
Generalized English Auctions by Relaxation in
Dynamic Distributed CSPs with Private Constraints1

Marius-C®alin Silaghi, Djamila Sam-Haroud, Monique Calisti, and Boi Faltings
Swiss Federal Institute of Technology Lausanne

1015 Ecublens, Switzerland

{silaghi,haroud,calisti,faltings}@lia.di.ep¤.ch

Djamila Sam-Haroud
Swiss Federal Institute of Technology Lausanne

1015 Ecublens
Ecublens, Switzerland

haroud@lia.di.ep¤.ch

Boi Faltings
Swiss Federal Institute of Technology Lausanne

1015 Ecublens
Ecublens, Switzerland

faltings@lia.di.ep¤.ch

ABSTRACT
Certain classes of negotiation problems lend themselves to
strategies ensuring that no agent can gain by lying. Truth
incentive protocols, among which Generalized Vickrey Auc-
tion (GVA) is one of the most famous, can then be used
to centrally compute fair and efficient solutions. However,
for problems that allow no truth incentive protocols (e.g.
problems with false name bids), English Auctions are pref-
ered to GVA. In this paper we show how the framework of
Distributed Constraint Satisfaction (DisCSP) with private
constraints can be extended for modeling and solving ne-
gotiation problems such as English Auctions with multiple-
items where bids can correspond to complex actions (selling,
buying, or both).

1. INTRODUCTION
Having agents represent the interests of their owners is

desirable in many practical applications. One advantage of
using software agents consists in their speed of response. Au-
tomated negotiation is a process whereby a distributed net-
work of software agents agree on decisions on behalf of their
owners. Agents negotiate on resources and their decisions
are conditioned by constraints (e.g. costs, existence,...).
When the available information is suboptimally used, lo-
cal decisions can lead to losses for some parties involved in
negotiations. Bad decisions can also result in a decrease of
the social welfare by inefficient resource allocation. There
is consequently a demand for automated negotiation tech-
niques that are fair and acceptable to each of the involved
parties.
In the automated multi-agent setting the work described

in [21] has brought a new and revolutionary idea, based on
concepts from Game Theory. It proves that certain prob-
lems from the class called Task Oriented Domains can be
solved by truth incentive protocols2. A protocol is truth in-
centive if any participant cannot gain more than by telling
the whole truth about its problem. Additional problems
were shown to allow truth incentive protocols and the best
known examples are the one item auctions. They can be

1An initial version of this article has been previously dis-
tributed under the title: Negotiation by Relaxation in Dy-
namic Distributed CSPs with Private Constraints
2Also referred as incentive compatible mechanisms.

IJCAI’01, DCR Workshop 2001 Seattle, USA

solved with the Vickrey protocol [16]. An extension of this
protocol, Generalized Vickrey Auctions (GVA) [15], has also
been proposed for multiple-items auctions, namely auctions
where individual pricing for items is different from grouped
pricing. Truth incentive protocols naturally allow automatic
centralized resolution and this is a big success of AI in gen-
eral. Unfortunately, even if the GVA protocol [15] guar-
antees a certain degree of equity for many multiple-items
auctions, it is not always truth incentive [19]. The outcome
for this complication, illustrated in [20], is that with pub-
lic constraints, the social welfare is sub-optimally managed.
General auctions as well as other types of negotiations may
be truth incentive even if resources and parties are involved
in other known negotiations. However, if there exist un-
known connections with future negotiations, revealing the
truth presents a risk for involved parties. The unknown
connections of a given problem P consist of all future nego-
tiations for which not all details are known and that share
resources with P . In particular, truth incentive-ness is pe-
nalized by the following property, related to the theorem 7.1
presented in [7]:

Property 1. If a particular constraint on a resource x of
an agent can ever be involved in an unknown future problem
that allows no truth incentive protocol, then no truth incen-
tive protocol can be safely used for any problem requiring x.

This property does not mean that no truth incentive mech-
anism exists for the known part of the problem. Rather it
states that involved parties might prefer not to reveal their
constraints due to external unknown conditions. We there-
fore introduce the next definition.

Definition 1 (Globally truth incentive). Let P
be a problem allowing a truth incentive mechanism. P is
globally truth incentive if it does not have any unknown
connection. The corresponding truth incentive mechanism
is then globally truth incentive.

For example, a multi-provider bandwidth reservation
problem may not be truth incentive with respect to the
structure of the internal networks (e.g. due to the mech-
anisms currently used on the corresponding market). The
negotiation for buying cables for the providers may be truth
incentive with respect to the same structures of the internal
networks.3 Therefore, if the auctioneer of the cable negoti-
ation cannot be a trusted party for the routing negotiation,
3Actually it may not be truth incentive when the reservation
price of the auctioneer for future auctions can be changed.

then the cable negotiation is not globally truth incentive.
This property has implications in most problems. Making
abstraction of it, even if optimal in the present, may be fatal
for the near future. For simplicity, in the remaining part of
this paper we refer problems that do not allow global truth
incentive mechanisms due to unknown connections as being
non-truth incentive problems.
For this kind of problems and for problems with false name

bids, English Auctions are prefered to GVA since they do
not require the agents to reveal everything.

Definition 2 (GEA). English Auctions for multi-
items auction problems where bids can correspond to com-
plex actions (selling, buying, or combinations) are referred
as Generalized English Auctions (GEA).

