
The Design of Cryptographic S-Boxes Using CSPs

Venkatesh Ramamoorthy1, Marius C. Silaghi1, Toshihiro Matsui2,
Katsutoshi Hirayama3, and Makoto Yokoo4

1 Florida Institute of Technology, Melbourne, FL 32901, United States of America
vramamoo@my.fit.edu, msilaghi@cs.fit.edu

2 Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
matsui.t@nitech.ac.jp

3 Kobe University, Kobe, 657-8501, Japan
hirayama@maritime.kobe-u.ac.jp

4 Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
yokoo@is.kyushu-u.ac.jp

Abstract. We use the Constraint Satisfaction Problem (CSP) framework to
model and solve the problem of designing substitution functions for substitution-
permutation (SP) networks as proposed by Shannon for the architecture of ci-
phers. Many ciphers are designed using the SP pattern, and differ mainly by two
parametrized functions: substitution and permutation. The most difficult of the
two is the substitution function, which has to be nonlinear (a requirement that was
difficult to define and quantify). Over time, researchers such as Nyberg, Pieprzyk
and Matsui have proposed various metrics of nonlinearity that make the func-
tion robust to modern attacks. Before us, people have attempted various ways to
design functions that respect these metrics. In the past people hand-picked sub-
stitution tables (S-boxes) by trying various values. Recently they use difficult to
analyze constructs (such as Bent functions, spectral inversion, inverses in Galois
fields) whose outputs are tested for nonlinearity. While efficient, such techniques
are neither exhaustive (optimal), nor did they manage to generate better substitu-
tions than the ones hand-picked in the past.

We show that Matsui’s nonlinearity requirement can be naturally modelled
using CSPs. Based on a combination of existing CSP techniques and some new
filtering operators that we designed specially for the new types of constraints,
we manage to obtain better S-boxes than any previously published ones. The
simplicity of the CSP framework and availability of general CSP solvers like
ours, makes it easy for more people to design their own ciphers with easy to
understand security parameters. Here we report on this new application of CSPs.

Keywords: CSP Model, S-Boxes, DES, 3DES, Nonlinearity, Linear Cryptanal-
ysis, Differential Cryptanalysis.

1 The Cipher Design Problem

We discuss an application of the Constraint Satisfaction Problem (CSP) framework to
the design of Substitution Boxes (S-Boxes) used extensively in cryptographic algo-
rithms to secure data for confidentiality purposes.

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 54–68, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Design of Cryptographic S-Boxes Using CSPs 55

Fig. 1. Shannon’s Substitution Permutation (SP) Network

Claude Shannon proposed the Substitution Permutation (SP) network, considered to
be the heart of modern cryptography [22]. To transform (encrypt or decrypt) bits of data
to ensure confidentiality, an SP network such as the one shown in Fig. 1, performs three
steps. First, a function of the transformation key, called a subkey, is exclusively-ORed
into the input data bits.

The second step is the one we are interested in. A substitution function Si : Z2n →
Z2n (i = 1, . . . , 4 in Fig. 1) replaces n bits of data by another set of n bits to in-
troduce confusion into the data. By Zk we denote the set of residues {0, 1, ..., k − 1}
modulo-k. The replacement is performed using lookup tables called Substitution Boxes,
or S-Boxes.

In the third step, a permutation function P shuffles the bits to cause diffusion
within the data. Shannon’s SP network requires that each of the S-functions be in-
vertible. The three steps constitute a round of the SP network and are repeated several
times. Each round other than the first acts on the output of a previous round. Fig. 1
constitutes a three-round SP network, with subkeys K0, . . . , K3 derived from the trans-
forming key.

One of the most productive contributions to modern cryptography is Feistel’s
architecture [8], also referred to as the Feistel network in the literature. It offers a simple

56 V. Ramamoorthy et al.

Transformed Text

Original Text

f

L1 R1

Lr−1 Rr−1

RrLr

f

Subkey K1

Subkey Kr−1

L0 R0

Subkey K0

Fig. 2. Rounds of encryption / decryption in a typical Feistel Cipher

mechanism for generating countless sound1 encryption schemes. The Feistel network,
first designed by Horst Feistel and depicted in Fig. 2, is a product cipher. Each block of
data being transformed is divided into two halves, a left and right half. Input bits being
transformed are permuted to introduce diffusion into the bits.

Next, a function f applies the S-Boxes on these permuted bits to further introduce
confusion into the data being transformed. These substitution-permutation steps form a
round of transformation, and are repeated several times. In addition, f mixes a function
of the transformation key called subkey, precomputed from the transformation key using
a key schedule. Each round uses a subkey different from the others.

