

Definition 6 (Pareto-optimal solution). A solu-

tion is pareto-optimal if any other solution is either equally

preferred for all agents, or worse for at least one agent, given

the order de�ned by the utilities of ea
h agent on solutions.

We 
all de
lared-pareto-optimal solution, a pareto op-

timal solution 
omputed for the DisCSP de
lared by the

agents.

Definition 7 (De
lared-Pareto-optimal). A so-

lution is de
lared-pareto-optimal if any other solution is ei-

ther equally preferred for all agents, or worse for at least

one agent, given the order de�ned by pri
es and de
lared

preferen
es.

Definition 8 (Estimated So
ial Welfare). An

estimated so
ial welfare solution (ESW) is a de
lared-

pareto-optimal solution with minimal Solution Cost.

Guaranteeing that a solution is ESW is possible with 
om-

plete sear
h te
hniques. We also want the ESW solution to

be 
hosen impartially (fairness).

Definition 9 (Fairness). When several ESWs are


andidate, fairness 
onsists in giving them equal probability

to be 
hosen.

Real So
ial Welfare

Definition 10 (Equivalent Solutions). A problem

with equivalent solutions is a problem where the di�eren
e

between the quality (value) of its solutions is equal to the

di�eren
e between the 
ost or the respe
tive solutions (the

solutions are equally good).

It is worth mentioning that for problems with equivalent

solutions an ESW gives the best possible estimation of the

real So
ial Welfare (SW). This is the 
ase of a bandwidth

allo
ation problem where any two paths in the network are

equally good as long as it has the required bandwidth and

quality of servi
e. One of our goals is to help in rea
hing a

so
ial welfare solution.

Definition 11 (So
ial Welfare Solution). For

problems with equivalent solutions, a so
ial welfare solution

(SW) for a set of agents A is de�ned as a solution mini-

mizing the sum of all the 
osts paid by all the agents in A

for agreeing on the alternatives 
omposing the solution.

4

Alternatively, the notion of worth [21℄ 
an be similarly used.

3. RELATED WORK
Resear
hers have already related negotiation and Dis-

tributed CSPs from both sides. On one side, the negotiation

is seen as te
hnique for solving distributed CSPs. The au-

thors of [6℄ propose a min-
on
i
t heuristi
 te
hnique 
alled

negotiation sear
h as a means of 
onverging towards a so-

lution in a distributed problem with heterogeneous 
ompo-

nents. On the other side agents have also been proposed

for solving by negotiation over-
onstrained resour
e allo
a-

tion problems in [3, 5℄. Frameworks for over-
onstrained

distributed problems with publi
 
onstraints are presented

in [17, 4℄. Our approa
h shares 
ommon 
on
epts with

the framework proposed in [9℄ for resour
e allo
ation. An

overview of known types of au
tions was given in [8℄.

4. THE NEGOTIATION PROTOCOL
A negotiation is viewed as a multi-
riteria optimization

problem where the agents have to �nd a solution maximizing

their utilities while respe
ting their 
onstraint on resour
es.

Au
tions are spe
ial 
ase of negotiations where the negotia-

tion ends when a subset of the agents (au
tioneers) 
annot

improve any longer their utility. In GEA su
h problems are

solved by iterative improvement of ESW solutions a

ording

to the following proto
ol.

a1 Compute the best solutions (ESW) satisfying the 
on-

straints so far imposed by the agents and retain one of

them.

a2 If any solution was found at a1, publish the ESW as

an any-time solution.

a3 If any agent wants to relax the 
onstraints it imposes,

go to a1.

a4 If any solution was found at a1, return the estimated

ESW and stop.

a5 Return failure and stop.

The solution of a GEA is a global optima (i.e. no better

solution 
an be 
onstru
ted by the agents).

If the pri
es are modi�ed with a minimal in
rement and

the set of alternatives is �nite, the previous proto
ol is safe

to 
onverge in �nite time as long as the agents are stable

in the order on their preferen
es and 
ommit to their agree-

ments (monotoni
ity in �nite domains).

A solution S of a distributed problem may not need the

agreement of some parti
ular agent A

i

. In that 
ase we

say that A

i

is ina
tive for S. Conversely, we say that A

i

is a
tive for S if its agreement is ne
essary for 
hoosing S.

This provides a means to model a fa
et of 
ompetition useful

for ameliorating the ESW. An agent, ina
tive for the 
urrent

solution, may indeed want to make 
on
essions to be
ome

a
tive.