In this paper we present how the framework of Distributed
Constraint Satisfaction (DisCSPs) can be extended to model
GEA.
In the next section we introduce background definitions

and define formally our goal. The section 4 gives a global
view of the GEA and comments on the rational strategies
available to the agents. A new framework is introduced in
section 5 and a parallel is drawn with the well-known notions
from English Auctions. The main technical contribution
of the paper is concentrated in section 6 where a family
of distributed algorithm is adapted for generalized english
auctions.

2. PROBLEM STATEMENT
The English Auction negotiation mechanism is a good

candidate for non-globally truth incentive problems since
it offers a certain degree of privacy. For example, an agent
may win the auction without revealing the highest price it
can pay. Contrary to GVA, English Auctions are inherently
distributed. The one item English Auctions mechanism is
well understood and widely used in practice. Due to the
complexity of the English Auctions for multiple-items auc-
tions, GVA has been the most used solving mechanism even
when it leads to less suitable solutions.
We show in this paper how English Auctions can be auto-

mated when multiple-items negotiation problems are mod-
eled using an extension of the Distributed Constraint Satis-
faction framework.
Distributed Constraint Satisfaction (DisCSPs) as defined

in Artificial Intelligence provides a flexible framework for
representing static distributed combinatorial problems.

Definition 3 (DisCSPs). A DisCSP is composed of:

(d1) A set of agents A = {A1, A2, ...An}.

(d2) A set of k variables V = {v1, v2, ...vk}, each of them
under the control of the agents interested in it. The
variables in V are called external variables.

(d3) A set of external variables Vi = {vi1, vi2, ..., vim},
Vi ⊆ V , and a set of constraints Ci = {ci1, ci2, ...ciki

}
for each agent Ai, such that any external variable con-
strained by a constraint in Ci is also contained in Vi.
The domain of a variable vi is Di. All the variables xj

constrained by constraints in Ci, and such that xj 6∈ Vi

are said to be internal.

Solving a DisCSP amounts to assigning values to both
external and internal variables so that the constraints of
all the agents are satisfied. The agents therefore need to
coordinate their decisions on the external variables.
Powerful complete algorithms for solving DisCSPs have

been proposed recently [2, 14, 18, 11]. In particular, the
framework of Asynchronous Aggregation Search (AAS) [11]
allows for a natural modeling and a highly parallelized solv-
ing of general problems with private constraints, which is
adapted to non globally truth incentive negotiation prob-
lems. In AAS, each agent is interested in enforcing a set
of (private) constraints. Each agent can assign values to
the variables involved in its constraints. The information
exchanged via different types of messages coordinate assign-
ments on shared variables.

2.1 Negotiation using DisCSPs
We propose to implement automated negotiation us-

ing an extension of the Asynchronous Aggregation Search
with Asynchronous Reordering AASR (also denoted
MAS(+,−,+)) [13]. AASR has been chosen for its flexibil-
ity and generality. However, as presently defined, it cannot
model some important aspects of negotiation:

• Dynamism: In negotiation, the existence of the con-
straints, as well as the participation of the agents are
conditioned by time and environment.

• Evaluation of alternatives: A fundamental element of
negotiation is the ability to associate (ask) prices to al-
ternatives. In our case, an alternative corresponds to
an assignment that can be agreed by an agent. Each
agent must be able to ask a price for any of its pos-
sible agreements. In practice, an agent may also have
to pay something for each alternative it chooses. This
corresponds to the cost, which is often a hidden in-
formation. Moreover, two alternatives with the same
price can be discriminated using preferences.

• Relaxation: Due to new information acquired during
resolution, the agents will accept to relax their con-
straints. By constraint relaxation we mean that an
agent can renounce to parts of its constraints (e.g. can
reduce prices).

We show how prices, preferences and constraint relaxation
can be integrated in DisCSPs in order to provide the neces-
sary framework for multiple-items English Auctions.

2.2 Fairness
The quality of an automated negotiation protocol mainly

depends on its ability to compute fair solutions. In the fol-
lowing we give a set of definitions for characterizing solutions
in problems with hidden costs. These definitions mainly
adapt the commonly used ones to our framework.
The cost of a solution is given by the sum of the costs

of the agents. Note that since requested prices are negative
costs, the sum of all the costs paid by all the agents in A is
equal to the sum paid by the agents in A to factors outside A.
Any negotiation is started by a subset of A called initiators.
We assume that the initiators are self-interested. The sum
of the costs paid by the initiators to some agent is called
price.

Definition 4 (Solution Cost). The cost of a solu-
tion is given by the sum of the prices asked by the agents to

the initiators for agreeing on the alternatives composing the
solution.

Definition 5 (Utility). The utility of an agent is de-
fined as the difference between the price it asks and the cost
it pays for the chosen alternative.

A rational agent prefers to offer alternatives that increase
its utility4. Therefore, even if the utilities are hidden, it is
usually beneficial for the agents to reveal the order of their
preferences.

Definition 6 (Pareto-optimal solution). A solu-
tion is pareto-optimal if any other solution is either equally
preferred for all agents, or worse for at least one agent, given
the order defined by the utilities of each agent on solutions.

We call declared-pareto-optimal solution, a pareto op-
timal solution computed for the DisCSP declared by the
agents.

Definition 7 (Declared-Pareto-optimal). A so-
lution is declared-pareto-optimal if any other solution is ei-
ther equally preferred for all agents, or worse for at least
one agent, given the order defined by prices and declared
preferences.

Definition 8 (Estimated Social Welfare). An
estimated social welfare solution (ESW) is a declared-
pareto-optimal solution with minimal Solution Cost.

Guaranteeing that a solution is ESW is possible with com-
plete search techniques. We also want the ESW solution to
be chosen impartially (fairness).