New sound encryption schemes on 2mk bits are obtained2 for any choice of k n×m
S-Boxes for any desired m and n. Feistel’s cipher architecture is a variant of Shannon’s
substitution-permutation (SP) network [22]. When compared with Shannon’s network,
the soundness requirement imposes no constraint on the Feistel’s substitution boxes
(i.e., on the S function)3.

1 An encryption scheme is sound if decryption always returns the original plaintext.
2 One for each key schedule.
3 Shannon required that S-Boxes be invertible.

The Design of Cryptographic S-Boxes Using CSPs 57

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

48−bit

48−bit

E

32−bit

48−bit

XOR

P

48−bit

The
eight

S−Boxes

32−bit

S1 S8S4S2 S3 S7S5 S6

Ri

Su
bk

ey
K

i

Ri−1

E(Ri−1)

E(Ri−1) ⊕ Ki

Fig. 3. One Round of encryption / decryption in 3DES using the S-Boxes

1.1 Examples of SP Networks

Blowfish, Twofish, Camellia, RC5, IBM’s Data Encryption Standard (DES) [15], and
the widely used Triple-DES (3DES), are examples of Feistel ciphers. Note that 3DES is
one of the main ciphers used in protocols such as Secure Sockets Layer (SSL) and
the newer Transport Layer Security (TLS). It is also employed in the Secure Shell
(SSH) protocol used in applications such as sftp and ssh. Non-Feistel architectures
abound in the literature such as, for example, the International Data Encryption Algo-
rithm (IDEA) [11] and Rijndael, the current Advanced Encryption Standard (AES) [7],
that employ the SP architecture.

A round of 3DES employs eight 6×4 S-Boxes numbered S1, S2, . . . , S8 as depicted
in Fig. 3 with S1 shown in Fig. 4. An S-box substitution of 4 bits for a 6-bit input i is
obtained by indexing into the row number formed by the first and last bits of i, and the
column number formed by the middle bits of i. For example, input of 45(= 1011012) to
S-Box S1 yields 1, obtained by reading the entry in row 3 (= 112), column 6 (= 01102)
of Fig. 4.

58 V. Ramamoorthy et al.

S1 y1y2y3y4

y0y5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Fig. 4. S-box S1 used in 3DES

Table 1. The S-box criteria used by IBM for designing 3DES [6]

S-1 Each S-box has six bits of input and four bits of output.
S-2 No output bit of an S-box should be too close to a linear function of the input bits.

(That is, if we select any output bit position and any subset of the six input bit positions,
the fraction of inputs for which this output bit equals the exclusive-OR of these input
bits should not be close to 0 or 1, but rather should be near 1

2
).

S-3 If we fix the leftmost and rightmost input bits of the S-box and vary the four middle
bits, each possible 4-bit output is attained exactly once as the middle four input bits
range over their 16 possibilities.

S-4 If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least
two bits.

S-5 If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ
in at least two bits.

S-6 If two inputs to an S-box differ in their first two bits and are identical in their last two
bits, the two outputs must not be the same.

S-7 For any nonzero 6-bit difference between inputs ΔIi,j , no more than eight of the 32
pairs of inputs exhibiting ΔIi,j may result in the same output difference ΔOi,j .

1.2 The Security Requirements of S-Boxes

The only part of the Feistel network that is highly nonlinear and therefore difficult to
cryptanalyze, consists of the S-Boxes in the function f of Fig. 2. Thus, the security
of the S-Boxes is highly important. The numbers in Fig. 4 are obtained due to S-box
design. The design requirements have evolved through years of research by the crypto-
graphic community.

For example, the S-Boxes of 3DES are so designed to satisfy the security criteria
numbered S-1, S-2, and so on [6], which are listed in Table 1. These criteria were clas-
sified and eventually, revealed [6] only after reporting of results of differential crypt-
analysis by Biham, et. al [4] and linear cryptanalysis by Matsui [13].

Subsequently, security requirements such as maximum nonlinearity, minimum auto-
correlation, the strict avalanche criterion (SAC), the bit independence criterion (BIC),
highest dynamic distance, and several others, have found their way into the design prin-
ciples to enhance S-box security [18,14].

The Design of Cryptographic S-Boxes Using CSPs 59

2 Rationale of the CSP Approach to S-Box Design

The first S-Boxes for Feistel ciphers were designed by hand. Early security attacks
have propelled the research for guidelines (i.e., requirements) that avoid known vul-
nerabilities. These requirements prove to be so difficult to achieve, to the point where
it is said [15] that the 3DES designing team dropped guards when hand-picking their
last S-box (given the fact that their last S-box is susceptible to attacks from differential
cryptanalysis [4]). Some subsequent proposals build keyed one-time usage S-Boxes dy-
namically. This avoids the need of hand-building them, but results in expensive start-up
times at encryption and decryption (e.g., Blowfish, Twofish [21]).