Rational Strategies If any agent A has means of es-

timating the will to risk of all the agents, the following re-

laxation strategy 
an be proposed.

� A wants to propose its best alternative �rst. If it is

not satis�ed with the 
urrent solution, S, and has the

lowest will to risk by a

epting S, A will do a minimal


on
ession.



This strategy is not in equilibrium when A knows well the

strategies and data of the others. In that 
ase, A's rational

strategy 
an be:

� If A knows that some other agent will make a minimal


on
ession, getting involved with A in the best ESW

solution, then A makes no 
on
ession.

Commitment of initiators If the initiators are re-

quested to 
ommit to their 
urrently imposed 
onstraints,

meaning that the �rst 
hosen ESW solution is the �nal one,

the rational negotiation strategies 
hange.

� If A knows that no solution 
an be found where A is

ina
tive, then if A has the lowest will to risk, it will

make a minimal 
on
ession, otherwise A will wait.

� If a solution, S, 
an be found without A in a
tive state,

A proposes all its a

eptable alternatives.

If A knows well the strategies and data of the others, A's

rational strategy would rather be:

� If A knows that no solution 
an be found where A is

ina
tive, then if A has the lowest will to risk, A will

make a minimal 
on
ession, otherwise A will wait. If

this is the last round, and others will make some next

relaxation leading to a solution, A waits for them.

� If a solution 
an be found with A in ina
tive state,

sin
e A 
an 
ompute a quality of the solution S that


an be obtained without A, then A proposes the alter-

native being the minimal 
on
ession leading to a global

solution better than S (if any exists).

5. EXTENDING DisCSPs
In order to model pra
ti
al negotiation problems, we

introdu
e a formalism that enri
hes the DisCSP frame-

work with dynamism, preferen
es and 
onstraint relaxation.

The extended framework builds on the notion of Valued

CSPs [10℄. First we des
ribe the problem of an agent, A

u

,

as a Negotiation Valued CSP, (NVCSP

u

). NVCSP

u


onsists

of:

� A minimal in
rement, ".

� A set of external variables, V(u). The domain of ea
h

variable 
ontains a value F

5

meaning un
hanged and

indi�erent.

� An ordered set of global 
onstraints 


1

(u),...,


n

u

(u).

� Ea
h pair (valuation v, 
onstraint 


i

(u)) has asso
iated

a tuple:

T

v

i

(u) = (feasible

v

i

(u); pri
e

v

i

(u); preferen
e

v

i

(u)):

T

v

i

(u) is su
h that for ea
h 
onstraint 


i

(u),

pri
e

v

i

(u)�
ost

v

(u) and if n

u

�i>j>0 then:

� for any valuation v, feasible

v

j

(u) ! feasible

v

i

(u) and

pri
e

v

i

(u) � pri
e

v

j

(u);

5

or a set of values.

� there exists a valuation v su
h that either

feasible

v

i

(u) 6= feasible

v

j

(u), or

feasible

v

i

(u) = feasible

v

j

(u) = T

and

pri
e

v

i

(u) + " � pri
e

v

j

(u)

A Dynami
 DisCSP

6

(DyDisCSP) is de�ned by:

� A set of agents A

0

,...,A

n

. A

k

; k 2 [0; h); n � h > 0;

are h agents 
alled initiators.

� Ea
h agent A

j

owns a NVCSP, NVCSP

j

.

� Ea
h agent A

j

is interested in a set of external vari-

ables V(j).

� 
ost

v

(j) is private to the agent A

j

for any valuation v.

Given a valuation v for all the external variables, S(v) is

the set of agents owning a variable not instantiated in v to

F . By 
onvention, the initiators always belong to S(v).

Definition 12 (A

eptable valuation). A valua-

tion v is a

eptable if ea
h agent in S(v) proposes for v a

feasible asso
iated tuple, (feasible

v

k

i

(i) = T ).

By �v we denote a valuation obtained from the valuation

v by reassigning a subset of variables to F su
h that v 6=�v.

Definition 13 (Stable valuation). v is stable if

there exists no a

eptable �v.

Intuitively, a stable valuation is minimal in the sense that

it 
orresponds to a agreement of the agents in S(v), and by

eliminating any subset of agents from S(v), no agreement


an be obtained with the initiators.

When v is stable we say that all the agents in S(v) are

de�ned by v as a
tive.