Definition 9 (Fairness). When several ESWs are
candidate, fairness consists in giving them equal probability
to be chosen.

Real Social Welfare

Definition 10 (Equivalent Solutions). A problem
with equivalent solutions is a problem where the difference
between the quality (value) of its solutions is equal to the
difference between the cost or the respective solutions (the
solutions are equally good).

It is worth mentioning that for problems with equivalent
solutions an ESW gives the best possible estimation of the
real Social Welfare (SW). This is the case of a bandwidth
allocation problem where any two paths in the network are
equally good as long as it has the required bandwidth and
quality of service. One of our goals is to help in reaching a
social welfare solution.

Definition 11 (Social Welfare Solution). For
problems with equivalent solutions, a social welfare solution
(SW) for a set of agents A is defined as a solution mini-
mizing the sum of all the costs paid by all the agents in A

for agreeing on the alternatives composing the solution.

4Alternatively, the notion of worth [21] can be similarly used.

3. RELATED WORK
Researchers have already related negotiation and Dis-

tributed CSPs from both sides. On one side, the negotiation
is seen as technique for solving distributed CSPs. The au-
thors of [6] propose a min-conflict heuristic technique called
negotiation search as a means of converging towards a so-
lution in a distributed problem with heterogeneous compo-
nents. On the other side agents have also been proposed
for solving by negotiation over-constrained resource alloca-
tion problems in [3, 5]. Frameworks for over-constrained
distributed problems with public constraints are presented
in [17, 4]. Our approach shares common concepts with
the framework proposed in [9] for resource allocation. An
overview of known types of auctions was given in [8].

4. THE NEGOTIATION PROTOCOL
A negotiation is viewed as a multi-criteria optimization

problem where the agents have to find a solution maximizing
their utilities while respecting their constraint on resources.
Auctions are special case of negotiations where the negotia-
tion ends when a subset of the agents (auctioneers) cannot
improve any longer their utility. In GEA such problems are
solved by iterative improvement of ESW solutions according
to the following protocol.

a1 Compute the best solutions (ESW) satisfying the con-
straints so far imposed by the agents and retain one of
them.

a2 If any solution was found at a1, publish the ESW as
an any-time solution.

a3 If any agent wants to relax the constraints it imposes,
go to a1.

a4 If any solution was found at a1, return the estimated
ESW and stop.

a5 Return failure and stop.

The solution of a GEA is a global optima (i.e. no better
solution can be constructed by the agents).
If the prices are modified with a minimal increment and

the set of alternatives is finite, the previous protocol is safe
to converge in finite time as long as the agents are stable
in the order on their preferences and commit to their agree-
ments (monotonicity in finite domains).
A solution S of a distributed problem may not need the

agreement of some particular agent Ai. In that case we
say that Ai is inactive for S. Conversely, we say that Ai

is active for S if its agreement is necessary for choosing S.
This provides a means to model a facet of competition useful
for ameliorating the ESW. An agent, inactive for the current
solution, may indeed want to make concessions to become
active.

Rational Strategies If any agent A has means of es-
timating the will to risk of all the agents, the following re-
laxation strategy can be proposed.

• A wants to propose its best alternative first. If it is
not satisfied with the current solution, S, and has the
lowest will to risk by accepting S, A will do a minimal
concession.

This strategy is not in equilibrium when A knows well the
strategies and data of the others. In that case, A’s rational
strategy can be:

• If A knows that some other agent will make a minimal
concession, getting involved with A in the best ESW
solution, then A makes no concession.

Commitment of initiators If the initiators are re-
quested to commit to their currently imposed constraints,
meaning that the first chosen ESW solution is the final one,
the rational negotiation strategies change.

• If A knows that no solution can be found where A is
inactive, then if A has the lowest will to risk, it will
make a minimal concession, otherwise A will wait.

• If a solution, S, can be found without A in active state,
A proposes all its acceptable alternatives.

If A knows well the strategies and data of the others, A’s
rational strategy would rather be:

• If A knows that no solution can be found where A is
inactive, then if A has the lowest will to risk, A will
make a minimal concession, otherwise A will wait. If
this is the last round, and others will make some next
relaxation leading to a solution, A waits for them.

• If a solution can be found with A in inactive state,
since A can compute a quality of the solution S that
can be obtained without A, then A proposes the alter-
native being the minimal concession leading to a global
solution better than S (if any exists).

5. EXTENDING DisCSPs
In order to model practical negotiation problems, we

introduce a formalism that enriches the DisCSP frame-
work with dynamism, preferences and constraint relaxation.
The extended framework builds on the notion of Valued
CSPs [10]. First we describe the problem of an agent, Au,
as a Negotiation Valued CSP, (NVCSPu). NVCSPu consists
of:

• A minimal increment, ε.

• A set of external variables, V(u). The domain of each
variable contains a value F 5 meaning unchanged and
indifferent.

• An ordered set of global constraints c1(u),...,cnu(u).

• Each pair (valuation v, constraint ci(u)) has associated
a tuple:

T
v
i (u) = (feasiblev

i (u), price
v
i (u), preference

v
i (u)).

T v
i (u) is such that for each constraint ci(u),

pricev
i (u)≥cost

v(u) and if nu≥i>j>0 then:

• for any valuation v, feasiblev
j (u) → feasiblev

i (u) and
pricev

i (u) ≤ pricev
j (u),

5or a set of values.

• there exists a valuation v such that either
feasiblev

i (u) 6= feasiblev
j (u), or

feasiblev
i (u) = feasiblev

j (u) = T

and

pricev
i (u) + ε ≤ pricev

j (u)

A Dynamic DisCSP6 (DyDisCSP) is defined by:

• A set of agents A0,...,An. Ak, k ∈ [0, h), n ≥ h > 0,
are h agents called initiators.