Some of the criteria used for design of static S-Boxes (such as maximum nonlinearity
and minimum autocorrelation) are defined using numerical satisfaction functions where
the absolute satisfaction appears unreachable4. Therefore the design process becomes
an optimization procedure where the satisfaction of the criteria is maximized.

The approach on which we build here, is to automatically generate the needed
S-Boxes based on the relevant security criteria. S-box generation approaches can
be classified as: random generation of S-Boxes, random generation-and-testing of
S-Boxes, human-made S-Boxes, and math-made S-Boxes [23].

An exhaustive generation of all possible S-Boxes followed by validating them using
security criteria known at that time has been tested for 4×4 S-Boxes as reported in [1].
Among the existing math-made S-box generation schemes, a number of approaches
pre-load bent functions, often constructing them bit by bit, into an S-box entry, and test-
ing the entry against design criteria. For example Mister, et.al [14] loads a bent function
bit-by-bit into an S-box entry and tests for its nonlinearity and highest dynamic distance.
Adams, et.al [2] test combinations of the bits of a 4 × 4 S-box entry against design cri-
teria such as nonlinearity, strict avalanche and output bit independence. O’Connor [16]
combinatorially analyzes the bit-by-bit approach and shows that there are practical lim-
its up to which this scheme can generate S-boxes efficiently. Pieprzyk, et.al construct
n × n bijective S-Boxes by focussing only on nonlinearity requirements [18]. Gupta,
et.al [9] construct n × m S-Boxes in two ways – one, by modifying a technique by
Zhang and Zheng and the other, by using a sharpened version of Maiorana-McFarland
technique to construct nonlinear resilient functions.

Recently, evolutionary approaches using local search have been applied to obtain
S-Boxes satisfying security requirements [12]. The approaches employ hill climbing,
simulated annealing and spectral inversion. A typical approach generates a fully-filled
S-box that is “approximate” in that not all criteria are satisfied, and entries in the S-box
are adjusted to guide the search towards criteria satisfaction. None of these approaches
has the elegance of a CSP model. They did not manage to produce S-Boxes of a higher
quality than the hand-made ones. Neither can they be so simply extended with new con-
straints, nor do their efficiency benefit immediately from advances in general computing
techniques. In contrast, in our work, we employ automatic generation of S-Boxes using
CSPs.

4 This observation of unreachability is supported by our experiments, as well as by the existing
S-box selections of various ciphers.

60 V. Ramamoorthy et al.

3 The CSP Approach

Our model of the problem is based on the following definition of a CSP:

Definition 1. A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C) where X is
a set of variables, D, a set of domains of each variable in X , and C is a set of constraints
between variables in X , all of which are required to be satisfied.

3.1 Notations

For a number x, we use |x| to denote its absolute value. If S is a set, then |S| represents
its cardinality (number of elements in S). Whenever a set is written with braces, its car-
dinality is written with a # preceding the set itself, such as #{a0, a1, a2, . . . ak−1}. The
symbols · and⊕ represent, respectively, the bit-wise AND and exclusive-OR (XOR) op-
erations on two identical-sized bit patterns. Bit pattern x̄ denotes the one’s-complement
of x. A linear combination of Boolean variables x0, x1, x2, . . . , xk−1, is given by the
expression

k−1⊕

i=0

ai · xi = a0 · x0 ⊕ . . . ⊕ ak−1 · xk−1 (1)

where the ai’s are Boolean coefficients. A linear Boolean function Lω(x) on an n-bit
input x = x0 . . . xn−1 defined by an n-bit selector ω = ω0 . . . ωn−1 is computed [5] as:

Lω(x) = ω0 · x0 ⊕ . . . ⊕ ωn−1 · xn−1 =
n−1⊕

i=0

ωi · xi (2)

1 The parity P (x) of an n-bit pattern x = x0x1 . . . xn−1 is equal to the exclusive-
OR of the bits in x, that is, P (x) = x0 ⊕ x1 ⊕ . . .⊕ xn−1. Using these facts, we derive
the following property of Lω(x):

Property 1. Lω(x̄) = Lω(x) ⊕ P (ω)

Some existing criteria are based on the concepts of Hamming weight and Hamming
Distance. The Hamming weight of a given bit-pattern u, denoted by wt(u), is defined
as the number of 1’s in u. Two n-bit numbers x and y differ by an amount equal to
x ⊕ y. The Hamming Distance between x and y is the minimum number of changes to
be made to x to obtain y, and is equal to wt(x ⊕ y).

