LEXIMIN ASYMMETRIC MULTIPLE OBJECTIVE DISTRIBUTED CONSTRAINT OPTIMIZATION PROBLEM

TOSHIHiro Matsuo,1 HIROSHI MATSUO,1 MARIUS SILAGHI,2 KATSUTOShI HIRAYAMA,3 AND MAKOTO YOKO6

1Nagoya Institute of Technology, Nagoya, Japan
2Florida Institute of Technology, Melbourne, Florida
3Kobe University, Kobe, Japan
4Kyushu University, Fukuoka, Japan

The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimization problems. The solvers for the problem are designed based on decentralized cooperative algorithms that are performed by multiple agents. In a conventional DCOP, a single objective is considered.

The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an extension of the DCOP framework, where agents cooperatively have to optimize simultaneously multiple objective functions. In the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal solution. However, such models do not capture the interests of each agent. On the other hand, several practical problems, the share of each agent is important. Such shares are modeled as preference values of agents. This class of problems can be defined using the MODCOP on the preferences of agents. In particular, we define optimization problems based on leximin ordering and Asymmetric DCOPs (Leximin AMODCOPs). The leximin defines an ordering among vectors of objective values. In addition, Asymmetric DCOPs capture the preferences of agents.

Received 15 November 2015; Revised 1 June 2016; Accepted 1 September 2016

Keywords: leximin, preference, multiple objectives, distributed constraint optimization, multiagent cooperation.

1. INTRODUCTION

The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation (Modi et al. 2005; Peteu and Faltings 2005; Farnelli et al. 2008; Zivan 2008). With DCOPs, the optimization in distributed resource allocation including distributed sensor networks (Zhang et al. 2005), meeting scheduling (Maheswaran et al. 2004), disaster response (Ramchurn et al. 2010), and smart grids (Miller et al. 2012) is formalized using constraint optimization problems. In a conventional DCOP, a single objective is optimized. The solvers for the problem are designed based on decentralized cooperative