• Each agent Aj owns a NVCSP, NVCSPj .

• Each agent Aj is interested in a set of external vari-
ables V(j).

• costv(j) is private to the agent Aj for any valuation v.

Given a valuation v for all the external variables, S(v) is
the set of agents owning a variable not instantiated in v to
F . By convention, the initiators always belong to S(v).

Definition 12 (Acceptable valuation). A valua-
tion v is acceptable if each agent in S(v) proposes for v a
feasible associated tuple, (feasiblev

ki
(i) = T).

By v̆ we denote a valuation obtained from the valuation
v by reassigning a subset of variables to F such that v 6=v̆.

Definition 13 (Stable valuation). v is stable if
there exists no acceptable v̆.

Intuitively, a stable valuation is minimal in the sense that
it corresponds to a agreement of the agents in S(v), and by
eliminating any subset of agents from S(v), no agreement
can be obtained with the initiators.
When v is stable we say that all the agents in S(v) are

defined by v as active.

Definition 14 (Solution). A solution of a Dy-
DisCSP is a stable valuation v of all the external variables
such that if each agent Ai in S(v) proposes for v an associ-
ated tuple (T, pricev

ki
(i), preferencev

ki
(i)), ki≤ni, and if

A = {b| b = argmin
a

(
∑

Ai∈S(v),i≥h

price
a
ki
(i))},

then v∈A, v is pareto-optimal for S(v) over A. and no agent
Ai, i>0, wants to reveal a constraint cj , j>ki.
The feasibility condition is

∑
Ai∈S(v) price

a
ki
(i) ≤ 0.

The feasibility condition verifies that the solution is ac-
ceptable to the initiators. If v is a solution of a DyDisCSP,
then S(v) is the solver set for v.
In our framework, the step a1 of GEA amounts to solving

a DyDisCSP where the ki of any Ai is fixed.

6We propose to call DyDisCSP a DisCSP where the par-
ticipation of agents is dynamic. An alternative is to call
this framevork dynamic distributed valued CSP (DyDis-
VCSP). A DyDisCSP where the agents own dynamic CSPs
can then be called dynamic distributed dynamic CSP (Dy-
DisDyCSP).

5.1 Relation with existing negotiation frame-
works

In [8] was presented a framework for Multi-Unit Combi-
natorial Exchanges. The characteristic of these auctions is
that in one bid a bidder can be selling some items and buy-
ing other items simultaneously. The multi-unit combinato-
rial exchange winner determination problem (MUCEWDP)
is to label the bids as winning or losing so as to maximize
surplus under the constraint that demand does not exceed
supply. In our framework, MUCEWDP are modeled by hav-
ing exactly one initiator that owns no constraint.
The auctions enabled by our approach to GEA (Dy-

DisCSP) are an extension of MUCEWDP where the final
solution has to get the agreement of a predefined (sub)set
of agents (the initiators). We therefore call such auction
problems Multi-Unit Supervised Combinatorial Exchanges
(MUSCEWDP).

Definition 15 (MUSCEWDP). MUSCEWDP are
Multi-Unit Combinatorial Exchanges winner determination
problems where the solution needs the agreement of a
predefined set of agents.

The other existing types of auctions are suggested in [8] to
be instances of MUCEWDP. Therefore, they can also be
modeled as MUSCEWDP.

5.2 Modeling English Auctions
The dynamism enabled by DyDisCSPs can be used to

model English Auctions. We draw now a parallel between
the introduced framework and typical English Auctions.
The equivalence of notions is:

• external variable ⇔ transaction for the allocation of a
good to an agent, other than the current owner.

Each variable is in the NVCSPs of the current owner
and of the target owner of the good.

values ∈ {T, F}, showing if the transaction is chosen.

• initiator ⇔ auctioneer.

• price ⇔ minus of the bids for a combination of alloca-
tions

The cost in DyDisCSPs is the minus of the worth in
English Auctions.

• price − cost ⇔ utility or worth.

The initiator launches the search in the space of alloca-
tions. At each step, an agent Au imposes the constraint
cku(u), ku≤nu. A relaxation of the imposed constraints cor-
responds to increasing ku.

6. EXTENDING AASR
In this section we introduce an algorithm called Se-

cure Asynchronous Search (SAS) which is an adaptation of
AASR to the DyDisCSP framework. SAS can be used to
find all ESW at step a1 of GEA. First we recall the basic
elements of the AAS [11] protocols. The system agent is a
special agent that receives the subscriptions of the agents
for the search. It decides an initial order of the agents and
announces the termination of the search. If the agent Ai is
ordered before Aj , then we say that Ai is an ancestor of Aj .
We denote with Ai the agent that has the position i, i ≥ 0.

Definition 16 (Assignment). An assignment is a
triplet (v, set, h) where v is a variable, set a set of values
for v and h a history of the pair (v, set).

A history h for an assignment a = (v, set, h) proposed by
an agent Ak takes the form of a list of pairs |i : l| where i is
the index of an ancestor of h that has made a proposal on v

and l is the value of a counter. These pairs are ordered in h

according to the ascending value of i. The last pair in h has
the form |k : lkj |. An order ∝ is defined on pairs such that
|i1 : l1| ∝ |i2 : l2| means either i1 < i2, or i1 = i2 and l1 > l2.
An assignment requests higher priority agents to comply
with a proposal, therefore it defines by itself of a nogood.
All the values that do not comply with the assignment are
nogoods. Such nogoods are called nogoods entailed by

the view.