Definition 14 (Solution). A solution of a Dy-

DisCSP is a stable valuation v of all the external variables

su
h that if ea
h agent A

i

in S(v) proposes for v an asso
i-

ated tuple (T; pri
e

v

k

i

(i); preferen
e

v

k

i

(i)), k

i

�n

i

, and if

A = fbj b = argmin

a

(

X

A

i

2S(v);i�h

pri
e

a

k

i

(i))g;

then v2A, v is pareto-optimal for S(v) over A. and no agent

A

i

, i>0, wants to reveal a 
onstraint 


j

, j>k

i

.

The feasibility 
ondition is

P

A

i

2S(v)

pri
e

a

k

i

(i) � 0.

The feasibility 
ondition veri�es that the solution is a
-


eptable to the initiators. If v is a solution of a DyDisCSP,

then S(v) is the solver set for v.

In our framework, the step a1 of GEA amounts to solving

a DyDisCSP where the k

i

of any A

i

is �xed.

6

We propose to 
all DyDisCSP a DisCSP where the par-

ti
ipation of agents is dynami
. An alternative is to 
all

this framevork dynami
 distributed valued CSP (DyDis-

VCSP). A DyDisCSP where the agents own dynami
 CSPs


an then be 
alled dynami
 distributed dynami
 CSP (Dy-

DisDyCSP).



5.1 Relation with existing negotiation frame­
works

In [8℄ was presented a framework for Multi-Unit Combi-

natorial Ex
hanges. The 
hara
teristi
 of these au
tions is

that in one bid a bidder 
an be selling some items and buy-

ing other items simultaneously. The multi-unit 
ombinato-

rial ex
hange winner determination problem (MUCEWDP)

is to label the bids as winning or losing so as to maximize

surplus under the 
onstraint that demand does not ex
eed

supply. In our framework, MUCEWDP are modeled by hav-

ing exa
tly one initiator that owns no 
onstraint.

The au
tions enabled by our approa
h to GEA (Dy-

DisCSP) are an extension of MUCEWDP where the �nal

solution has to get the agreement of a prede�ned (sub)set

of agents (the initiators). We therefore 
all su
h au
tion

problems Multi-Unit Supervised Combinatorial Ex
hanges

(MUSCEWDP).

Definition 15 (MUSCEWDP). MUSCEWDP are

Multi-Unit Combinatorial Ex
hanges winner determination

problems where the solution needs the agreement of a

prede�ned set of agents.

The other existing types of au
tions are suggested in [8℄ to

be instan
es of MUCEWDP. Therefore, they 
an also be

modeled as MUSCEWDP.

5.2 Modeling English Auctions
The dynamism enabled by DyDisCSPs 
an be used to

model English Au
tions. We draw now a parallel between

the introdu
ed framework and typi
al English Au
tions.

The equivalen
e of notions is:

� external variable , transa
tion for the allo
ation of a

good to an agent, other than the 
urrent owner.

Ea
h variable is in the NVCSPs of the 
urrent owner

and of the target owner of the good.

values 2 fT; Fg, showing if the transa
tion is 
hosen.

� initiator , au
tioneer.

� pri
e , minus of the bids for a 
ombination of allo
a-

tions

The 
ost in DyDisCSPs is the minus of the worth in

English Au
tions.

� pri
e � 
ost , utility or worth.

The initiator laun
hes the sear
h in the spa
e of allo
a-

tions. At ea
h step, an agent A

u

imposes the 
onstraint




k

u

(u); k

u

�n

u

. A relaxation of the imposed 
onstraints 
or-

responds to in
reasing k

u

.

6. EXTENDING AASR
In this se
tion we introdu
e an algorithm 
alled Se-


ure Asyn
hronous Sear
h (SAS) whi
h is an adaptation of

AASR to the DyDisCSP framework. SAS 
an be used to

�nd all ESW at step a1 of GEA. First we re
all the basi


elements of the AAS [11℄ proto
ols. The system agent is a

spe
ial agent that re
eives the subs
riptions of the agents

for the sear
h. It de
ides an initial order of the agents and

announ
es the termination of the sear
h. If the agent A

i

is

ordered before A

j

, then we say that A

i

is an an
estor of A

j

.

We denote with A

i

the agent that has the position i; i � 0.

Definition 16 (Assignment). An assignment is a

triplet (v; set; h) where v is a variable, set a set of values

for v and h a history of the pair (v; set).