y1y2y3y4

y0y5 0 1 2 3 ... 13 14 15
0 x0 x2 x4 x6 ... x26 x28 x30

1 x1 x3 x5 x7 ... x27 x29 x31

2 x32 x34 x36 x38 ... x58 x60 x62

3 x33 x35 x37 x39 ... x59 x61 x63

Fig. 5. The relation between the selected variables and a 6 × 4 S-box

The Design of Cryptographic S-Boxes Using CSPs 61

Each security criteria is now implemented by a set of corresponding constraints,
taking IBM’s criteria (Table 1) applied to n × m S-box design as an example. IBM’s
Criterion S-1 is implicit in the choice of variables. Criteria S-4 through S-6 are formu-
lated as binary constraints. Criteria S-2 and S-7 have to be implemented using n-ary
constraints and S-3 generates Alldiff constraints. The constraints for S-2 are the
most involved and are first presented (Sec. 3.3).

3.2 Variables and Domains for an n × m S-Box

To model, using constraints, an n × m S-box (i.e., on n-bit inputs), we propose to
use 2n variables. The ith variable will be denoted xi, 0 ≤ i < 2n. Each xi specifies
the output of the S-box for input i. The set of variables for the CSP is the set X =
{x0, x1, . . . , x2n−1}. Since the output of an S-box is m bits long, the domain of each
variable xi is defined as xi ∈ {0, 1, . . . , 2m − 1}, 0 ≤ i < 2n.

In the example for 3DES, where n = 6 and m = 4, there are 64 different
S-box input values. Let the corresponding 64 output values be represented by vari-
ables x0, x1, . . . x63. Since each output is 4 bits, the domains are defined by xi ∈ {x :
0 ≤ x ≤ 15}, 0 ≤ i ≤ 63. Using these variables, a 6 × 4 S-box such as the one for
3DES is organized as shown in Fig. 5, as addressed by incrementing the input. In Fig. 5,
6-bit inputs i, 0 ≤ i ≤ 63 are represented as bit-patterns y0y1y2y3y4y5 for clarity.

3.3 The Nonlinearity Constraint S-2

The rationale behind IBM’s criterion S-2 (see Table 1) is to ensure that an S-box is
highly nonlinear. Matsui’s work on linear cryptanalysis [13] uses a table called the
Linear Approximation Table that records the counts of linear combinations of all subsets
of input and output bits, for a particular S-box. Consider an n × m S-box, i.e., that for
any n-bit input i = i0 . . . in−1 yields the m-bit output xi = xi0 . . . xim−1 . The linear
combinations to be checked for equality are obtained by selecting bits in i and xi using
selectors a and b respectively, where 0 ≤ a < 2n and 0 ≤ b < 2m. For a given S-box
Φ with all variables in X , let us define NΦ

X(a, b) as follows:

NΦ
X(a, b) = #{i : La(i)=Lb(xi); a, i ∈ Z2n ; b, xi ∈ Z2m} (3)

where Lω(x) is defined in (2). The minimum value of NΦ
X(a, b) is zero and the maxi-

mum value is 2n. Matsui [13] considered the general case when b is not a power of 2,
corresponding to a criterion S-2′ that is stricter than S-2.

Given an n × m S-box Φ′ and X ′ ⊆ X , let us define NΦ′
X′(a, b) as follows:

NΦ′
X′(a, b) = #{i : La(i)=Lb(xi); xi ∈ X ′; a ∈ Z2n ; b, xi ∈ Z2m}

A Measure of Nonlinearity. For selectors a and b defined as above, let p(a, b) denote
the fraction of cases when La(i) = Lb(xi), computed as:

p(a, b) =
NΦ

X(a, b)
2n

(4)

62 V. Ramamoorthy et al.

If p(a, b) is equal to 1, this indicates that the linear combination of the output bits
selected by b equals a linear combination of the input bits selected by a, i.e., ∀i, La(i) =
Lb(xi). If p(a, b) is equal to zero, then the linear combination of the output bits selected
by b is never equal to the linear combination of input bits selected by a. S-2 stipulates
that p(a, b) should be near 1

2 , i.e. |NΦ
X(a, b)− |X|

2 | should be as close to zero as possible.