Definition 17 (Newer history). A history h1 is
newer than a history h2 if a string-like comparison on them,
using the order ∝ on pairs, decides that h1 precedes h2.

An assignment with history hj
x built by Aj for a variable

x is valid for an agent Am, m≥j if no other history known
by Am and built by agents Ak, k≤j for some assignment
of x, is more recent than hj

x. A nogood is valid if all the
assignments contained in its premise are valid.

Definition 18 (Explicit nogood). An explicit no-
good has the form ¬V , where V is a list of assignments.

Definition 19 (Ordering). An ordering is a se-
quence of agent names.

The agents communicate, using channels without message
loss, via:

• ok messages, sent from agent Aj to agent Ai, and hav-
ing as parameter a list of assignments for variables in
which Ai is interested.

• nogood messages which have as parameter an explicit
nogood.

• add-link(vars) messages, sent from agent Aj to agent
Ai, informing Ai that Aj is interested in the variables
vars. They are always answered.

• reorder messages which have as parameter an order-
ing.

• heuristic messages which have as parameter data for
computing heuristics.

In AAS, each agent is allowed to keep its constraints secret
and has to declare from start the external variables for which
it has constraints.
AASR [13], allows the agents to asynchronously propose

new orders among themselves. An order is represented by a
sequence of agents and is tagged by a history. An agent can
only propose new orders within a bounded delay after having
received a new proposal. We consider here the case where
an agent does not reorder agents having lower positions than
itself.
When used in competitional situations (e.g. within nego-

tiation), the AASR technique is no longer appropriate. The
reason is that a solution of such problems does not need

to be an acceptable solution for all the agents, as long as
some of them are not active in the solution and do not gain
anything7.

6.1 Secure Asynchronous Search
In AASR, both ok and nogood messages transport some

kind of nogoods. These are the nogoods entailed by the
view, respectively the explicit nogoods. In order to allow the
agents detect messages that are potentially harmful for the
quality of the computed solution, we introduce the notions
of legal nogood and legal assignment. We want to prevent
the agents from disturbing the search by generating illegal
messages. A message (containing a nogood ¬N) is illegal if
it is generated by an agent that can be inactive in a valuation
extending the partial valuation in the Cartesian-product de-
fined by N . SAS requests agents to build messages in such
a way that their lawfulness can be proved.

Definition 20 (Legal explicit nogood). Any legal
explicit nogood generated by an agent Ai, where Ai is not an
initiator, must contain at least one assignment of a variable
vj from V (i) such that vj does not contain F .

Definition 21 (Justification). Each assignment Ii

generated by an agent Ai that is not initiator needs a jus-
tification. The justification of the assignment Ii consists of
a pair (v,h) built from an assignment (v,s,h) that activates
Ai.

The justification of an assignment, a, corresponds to a
relaxation of the nogood entailed by the view given by a

and is stored in the history of the assignment, attached to
the pair corresponding to the agent that has generated a. A
history has now the form |i1,l1, j1|i2,l2, j2|... where ik is the
index of an agent, lk is the value of an instantiation counter
and jk is the justification of the corresponding instantiation.

Property 2. The space needed by an agent to store all
the assignments is O(nv), where n is the number of agents
and v is the number of variables.

Proof. The number of possible simultaneous valid assign-
ments is nv since each agent can generate at most v valid
assignments at a time (one per variable). All assignments
and justifications can be represented as a directed graph
having the valid assignments as nodes. The maximum num-
ber of arcs in this graph is 2nv since there cannot be more
than 2 arcs getting out of a node.

Corolary 1. The size of an assignment is O(nv).

Property 3. SAS has polynomial space complexity in
each agent.

Proof. AASR requires polynomial space and the only addi-
tional structures required by SAS consist of the new assign-
ments in justifications. For all the references to assignments
in the structures of AAS, Corolary 1 shows that a polyno-
mial mapping exists to the new form of the assignments.

Besides generating illegal nogoods, the agents can also
generate illegal assignments against their competitors.

7And have to reduce their preferences.

Definition 22 (Legal assignment). An assignment
is legal if its justification is valid and the variable in the
justification does not contain F in its instantiation. By con-
vention, any assignment generated by an initiator is legal.

No assignment (v, s, h) generated in SAS may aggregate
in s both the value F and some other values.

6.2 The SAS protocol
In order to enable agents to make proposals, they must be

given the opportunity to know when they are activated. The
active/inactive state of an agent is know when either one
of its external variables is instantiated outside F (active),
or when all its external variables are instantiated with F

(inactive). For the security of the search, we want to involve
on low positions in search only agents that are known to be
active.

Rule 1 (Initiator first). The agent A1 has to be an
initiator.

Rule 2 (Active first). Whenever possible, each
agent proposes orders to make sure that the agent on the
next position is known to be active.

In order to let agents know which of the next agents are
active, active agents must announce all their instantiations
for external variables to all their successors.
Since in SAS the messages must prove that their sender is

active, agents must generate only legal nogoods. Any other
nogood would be discarded. The next rule shows how legal
nogoods can be obtained.

Rule 3 (Nogood generation). Whenever an agent
Ai computes an explicit nogood N that is not legal, and the
set in the newest assignment it has received for some variable
vj from V (i) does not contain F , it should add the newest
assignment of vj to N .8 If this is not possible, it means that
Ai is inactive and it should refrain from sending N to other
agents. This rule does not apply to initiators.

Coalitions can still be created in SAS. In fact any agent
that does not check if a receiving message is valid makes a
(temporal) coalition with the sender.