A history h for an assignment a = (v; set; h) proposed by

an agent A

k

takes the form of a list of pairs ji : lj where i is

the index of an an
estor of h that has made a proposal on v

and l is the value of a 
ounter. These pairs are ordered in h

a

ording to the as
ending value of i. The last pair in h has

the form jk : l

k

j

j. An order / is de�ned on pairs su
h that

ji

1

: l

1

j / ji

2

: l

2

j means either i

1

< i

2

, or i

1

= i

2

and l

1

> l

2

.

An assignment requests higher priority agents to 
omply

with a proposal, therefore it de�nes by itself of a nogood.

All the values that do not 
omply with the assignment are

nogoods. Su
h nogoods are 
alled nogoods entailed by

the view.

Definition 17 (Newer history). A history h

1

is

newer than a history h

2

if a string-like 
omparison on them,

using the order / on pairs, de
ides that h

1

pre
edes h

2

.

An assignment with history h

j

x

built by A

j

for a variable

x is valid for an agent A

m

; m�j if no other history known

by A

m

and built by agents A

k

; k�j for some assignment

of x, is more re
ent than h

j

x

. A nogood is valid if all the

assignments 
ontained in its premise are valid.

Definition 18 (Expli
it nogood). An expli
it no-

good has the form :V , where V is a list of assignments.

Definition 19 (Ordering). An ordering is a se-

quen
e of agent names.

The agents 
ommuni
ate, using 
hannels without message

loss, via:

� ok messages, sent from agent A

j

to agent A

i

, and hav-

ing as parameter a list of assignments for variables in

whi
h A

i

is interested.

� nogood messages whi
h have as parameter an expli
it

nogood.

� add-link(vars) messages, sent from agent A

j

to agent

A

i

, informing A

i

that A

j

is interested in the variables

vars. They are always answered.

� reorder messages whi
h have as parameter an order-

ing.

� heuristi
 messages whi
h have as parameter data for


omputing heuristi
s.

In AAS, ea
h agent is allowed to keep its 
onstraints se
ret

and has to de
lare from start the external variables for whi
h

it has 
onstraints.

AASR [13℄, allows the agents to asyn
hronously propose

new orders among themselves. An order is represented by a

sequen
e of agents and is tagged by a history. An agent 
an

only propose new orders within a bounded delay after having

re
eived a new proposal. We 
onsider here the 
ase where

an agent does not reorder agents having lower positions than

itself.

When used in 
ompetitional situations (e.g. within nego-

tiation), the AASR te
hnique is no longer appropriate. The

reason is that a solution of su
h problems does not need



to be an a

eptable solution for all the agents, as long as

some of them are not a
tive in the solution and do not gain

anything

7

.

6.1 Secure Asynchronous Search
In AASR, both ok and nogood messages transport some

kind of nogoods. These are the nogoods entailed by the

view, respe
tively the expli
it nogoods. In order to allow the

agents dete
t messages that are potentially harmful for the

quality of the 
omputed solution, we introdu
e the notions

of legal nogood and legal assignment. We want to prevent

the agents from disturbing the sear
h by generating illegal

messages. A message (
ontaining a nogood :N) is illegal if

it is generated by an agent that 
an be ina
tive in a valuation

extending the partial valuation in the Cartesian-produ
t de-

�ned by N . SAS requests agents to build messages in su
h

a way that their lawfulness 
an be proved.

Definition 20 (Legal expli
it nogood). Any legal

expli
it nogood generated by an agent A

i

, where A

i

is not an

initiator, must 
ontain at least one assignment of a variable

v

j

from V (i) su
h that v

j

does not 
ontain F .

Definition 21 (Justifi
ation). Ea
h assignment I

i

generated by an agent A

i

that is not initiator needs a jus-

ti�
ation. The justi�
ation of the assignment I

i


onsists of

a pair (v,h) built from an assignment (v,s,h) that a
tivates

A

i

.

The justi�
ation of an assignment, a, 
orresponds to a

relaxation of the nogood entailed by the view given by a

and is stored in the history of the assignment, atta
hed to

the pair 
orresponding to the agent that has generated a. A

history has now the form ji

1

;l

1

; j

1

ji

2

;l

2

; j

2

j::: where i

k

is the

index of an agent, l

k

is the value of an instantiation 
ounter

and j

k

is the justi�
ation of the 
orresponding instantiation.

Property 2. The spa
e needed by an agent to store all

the assignments is O(nv), where n is the number of agents

and v is the number of variables.

Proof. The number of possible simultaneous valid assign-

ments is nv sin
e ea
h agent 
an generate at most v valid

assignments at a time (one per variable). All assignments

and justi�
ations 
an be represented as a dire
ted graph

having the valid assignments as nodes. The maximum num-

ber of ar
s in this graph is 2nv sin
e there 
annot be more

than 2 ar
s getting out of a node.