The Score of an S-box. The ideal case where NΦ
X(a, b) − |X|

2 is zero for all selector-
pairs (a, b), has so far not been attained in the literature for common cryptosystems.
The most effective linear approximation of a 3DES S-box is obtained if, for some a

and b, |NΦ
X(a, b) − |X|

2 | is maximal. To reduce the weakest point of the S-box, we use
the so called effectiveness of linearization [17] of an S-box Φ as its score:

σX(Φ) = max{|NΦ
X(a, b) − |X |

2
| : 1 ≤ a < |X |; 1 ≤ b < |D|} (5)

An S-box with a smaller score is considered better. For our search heuristics we proved
and use the following property:

Property 2. The score σX(Φ) of a complete assignment Φ does not change if all of its
assigned values are replaced by their one’s-complements, into an assignment Φ̄.

The score σX′ , X ′ ⊆ X , of a partially-filled n × m S-box Φ′ is defined as follows:

σX′(Φ′) = max{|NΦ′
X′(a, b) − |X |

2
| : 1 ≤ a <

|X |
2

; 1 ≤ b < |D|} (6)

The Constraint for S-2. The criteria S-2 leads to a soft constraint that minimizes
σX(Φ). When implemented as a hard constraint for a threshold τ , it has the form:

σX(Φ) ≤ τ (7)

The maximum value of σX(Φ) is equal to |X|
2 , which is attained when the S-box output

bits are given by a linear combination of its input bits.
This constraint is not implemented using an extensional representation. Rather, a

specialized function is added to the solver that works with a 2n+m size storage, repli-
cated at each level in the search tree. This results in a total space requirement of 22n+m

bytes. For 3DES-size boxes the constraint requires 64kB. This heuristic will be referred
to as HΦ,τ

S .

An Incomplete, Incremental Heuristic for S-2 using Partial Assignments. The in-
complete constructive search heuristic Hφ,τ

I is based on abandoning partial assignments
larger than φ variables, with score exceeding a threshold τ . For example, for 6 × 4
S-box generation with H48,16

I , partial S-Boxes having 48 instantiated variables will be
rejected if they do not have entries with NΦ′

X′(a, b) of at least 16. The H48,16
I heuris-

tic with MAC yielded a large number of S-Boxes having score 8, (better than those
in 3DES) whose retrieval using other search techniques required a lot of computation
time.

The Design of Cryptographic S-Boxes Using CSPs 63

Projections of n-ary constraints to partial assignments. The following property of a
partial assignment allows for projection of (Eq. 7) into lower-arity constraints.

Property 3 (Projections). A partial assignment Φ′ with values for variables in X ′, X ′ ⊆
X , cannot be extended to a solution with score better than a threshold τ if the following
inequality is not satisfied:

|X ′| − τ − |X |
2

≤ max
a,b

NΦ′
X′(a, b) ≤ |X |

2
+ τ (8)

A complete, incremental heuristic that uses this property will be referred to as Hφ,τ
C .

S-3 (see Table 1). Fixing the leftmost and rightmost input bits y0y5 to any of the pos-
sible four combinations, selects one of four subsets of the variables. To formulate con-
straints for S-3, all we require is that no two output variables, in each subset, should be
equal. The inequations are directly expressible as Alldiff constraints [19], [10]:

Alldiff(x0, x2, x4, ..., x30)
Alldiff(x1, x3, x5, ..., x31)
Alldiff(x32, x34, x36, ..., x62)
Alldiff(x33, x35, x37, ..., x63)

3.4 Constraints for Criteria S-4 to S-6

For criteria S-4, S-5 and S-6, consider any two n-bit inputs i and j and their correspond-
ing m-bit outputs xi, xj ∈ D, of a 3DES S-box S.

S-4 “If two inputs to an S-box differ in exactly one bit, the outputs must differ in at
least two bits.” This requirement is expressible in First-Order Logic as:

(∀i)(∀j)(0 ≤ i < j < 2n) ∧ wt(i ⊕ j) = 1 ⇒ wt(xi ⊕ xj) ≥ 2 (9)

For 3DES, each variable will participate in exactly 6 such binary constraints (one for
each bit), generating 192 binary constraints. For an n×m S-box, the number of binary
constraints for criterion S-4 is equal to n × 2n−1.

S-5 “If two inputs to an S-box differ in the two middle bits exactly, the outputs must
differ in at least two bits.” The fact that n-bit inputs i and j differ in the two middle
bits implies that the 6-bit difference is exactly equal to 3 · 2 n

2 −1 when n is even. S-5 is
expressible in First-Order Logic as:

(∀i)(∀j)(0 ≤ i, j < 2n) ∧ (i �= j) ∧ (i ⊕ j = 3 · 2 n
2 −1 ⇒ wt(xi ⊕ xj) ≥ 2 (10)

For 3DES, this results in 32 binary constraints, each input (S-box entry) participating in
exactly one such binary constraint. For an n×m S-box, the number of binary constraints
for criterion S-5 is equal to 2n−1 when n is even.