Rule 4 (Checking). The receiver of an explicit no-
good N should check that N is legal. Also the receiver of
any assignment, (when an ok message is received), should
check that the new assignment is legal and the assignment is
not empty (the search cannot be voluntarily blocked).
If one of these conditions is not respected, the messages

must be discarded.

In order to ensure completeness and termination of SAS,
the management of justifications has to be coherent. The
justifications trigger add-link messages in the same condi-
tions as the assignments received in an explicit nogood in
AAS. Moreover, justified nogoods should not be delivered to
the receiving agent and integrated in the other structures in-
herited from AASR before the answer to eventual add-link

messages is received.

8When illegal nogoods are made legal, they are in fact re-
laxed. Agents that must relax nogoods can use heuristics
for choosing the variable vj from V (i). (e.g. choosing the
variable for which the known assignment was generated by
an agent with the lowest priority.)

Rule 5 (Justification change). Whenever the jus-
tification of an agent Ai is modified, Ai has to send again
all its assignments.

Only one assignment is used as justification by an agent
at a time.

Rule 6 (Stored agent-view). Each agent stores all
the valid assignments it receives.

Rule 7 (Justification invalidation). Whenever
the justification J of a stored assignment a1 in Ai is
invalidated by some incoming new assignment a2, Ai has to
invalidate a1 and has to apply again this invalidation rule
as if a new assignment of the variable in a1 would have
been received.

Lemma 1. The information maintained by agents in Se-
cure Asynchronous Search is consistent with their predeces-
sors.

Proof. The rules for nogoods generation and nogood check-
ing are allowed by the AAS framework and the proof in [11]
remains valid. Sending any (finite) number of add-link

messages when justifications are received fits AAS as well.
It remains to prove that the properties are maintained when
the invalidation, of a justification, j, triggers the invalidation
of an assignment, x, that it justifies.
The role of a stored assignment in AAS is to define a valid

nogood entailed by the view of the agent. Therefore x defines
a nogood entailed by the view. In the Secure Asynchronous
Search, the agent activated by j has to invalidate and re-
compute its instantiation (due to the justification change
rule). Therefore x, becomes indeed invalid. Consequently,
in all cases the information maintained by the agents will
eventually be consistent with their predecessors.

Definition 23 (Quiescence). By quiescence of a
group of agents we mean that none of them will receive or
generate any legal valid nogoods, new legal valid assignments,
reorder messages or add-link messages.

Lemma 2. At quiescence for the agents A1, ..., Ai, an
agent Ai, knows whether there exist any active agent placed
after it or not.

Proof. If any initiator is placed after Ai, this is known to
Ai since the last ordering was received.
Otherwise, Ai knows all assignments outside F done by it-
self or predecessors for external variables. Ai also knows
the variables that can activate its successors since they are
announced as initial data. Ai therefore knows when any
successor is activated by the agents A1, ..., Ai.
If no successor is activated by A1, ..., Ai and no successor is
initiator then, since an inactive agent cannot activate an-
other agent, no successor of Ai is active.

Lemma 3. In Secure Asynchronous Search, let a set of k
agents reach quiescence in finite time tk and at quiescence
they take positions 1, ..., k where each of them agrees with its
presecessors. Then, if some of the other agents are active,
either failure is detected or an active agent will reach qui-
escence on position k + 1 in finite time after tk having an
instantiation that agrees with its predecessors.

Proof. The number of possible add-link messages is
bounded so we do not need to consider them.
Let τ be the maximum delay for delivering a message. Af-

ter tk+τ , all the agents know the instantiations of Ai, ..., Ak.
Within time tkh = tk + τ + th + τ , no heuristic message is
received any longer by the agents R0, ..., Rk. The final order
that decides the agent taking the position Ak+1 is therefore
issued before tkh + tr and if any successor is active, an ac-
tive agent becomes Ak+1. After tkh + tr + τ , the identity of
Ak+1 no longer changes and its view remains stable after
to, to < tkh + tr + τ . Since the domains are finite, in finite
time after to either some proposal of Ak+1 is no longer re-
fused, or all its proposals are refused and Ak+1 infers at time
tn, tn > to a legal valid nogood ¬N .
Since ¬N is valid and legal, either:
I. N it is empty and the search fails, or
II. when to < tk, its receiver changes its instantiation for a

variable, v, and either it or its predecessors announce Ak+1

of the new assignment for v. But such an announcement
arrives at Ak+1 after tn + 2τ > to. This contradicts the
hypothesis that the view is stable after to and that to < tn.
III. The predecessor receiving ¬N detects failure and the

search ends.
Therefore in all possible cases the lema holds.

Lemma 4. In Secure Asynchronous Search, the active
agents reach quiescence on consecutive positions 1 to k, and
all inactive agents are placed after Ak.

Proof. Due to the lemma 1, each agent knows when some
successor is active and according to the rule 2 (Active first),
the active agents are ordered consecutively.
The solutions computed by Secure Asynchronous Search

correspond to an agreement among the tuples revealed by
the active agents. This agreement consists in the instantia-
tion of the shared external variables to the same value. The
optimality of the prices has to be checked separately by the
broker.

Proposition 1. The Secure Asynchronous Search is
complete, correct, and terminates. The solutions it com-
putes correspond to an agreement on the tuples revealed by
the active agents.

Proof. Quiescence of the active agents: is a result of
lemma 3. In bounded time, the active agents find a solution
and reach quiescence letting the broker to detect it, or a
failure is detected.