Corolary 1. The size of an assignment is O(nv).

Property 3. SAS has polynomial spa
e 
omplexity in

ea
h agent.

Proof. AASR requires polynomial spa
e and the only addi-

tional stru
tures required by SAS 
onsist of the new assign-

ments in justi�
ations. For all the referen
es to assignments

in the stru
tures of AAS, Corolary 1 shows that a polyno-

mial mapping exists to the new form of the assignments.

Besides generating illegal nogoods, the agents 
an also

generate illegal assignments against their 
ompetitors.

7

And have to redu
e their preferen
es.

Definition 22 (Legal assignment). An assignment

is legal if its justi�
ation is valid and the variable in the

justi�
ation does not 
ontain F in its instantiation. By 
on-

vention, any assignment generated by an initiator is legal.

No assignment (v; s; h) generated in SAS may aggregate

in s both the value F and some other values.

6.2 The SAS protocol
In order to enable agents to make proposals, they must be

given the opportunity to know when they are a
tivated. The

a
tive/ina
tive state of an agent is know when either one

of its external variables is instantiated outside F (a
tive),

or when all its external variables are instantiated with F

(ina
tive). For the se
urity of the sear
h, we want to involve

on low positions in sear
h only agents that are known to be

a
tive.

Rule 1 (Initiator first). The agent A

1

has to be an

initiator.

Rule 2 (A
tive first). Whenever possible, ea
h

agent proposes orders to make sure that the agent on the

next position is known to be a
tive.

In order to let agents know whi
h of the next agents are

a
tive, a
tive agents must announ
e all their instantiations

for external variables to all their su

essors.

Sin
e in SAS the messages must prove that their sender is

a
tive, agents must generate only legal nogoods. Any other

nogood would be dis
arded. The next rule shows how legal

nogoods 
an be obtained.

Rule 3 (Nogood generation). Whenever an agent

A

i


omputes an expli
it nogood N that is not legal, and the

set in the newest assignment it has re
eived for some variable

v

j

from V (i) does not 
ontain F , it should add the newest

assignment of v

j

to N .

8

If this is not possible, it means that

A

i

is ina
tive and it should refrain from sending N to other

agents. This rule does not apply to initiators.

Coalitions 
an still be 
reated in SAS. In fa
t any agent

that does not 
he
k if a re
eiving message is valid makes a

(temporal) 
oalition with the sender.

Rule 4 (Che
king). The re
eiver of an expli
it no-

good N should 
he
k that N is legal. Also the re
eiver of

any assignment, (when an ok message is re
eived), should


he
k that the new assignment is legal and the assignment is

not empty (the sear
h 
annot be voluntarily blo
ked).

If one of these 
onditions is not respe
ted, the messages

must be dis
arded.

In order to ensure 
ompleteness and termination of SAS,

the management of justi�
ations has to be 
oherent. The

justi�
ations trigger add-link messages in the same 
ondi-

tions as the assignments re
eived in an expli
it nogood in

AAS. Moreover, justi�ed nogoods should not be delivered to

the re
eiving agent and integrated in the other stru
tures in-

herited from AASR before the answer to eventual add-link

messages is re
eived.

8

When illegal nogoods are made legal, they are in fa
t re-

laxed. Agents that must relax nogoods 
an use heuristi
s

for 
hoosing the variable v

j

from V (i). (e.g. 
hoosing the

variable for whi
h the known assignment was generated by

an agent with the lowest priority.)



Rule 5 (Justifi
ation 
hange). Whenever the jus-

ti�
ation of an agent A

i

is modi�ed, A

i

has to send again

all its assignments.

Only one assignment is used as justi�
ation by an agent

at a time.

Rule 6 (Stored agent-view). Ea
h agent stores all

the valid assignments it re
eives.

Rule 7 (Justifi
ation invalidation). Whenever

the justi�
ation J of a stored assignment a

1

in A

i

is

invalidated by some in
oming new assignment a

2

, A

i

has to

invalidate a

1

and has to apply again this invalidation rule

as if a new assignment of the variable in a

1

would have

been re
eived.

Lemma 1. The information maintained by agents in Se-


ure Asyn
hronous Sear
h is 
onsistent with their prede
es-

sors.