64 V. Ramamoorthy et al.

S-6 “If two inputs to an S-box differ in their first two bits and are identical in their
last two bits, the two outputs must not be the same.” The fact that n-bit inputs i and
j differ in their first two bits and are identical in their last two bits, implies that the
input-difference (i ⊕ j) ∧ 3(2n−2 + 1) is exactly equal to 3 · 2n−1 when n ≥ 4. S-6 is
expressible in First-Order Logic as:

(∀i)(∀j)(0 ≤ i < j < 2n), [(i ⊕ j) ∧ 3(2n−2 + 1)] = 3 × 2n−2 ⇒ xi �= xj (11)

For 3DES, each variable is involved in 4 such binary constraints (one for each possible
combination of the two middle input bits), resulting in a total of 128 new binary con-
straints. For an n×m S-box, the number of binary constraints for criterion S-6 is equal
to 22n−5 when n ≥ 4.

Total Number of Binary Constraints. For the n × m S-box design problem using
this framework, the total number of binary constraints, obtained by adding the three
results for S-4, S-5 and S-6, is equal to 2n−1(2n− 1) when n ≥ 4. One can observe the
independence of the total number of constraints on m. For 3DES, this works out to 352
constraints. Also, no binary constraints are observed to contain the same two variables.

3.5 The Global Constraint S-7

S-7:“For any nonzero 6-bit difference between inputs ΔIi,j , no more than eight of the
32 pairs of inputs exhibiting ΔIi,j may result in the same output difference ΔOi,j .”

Let O7 = {(xi, x2n−1−i) : 0 ≤ i < 2n−1} be the set of pairs of variables corre-
sponding to pairs of subscripts (i, 2n−1−i) of those n-bit inputs to an n×m S-box that
differ by all n bits with |O7| = 2n−1. S-7 applies to m-bit differences d = xi⊕x2n−1−i.

Let f : Z2m → Z2n−1 denote a count function, where f(d) is the frequency of
occurrence of an m-bit number d = xi ⊕ x2n−1−i where (xi, x2n−1−i) ∈ O7, 0 ≤ i <

2n−1, and 0 ≤ d < 2m. Note that Σ2n−1−1
i=0 f(xi ⊕ x2n−1−i) = 2n−1.

According to S-7, at most eight elements in O7 should evaluate to the same m-bit
difference d. S-7 is modeled as a global, n-ary, Boolean constraint in the following way:

2n−1−1∧

i=0

(f(xi ⊕ x2n−i−1) ≤ 8) (12)

This n-ary global constraint is not straightforwardly decomposable into smaller arity
constraints. After assigning xi, if the count of a given AND-term in Eq. 12 equals 8,
values from domains of not yet assigned variables that would further increase this count
are removed (as they violate Eq. 12).

4 The Advantages of the CSP Approach

The CSP solver helped us find S-Boxes of quality better (with respect to the standard
3DES security metrics) than that of any other published S-box.

The solver we use is an implementation of Maintenance of Arc Consistency (MAC)
[20] with AC2001 [3], as discussed in Section 3. The CSP solution was built starting

The Design of Cryptographic S-Boxes Using CSPs 65

Table 2. Statistics of 4× 2 S-Boxes generated by our CSP framework to satisfy combinations of
3DES criteria

Constraint Time # of Score-wise breakup
Combinations (seconds) S-Boxes Score 8 Score 6 Score 4 Score 2
No constraints 136228.906250 4294967296 3931260 517882560 3496729600 276422720
S-3 only 35.029600 331776 11904 153600 166272 0
S-4 only 0.000089 4 4 0 0 0
S-5 only 6.410940 65536 7936 45056 12544 0
S-6 only 13214.516602 429981696 2103616 91728896 323934912 12214272
S-3, S-5 0.433693 4096 384 2048 1664 0
S-3, S-6 5.224500 46656 6240 22272 18144 0
S-5, S-6 2.085620 20736 4160 13312 3264 0
S-3, S-5, S-6 0.165739 1600 224 768 608 0

from an existing generic C++ implementation, to which we have added modules for
dynamically checking and propagating the decompositions of the global constraints.

The generation of the constraints and the development of the related theory and in-
volved filtering operators are the main topic of the PhD thesis of the first author, and
took approximately 2 to 3 years to refine.

Experiments are being run with the final version for approximately one year. Users
of the system that solely plan to design ciphers using the standard security criteria in
Table 1 do not need to thoroughly understand the workings of CP solvers. Most ex-
tensions with additional constraints could also be performed with little CP knowledge,
except if new filtering operators for those constraints are desired.