Completeness: All the nogoods are generated by infer-
ence and therefore no empty nogood is generated if a solu-
tion exists. An erroneous inference made by an agent Ai

cannot eliminate a solution that does not instantiate out-
side F a variable activating the agent Ai. Therefore those
solutions needed the acceptance of Ai.

Correctness: The assignments that activate the active
agents at quiescence and the other variables set by these
agents to values that do not contain F is a Cartesian-product
C. Each element in C defines a stable valuation v when it
is expanded by instantiating any other external variables to
F . The active agents correspond to S(v). They all know the
instantiations of their predecessors and they can generate
legal valid nogoods since they are active. Since at quiescence
the active agents agree with their predecessors (Lemma 3),
then all the agents in S(v) agree on v.

For the Secure Asynchronous Search, the termination de-
tection algorithms from AAS can no longer be used since
the agents are not trusted. The messages for announcing
the solution may be sent via inactive agents and therefore
they can be corrupted. For the general case, the solution can
be detected by the system agent. Each agent has to send its
solution to the system agent. The system agent has to find
the solver-sets, namely all the subsets of agents agreeing
with the initiators that are consistent and together define
a solution. This is a problem with polynomial complexity.
For some real problems, alternative techniques for solution
detection can be used.

Property 4. ESW solutions can be computed using the
Secure Asynchronous Search.

Proof. The completeness of the Secure Asynchronous
Search ensures that all ESW solutions are computed to-
gether with other solutions. They are filtered out during
computation according to the definition of ESW, yielding
the step a1.

7. PRACTICAL CONSIDERATIONS
In order to enhance the scalability of Secure Asynchronous

Search, special care must be devoted to managing the size of
the problem. Since the total number of agents in the world,
ready to be involved in a negotiation can be huge, we want to
maintain the set of involved agents to a minimum, without
losing completeness. The current techniques can be adapted
to this new requirement. In order to reduce computation
effort, the agents have the interest to use acceptable value
ordering heuristics for guiding the search.

Definition 24 (MIS). An agent belongs to the mini-
mal interesting set if, during search, at least one partial so-
lution, better than the lowest bound has been found, which
requires the participation of this agent.

Definition 25 (Involved agent). An agent is in-
volved in a current computation if it has been sent at least
one proposal for that computation.

An agent is involved only if it belongs to the minimum
interesting set. Usually, agents can be added in a natural
manner to a computation. In several existing protocols, it
is less easy to eliminate agents. We have introduced the
notions of minimum interesting set and involved agent to
guarantee that an agent is involved only when this is needed
for completeness. For example, in Figure 1 the active agents
at node n4 are A and F . The involved agents are A, B, C,
D, F , the MIS also contains H and L. G has not been in
MIS.
Let us consider that the agents with right to control each

external variable can be found in some yellow pages. The
system agent maintains a set of involved agents, empty in
the beginning. Whenever a set of initiator agents pose a
new problem, they are inserted in the set of involved agents.
Each time that the involved agents reach quiescence, but

instantiated variables in the partial solution correspond to
the activation of some agents not yet involved in the search,
the system agent checks that the partial solution built so
far has a lower value than the best solution found so far. If
this condition is not respected, a nogood is generated for the
current valuation. Otherwise, the system agent sends them a

n3:A,B,C

n2:A,B,D

n4:A,F
n1:A,B

n0:A

n5:A,F,H
n8:A,B,D,F n9:A,B,D,G

n6:A,F,L

Figure 1: The solid circles correspond to visited

nodes, up to node n4. The list of agents active at

each of them is shown under the node. The curved

dashed line show the lower bound for ESW.

request to get involved (an involve message). The involve

takes as parameter the current priority of the receiving agent
in the search, the set of initiators, and the priorities (and
information on external variables) for all the other agents
involved in the search.
When new agents accept to get involved in the computa-

tion, all the existing agents should receive information on
the priority and the external variables of the new agents via
an involved message. They will have to send their propos-
als to the new agents.
If some agents cannot be contacted or refuse to get in-

volved in the search, the system agent announces it to the al-
ready involved agents by an update-yellow-pages message
mentioning the name of the removed agents and the vari-
ables they control. The alternatives on variables controlled
by removed agents have to be disabled from all agents.
The nogoods can also be reused between rounds by using

the technique proposed in [12]. That technique consists of
explaining inferences with references to constraints (CR).
The CRs do not necessarily stand for a given constraint,
but provides a way to signal when due to relaxations, a
nogood is invalidated. The algorithms remain polynomial
space only if the number of CRs in use is bounded. The
reuse of CRs can be enabled by attaching to them counters.
Branch and Bound can also be used dynamically during

the search. However, in order to use it, the AAS protocol
has to be run on the dual representation of the problem
where all the constraints of each agent are represented by
a variable. The values (prices and preferences) for all the
tuples in the sent aggregate have to be attached to the tuples
in the aggregate-set. If aggregations are done in such a
way that all values in an assignment have equal values, then
this value needs to be sent only once. The trimming of
Branch and Bound is more informed if each agent sends its
proposed aggregate to all the agents with higher priority.
The trimming takes into account only active agents.

8. EXAMPLE OF APPLICATION
The problem of Multi-Provider Interactions as described

in [1] consists of reserving requested bandwidth across a het-
erogeneous network of self-interested providers that have se-
cret constraints. The problem of the existence of solutions
has been modeled as a Distributed CSP [1].
Since providers are anxious about revealing details con-

cerning their network links, costs and capacity, this prob-
lem is a natural candidate for solving with GEA. The prob-
lem is not globally truth incentive. The initiators consist
in the clients requesting some bandwidth reservation across

the network. The minimal involved set expands itself as
long as the sum of the costs does not reach the best found
solution. For the Multi-Provider Interactions problem, the
preferences can be used for dealing with previsions of future
traffic or with internal maintenance scheduling.