Proof. The rules for nogoods generation and nogood 
he
k-

ing are allowed by the AAS framework and the proof in [11℄

remains valid. Sending any (�nite) number of add-link

messages when justi�
ations are re
eived �ts AAS as well.

It remains to prove that the properties are maintained when

the invalidation, of a justi�
ation, j, triggers the invalidation

of an assignment, x, that it justi�es.

The role of a stored assignment in AAS is to de�ne a valid

nogood entailed by the view of the agent. Therefore x de�nes

a nogood entailed by the view. In the Se
ure Asyn
hronous

Sear
h, the agent a
tivated by j has to invalidate and re-


ompute its instantiation (due to the justi�
ation 
hange

rule). Therefore x, be
omes indeed invalid. Consequently,

in all 
ases the information maintained by the agents will

eventually be 
onsistent with their prede
essors.

Definition 23 (Quies
en
e). By quies
en
e of a

group of agents we mean that none of them will re
eive or

generate any legal valid nogoods, new legal valid assignments,

reorder messages or add-link messages.

Lemma 2. At quies
en
e for the agents A

1

; :::; A

i

, an

agent A

i

, knows whether there exist any a
tive agent pla
ed

after it or not.

Proof. If any initiator is pla
ed after A

i

, this is known to

A

i

sin
e the last ordering was re
eived.

Otherwise, A

i

knows all assignments outside F done by it-

self or prede
essors for external variables. A

i

also knows

the variables that 
an a
tivate its su

essors sin
e they are

announ
ed as initial data. A

i

therefore knows when any

su

essor is a
tivated by the agents A

1

; :::; A

i

.

If no su

essor is a
tivated by A

1

; :::; A

i

and no su

essor is

initiator then, sin
e an ina
tive agent 
annot a
tivate an-

other agent, no su

essor of A

i

is a
tive.

Lemma 3. In Se
ure Asyn
hronous Sear
h, let a set of k

agents rea
h quies
en
e in �nite time t

k

and at quies
en
e

they take positions 1; :::; k where ea
h of them agrees with its

prese
essors. Then, if some of the other agents are a
tive,

either failure is dete
ted or an a
tive agent will rea
h qui-

es
en
e on position k + 1 in �nite time after t

k

having an

instantiation that agrees with its prede
essors.

Proof. The number of possible add-link messages is

bounded so we do not need to 
onsider them.

Let � be the maximum delay for delivering a message. Af-

ter t

k

+� , all the agents know the instantiations of A

i

; :::; A

k

.

Within time t

k

h

= t

k

+ � + t

h

+ � , no heuristi
 message is

re
eived any longer by the agents R

0

; :::; R

k

. The �nal order

that de
ides the agent taking the position A

k+1

is therefore

issued before t

k

h

+ t

r

and if any su

essor is a
tive, an a
-

tive agent be
omes A

k+1

. After t

k

h

+ t

r

+ � , the identity of

A

k+1

no longer 
hanges and its view remains stable after

t

o

; t

o

< t

k

h

+ t

r

+ � . Sin
e the domains are �nite, in �nite

time after t

o

either some proposal of A

k+1

is no longer re-

fused, or all its proposals are refused and A

k+1

infers at time

t

n

; t

n

> t

o

a legal valid nogood :N .

Sin
e :N is valid and legal, either:

I. N it is empty and the sear
h fails, or

II. when t

o

< t

k

, its re
eiver 
hanges its instantiation for a

variable, v, and either it or its prede
essors announ
e A

k+1

of the new assignment for v. But su
h an announ
ement

arrives at A

k+1

after t

n

+ 2� > t

o

. This 
ontradi
ts the

hypothesis that the view is stable after t

o

and that t

o

< t

n

.

III. The prede
essor re
eiving :N dete
ts failure and the

sear
h ends.

Therefore in all possible 
ases the lema holds.

Lemma 4. In Se
ure Asyn
hronous Sear
h, the a
tive

agents rea
h quies
en
e on 
onse
utive positions 1 to k, and

all ina
tive agents are pla
ed after A

k

.

Proof. Due to the lemma 1, ea
h agent knows when some

su

essor is a
tive and a

ording to the rule 2 (A
tive �rst),

the a
tive agents are ordered 
onse
utively.

The solutions 
omputed by Se
ure Asyn
hronous Sear
h


orrespond to an agreement among the tuples revealed by

the a
tive agents. This agreement 
onsists in the instantia-

tion of the shared external variables to the same value. The

optimality of the pri
es has to be 
he
ked separately by the

broker.