We have used the system to generate S-Boxes of different sizes, such as 4× 2, 5× 3
and 6×4 that resemble those used in 3DES. We have tuned the solver by trying various
heuristics for criteria S-2 and S-7. One of these heuristics instantly generated 6 × 4
S-Boxes that are of quality better than those published so far, with respect to Matsui’s
nonlinearity metric.

4 × 2 S-box Generation: The smallest S-Boxes we have encountered in the literature
is an educational example of 4×2 [23]. Not all criteria in Table 1 apply to S-Boxes that
are not of size 6 × 4. In the 4 × 2 case, our solver has proven that it is even impossible
to generate S-Boxes that respect the criteria that apply. The CSP approach generated
4× 2 S-Boxes when some of the conditions are relaxed. Table 2 displays the results on
combinations of satisfied criteria.

5 × 3 S-box Generation: The complete CSP solver is able to explore the entire search
space for generating 5 × 3 S-Boxes (32 variables, each with domain {0, 1, . . . , 7}).
Criteria S-5 and S-6 had to be relaxed since the original version did not apply to this
size. Table 3 shows generation times and number of S-Boxes for various scores, with a
total of 32,640 S-Boxes generated. The optimum score possible for 5× 3 S-Boxes is 8.

6 × 4 S-box Generation: We have used the three heuristics Hφ,τ
S , Hφ,τ

I and Hφ,τ
C for

generation of S-Boxes of this size. For Hφ,τ
I , we have fixed thresholds τ = 16, 10 and

66 V. Ramamoorthy et al.

Table 3. The scores of obtained 5 × 3 S-Boxes, with criteria S-5 and S-6 relaxed

Total time Total number Score-wise breakup
(seconds) of S-Boxes Score 16 Score 12 Score 8
14.2659 32,640 25728 3456 3456

Table 4. Solver Performance Using Complete Heuristics, with S-box threshold τ = 16

Time Non-incremental Incremental
(hrs) r(6×4) × 1049 S-box Count r(6×4) × 1049 S-box Count

1 1.198 4 206,990 38,124
2 21.725 14 978,520 54,725
3 42.091 15 999,560 93,523
4 42.091 26 1,083,100 104,904
5 61.340 40 1,342,900 127,111

0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 11
3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 8
3 15 0 12 5 9 10 6 4 8 11 7 14 2 1 13
9 5 15 3 12 0 6 10 7 11 8 4 2 14 13 1

Fig. 6. A 6 × 4 S-box with score 8, generated by our CSP solver

for the other two heuristics, τ = 16. In a 5-hour run, we observed that H64,16
C proceeds

approximately 20–200 times faster than H64,16
S . 3DES S-box S7 has the maximum

nonlinearity score equal to 18 while the minimum of 10 is possessed by S4. Heuristic
H64,10

I is observed to yield 6 × 4 S-Boxes having a score of 8, which is far better than
the “best” published 3DES S-Boxes. 3,600 such 6 × 4 S-Boxes were generated in the
first hour and this number went up to more than 13,500 in the 5-hour run. Fig. 6 shows
one such S-box generated by our CSP solver employing heuristic H64,10

I .

A New Metric: Percentage of the Search Space Explored. Although our techniques
have found S-Boxes with the “best” score so far, we do not know if they are optimal.
To know whether we have found optimal-quality S-Boxes we have to exhaust the whole
search space. If the search space is too large to be exhausted with available techniques,
we would like to at least know what fraction of this search space we have managed to
explore, as a measure of the probability that the optimal solution could have been found.

We therefore quantify the size of the search space, as the total number of potential
n × m S-Boxes. Assuming that the solver is systematic, each node of the search tree
defines a traversed distance (explored search space):

S(n×m)
p =

|X′|−1∑

i=0

xi · (2m)|X
′|−i−1 (13)

The Design of Cryptographic S-Boxes Using CSPs 67

For 6 × 4 S-Boxes, S
(6×4)
p evaluates to 78-digit base-10 numbers. Given the large

size of this search space, distances typically covered by the MAC solver in reasonable
time differed only in their last few assignments (78-digit numbers differed in approxi-
mately the last 15 digits). Sometimes, certain constraints rule out much larger areas of
the search space. To conveniently report this, we define a search offset metric S-box
S

(n×m)
p1 :

r(n×m) =
S

(n×m)
p − S

(n×m)
p1

2n×2m (14)

Here, S(n×m)
p1 denotes the value for S

(n×m)
p (determined from Eq. 13) for the first S-box

obtained by the solver. The solver has yielded S
(6×4)
p1 ≈0x033× 1660. The difference

between S
(6×4)
p1 for the incomplete and complete heuristics is ≈ 3 × 1652 even when

they use the same value for τ (graphs not shown due to lack of space). Table 4 reports
the (scaled) search offsets of the solver using complete heuristics.