9. CONCLUSIONS
We present an approach to negotiation for problems where

no globally truth incentive mechanism is available. The con-
cept of Dynamic Distributed Constraint Satisfaction is pro-
posed and we show how it allows for modeling complex char-
acteristics of such problems. In particular we show that it is
sufficient to add a simple set of rules to asynchronous con-
straint satisfaction protocols (e.g. AASR) in order to meet
new requirements on security, dynamism and evaluation of
alternatives (SAS).
We illustrate how Dynamic DisCSPs can be used in gen-

eral negotiation problems (e.g. GEA) to provide fair en-
vironments. The problems that can be modeled by Dy-
namic DisCSPs, MUSCEWDPs, are identified as being
a generalization of Multi-Unit Combinatorial Exchanges
(MUCEWDP). The presented framework inherits from Con-
straint Reasoning generality and flexibility in modeling.
As shown in [13] for MAS, usually asynchronous search

algorithms are generalizations of synchronous versions and
behave like the last ones for:

• certain delays in message delivery,

• certain strategies of the agents concerning:

– aggregation choices and

– delays in answering to messages

• and when the channels can transit by intermediary
agents.

Therefore, the SAS algorithm presented here has such a syn-
chronous equivalent, Secure Synchronous Search (SSS).

Acknowledgments
This research is supported by the Swiss National Science
Foundation. The choice of the name for the new framework
was inspired by Christian Bessiere that has mentioned it in
a discussion on conflicts between acronyms for DisCSPs and
Dynamic CSPs at the DCS’2000 workshop in Singapore.

10. REFERENCES
[1] M. Calisti, C. Frei, and B. Faltings. A distributed

approach for QoS-based multi-domain routing.
AiDIN’99, AAAI-Workshop on Artificial Intelligence
for Distributed Information Networking, 1999.

[2] Z. Collin, R. Dechter, and S. Katz. Self-stabilizing
distributed constraint satisfaction. Chicago Journal of
Theoretical Computer Science, 2000.

[3] S. E. Conry, K. Kuwabara, and V. R. Lesser.
Multistage negotiation for distributed constraint
satisfaction. IEEE Transactions on systems, man, and
cybernetics, 21(6):1462–1477, Nov/Dec 1991.

[4] K. Hirayama and M. Yokoo. Distributed partial
constraint satisfaction problem. In Proceedings of the
Conference on Constraint Processing (CP-97),LNCS
1330, pages 222–236, 1997.

[5] T. Khedro and M. R. Genesereth. Modeling
multiagent cooperation as distributed constraint
satisfaction problem solving. In Proceedings of
ECAI’94, pages 249–253, 1994.

[6] S. Lander and V. R. Lesser. Understanding the role of
negotiation in distributed search among hetergeneous
agents. In Proceedings of IJCAI-93, pages 438–444,
Chambéry, France, 1993.

[7] T. Sandholm. Limitations of the Vickrey auction in
computational multiagent systems. In Proceedings of
ICMAS-96, pages 299–306, 1996.

[8] T. Sandholm and S. Suri. Improved algorithms for
optimal winner determination in combinatorial
auctions and generalizations. In Proceedings of
AAAI’00, pages 90–97, 2000.

[9] A. Sathi and M. Fox. Distributed Artificial
Intelligence, volume 2, chapter Constraint-Directed
Negotiations of Resource Reallocations, pages
163–193. Morgan Kaufmann, California, 1989.

[10] T. Schiex, H. Fargier, and G. Verfaillie. Valued
constraint satisfaction problems: hard and easy
problems. In Procs. IJCAI’95, pages 631–637, 1995.

[11] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with aggregations. In Proc. of
AAAI2000, pages 917–922, Austin, August 2000.

[12] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Maintaining hierarchical distributed consistency. In
Workshop on Distributed CSPs, Singapore, September
2000. 6th International Conference on CP 2000.

[13] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous consistency maintenance with
reordering. Technical Report #01/360, EPFL, March
2001.

[14] G. Solotorevsky, E. Gudes, and A. Meisels. Algorithms
for solving distributed constraint satisfaction problems
(DCSPs). In Proceedings of AIPS96, 1996.

[15] H. R. Varian. Economic mechanism design for
computerized agents. In Proceedings of the First
Usenix Workshop on Electronic Commerce, 1995.

[16] W. Vickrey. Counterspeculation, auctions and
competitive sealed tenders. Journal of Finance,
16:8–37, 1961.

[17] M. Yokoo. Constraint relaxation in distributed
constraint satisfaction problem. In ICDCS’93, pages
56–63, June 1993.

[18] M. Yokoo. Asynchronous weak-commitment search for
solving large-scale distributed constraint satisfaction
problems. In 1st ICMAS, pages 467–318, 1995.

[19] M. Yokoo, Y. Sakurai, and S. Matsubara. The effect of
false-name declarations in mechanism design: Towards
collective decision making on the internet. In
Proceedings of IDCDS-2000, 2000.

[20] M. Yokoo, Y. Sakurai, and S. Matsubara. Robust
combinatorial auction protocol against false-name
bids. In Proc. of AAAI2000, pages 110–115, 2000.

[21] G. Zlotkin and J. S. Rosenschein. A domain theory for
task oriented negotiation. In TR 92-13, Hebrew
University, Jerusalem, 1992.