Proposition 1. The Se
ure Asyn
hronous Sear
h is


omplete, 
orre
t, and terminates. The solutions it 
om-

putes 
orrespond to an agreement on the tuples revealed by

the a
tive agents.

Proof. Quies
en
e of the a
tive agents: is a result of

lemma 3. In bounded time, the a
tive agents �nd a solution

and rea
h quies
en
e letting the broker to dete
t it, or a

failure is dete
ted.

Completeness: All the nogoods are generated by infer-

en
e and therefore no empty nogood is generated if a solu-

tion exists. An erroneous inferen
e made by an agent A

i


annot eliminate a solution that does not instantiate out-

side F a variable a
tivating the agent A

i

. Therefore those

solutions needed the a

eptan
e of A

i

.

Corre
tness: The assignments that a
tivate the a
tive

agents at quies
en
e and the other variables set by these

agents to values that do not 
ontain F is a Cartesian-produ
t

C. Ea
h element in C de�nes a stable valuation v when it

is expanded by instantiating any other external variables to

F . The a
tive agents 
orrespond to S(v). They all know the

instantiations of their prede
essors and they 
an generate

legal valid nogoods sin
e they are a
tive. Sin
e at quies
en
e

the a
tive agents agree with their prede
essors (Lemma 3),

then all the agents in S(v) agree on v.



For the Se
ure Asyn
hronous Sear
h, the termination de-

te
tion algorithms from AAS 
an no longer be used sin
e

the agents are not trusted. The messages for announ
ing

the solution may be sent via ina
tive agents and therefore

they 
an be 
orrupted. For the general 
ase, the solution 
an

be dete
ted by the system agent. Ea
h agent has to send its

solution to the system agent. The system agent has to �nd

the solver-sets, namely all the subsets of agents agreeing

with the initiators that are 
onsistent and together de�ne

a solution. This is a problem with polynomial 
omplexity.

For some real problems, alternative te
hniques for solution

dete
tion 
an be used.

Property 4. ESW solutions 
an be 
omputed using the

Se
ure Asyn
hronous Sear
h.

Proof. The 
ompleteness of the Se
ure Asyn
hronous

Sear
h ensures that all ESW solutions are 
omputed to-

gether with other solutions. They are �ltered out during


omputation a

ording to the de�nition of ESW, yielding

the step a1.

7. PRACTICAL CONSIDERATIONS
In order to enhan
e the s
alability of Se
ure Asyn
hronous

Sear
h, spe
ial 
are must be devoted to managing the size of

the problem. Sin
e the total number of agents in the world,

ready to be involved in a negotiation 
an be huge, we want to

maintain the set of involved agents to a minimum, without

losing 
ompleteness. The 
urrent te
hniques 
an be adapted

to this new requirement. In order to redu
e 
omputation

e�ort, the agents have the interest to use a

eptable value

ordering heuristi
s for guiding the sear
h.

Definition 24 (MIS). An agent belongs to the mini-

mal interesting set if, during sear
h, at least one partial so-

lution, better than the lowest bound has been found, whi
h

requires the parti
ipation of this agent.

Definition 25 (Involved agent). An agent is in-

volved in a 
urrent 
omputation if it has been sent at least

one proposal for that 
omputation.

An agent is involved only if it belongs to the minimum

interesting set. Usually, agents 
an be added in a natural

manner to a 
omputation. In several existing proto
ols, it

is less easy to eliminate agents. We have introdu
ed the

notions of minimum interesting set and involved agent to

guarantee that an agent is involved only when this is needed

for 
ompleteness. For example, in Figure 1 the a
tive agents

at node n

4

are A and F . The involved agents are A, B, C,

D, F , the MIS also 
ontains H and L. G has not been in

MIS.

Let us 
onsider that the agents with right to 
ontrol ea
h

external variable 
an be found in some yellow pages. The

system agent maintains a set of involved agents, empty in

the beginning. Whenever a set of initiator agents pose a

new problem, they are inserted in the set of involved agents.

Ea
h time that the involved agents rea
h quies
en
e, but

instantiated variables in the partial solution 
orrespond to

the a
tivation of some agents not yet involved in the sear
h,

the system agent 
he
ks that the partial solution built so

far has a lower value than the best solution found so far. If

this 
ondition is not respe
ted, a nogood is generated for the


urrent valuation. Otherwise, the system agent sends them a

n3:A,B,C

n2:A,B,D

n4:A,F
n1:A,B

n0:A

n5:A,F,H

n8:A,B,D,F n9:A,B,D,G

n6:A,F,L

Figure 1: The solid 
ir
les 
orrespond to visited

nodes, up to node n

4

. The list of agents a
tive at

ea
h of them is shown under the node. The 
urved

dashed line show the lower bound for ESW.

request to get involved (an involve message). The involve

takes as parameter the 
urrent priority of the re
eiving agent

in the sear
h, the set of initiators, and the priorities (and

information on external variables) for all the other agents

involved in the sear
h.

When new agents a

ept to get involved in the 
omputa-

tion, all the existing agents should re
eive information on

the priority and the external variables of the new agents via

an involved message. They will have to send their propos-

als to the new agents.

If some agents 
annot be 
onta
ted or refuse to get in-

volved in the sear
h, the system agent announ
es it to the al-

ready involved agents by an update-yellow-pagesmessage

mentioning the name of the removed agents and the vari-

ables they 
ontrol. The alternatives on variables 
ontrolled

by removed agents have to be disabled from all agents.

The nogoods 
an also be reused between rounds by using

the te
hnique proposed in [12℄. That te
hnique 
onsists of

explaining inferen
es with referen
es to 
onstraints (CR).

The CRs do not ne
essarily stand for a given 
onstraint,

but provides a way to signal when due to relaxations, a

nogood is invalidated. The algorithms remain polynomial

spa
e only if the number of CRs in use is bounded. The

reuse of CRs 
an be enabled by atta
hing to them 
ounters.

Bran
h and Bound 
an also be used dynami
ally during

the sear
h. However, in order to use it, the AAS proto
ol

has to be run on the dual representation of the problem

where all the 
onstraints of ea
h agent are represented by

a variable. The values (pri
es and preferen
es) for all the

tuples in the sent aggregate have to be atta
hed to the tuples

in the aggregate-set. If aggregations are done in su
h a

way that all values in an assignment have equal values, then

this value needs to be sent only on
e. The trimming of

Bran
h and Bound is more informed if ea
h agent sends its

proposed aggregate to all the agents with higher priority.

The trimming takes into a

ount only a
tive agents.

8. EXAMPLE OF APPLICATION
The problem of Multi-Provider Intera
tions as des
ribed

in [1℄ 
onsists of reserving requested bandwidth a
ross a het-

erogeneous network of self-interested providers that have se-


ret 
onstraints. The problem of the existen
e of solutions

has been modeled as a Distributed CSP [1℄.

Sin
e providers are anxious about revealing details 
on-


erning their network links, 
osts and 
apa
ity, this prob-

lem is a natural 
andidate for solving with GEA. The prob-

lem is not globally truth in
entive. The initiators 
onsist

in the 
lients requesting some bandwidth reservation a
ross



the network. The minimal involved set expands itself as

long as the sum of the 
osts does not rea
h the best found

solution. For the Multi-Provider Intera
tions problem, the

preferen
es 
an be used for dealing with previsions of future

traÆ
 or with internal maintenan
e s
heduling.

9. CONCLUSIONS
We present an approa
h to negotiation for problems where

no globally truth in
entive me
hanism is available. The 
on-


ept of Dynami
 Distributed Constraint Satisfa
tion is pro-

posed and we show how it allows for modeling 
omplex 
har-

a
teristi
s of su
h problems. In parti
ular we show that it is

suÆ
ient to add a simple set of rules to asyn
hronous 
on-

straint satisfa
tion proto
ols (e.g. AASR) in order to meet

new requirements on se
urity, dynamism and evaluation of

alternatives (SAS).

We illustrate how Dynami
 DisCSPs 
an be used in gen-

eral negotiation problems (e.g. GEA) to provide fair en-

vironments. The problems that 
an be modeled by Dy-

nami
 DisCSPs, MUSCEWDPs, are identi�ed as being

a generalization of Multi-Unit Combinatorial Ex
hanges

(MUCEWDP). The presented framework inherits from Con-

straint Reasoning generality and 
exibility in modeling.

As shown in [13℄ for MAS, usually asyn
hronous sear
h

algorithms are generalizations of syn
hronous versions and

behave like the last ones for:

� 
ertain delays in message delivery,

� 
ertain strategies of the agents 
on
erning:

{ aggregation 
hoi
es and

{ delays in answering to messages

� and when the 
hannels 
an transit by intermediary

agents.

Therefore, the SAS algorithm presented here has su
h a syn-


hronous equivalent, Se
ure Syn
hronous Sear
h (SSS).
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