Developments. One can now extend the CSP model with constraints for various special
security requirements. We would like to post the obtained constraints as benchmarks for
the CSP community. Once the CSP model is available, it can be easily used to generate
SAT models and test SAT techniques. The obtained S-Boxes can be used to strengthen
protocols such as SSL (where 3DES is now one of the main ciphers). In this direction,
the first author moved to one of the main US-based providers of SSL technologies.

5 Conclusion

We conclude that CP is a powerful formalism, able to model accurately such complex
criteria as the 3DES security constraints, and in particular the nonlinearity requirement.
The fact that generic solvers can then address such complex problems efficiently and
improve over all existing results is a testimony to the importance of this tool.

References

1. Adams, C.M., Tavares, S.E.: Good S-boxes are easy to find. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 612–615. Springer, Heidelberg (1990)

2. Adams, C., Tavares, S.: Generating and counting binary bent sequences. IEEE Transactions
on Information Theory 36(5), 1170–1173 (1990)

3. Bessière, C., Régin, J.C.: Refining the basic constraint propagation algorithm. In: Nebel, B.
(ed.) IJCAI, pp. 309–315. Morgan Kaufmann, San Francisco (2001)

4. Biham, E., Shamir, A.: Differential cryptanalysis of the data encryption standard. Springer,
Heidelberg (1993)

5. Clark, J., Jacob, J., Maitra, S., Stanica, P.: Almost boolean functions: the design of boolean
functions by spectral inversion. Evolutionary Computation 3, 2173–2180 (2003)

6. Coppersmith, D.: The data encryption standard (des) and its strength against attacks. IBM J.
Res. Dev. 38(3), 243–250 (1994)

7. Daemen, J., Rijmen, V.: Aes proposal: Rijndael (September 1999),
http://csrc.nist.gov/archive/aes/rijndael/
Rijndael-ammended.pdf

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

68 V. Ramamoorthy et al.

8. Feistel, H.: Cryptography and computer privacy. Scientific American 228, 15–23 (1973)
9. Gupta, K.C., Sarkar, P.: Construction of high degree resilient S-boxes with improved nonlin-

earity. Inf. Process. Lett. 95(3), 413–417 (2005)
10. Hoeve, W.V.: The alldifferent constraint: A survey. In: Proceedings of the Sixth Annual

Workshop of the ERCIM Working Group on Constraints (2001)
11. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damgård, I.B.

(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)
12. Laskari, E.C., Meletiou, G.C., Vrahatis, M.N.: Utilizing evolutionary computation methods

for the design of S-boxes. In: Proceedings of the International Conference on Computational
Intelligence and Security 2006 (CIS 2006), China (2006) (in press)

13. Matsui, M.: Linear cryptanalysis method for des cipher. In: Helleseth, T. (ed.) EUROCRYPT
1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

14. Mister, S., Adams, C.: Practical S-Box design (1996)
15. NIST: Data encryption standard (DES). Federal Information Processing Standard (FIPS) 46-

2 (January 1988)
16. O’Connor, L.: An analysis of a class of algorithms for s-box construction. J. Cryptology 7(3),

133–151 (1994)
17. O’Connor, L.: Properties of linear approximation tables. In: Preneel, B. (ed.) FSE 1994.

LNCS, vol. 1008, Springer, Heidelberg (1995)
18. Pieprzyk, J., Finkelstein, G.: Towards effective nonlinear cryptosystem design. IEE Proceed-

ings Computers and Digital Techniques 135(6), 325–335 (1988)
19. Puget, J.-F.: A fast algorithm for the bound consistency of alldiff constraints. In: AAAI 1998,

pp. 359–366 (1998)
20. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In:

PPCP 1994. LNCS, vol. 874, pp. 10–20. Springer, Heidelberg (1994)
21. Schneier, B.: Applied cryptography — protocols, algorithms, and source code in c. In: Text-

book, ch. 12, pp. 265–301 (2002)
22. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27,

379–423, 623–656 (1948)
23. Stallings, W.: Cryptography and network security - principles and practices. In: Textbook,

ch. 3, pp. 86–90 (2003), http://www.prenhall.com/stallings

http://www.prenhall.com/stallings

	The Design of Cryptographic S-Boxes Using CSPs
	The Cipher Design Problem
	Examples of SP Networks
	The Security Requirements of S-Boxes

	Rationale of the CSP Approach to S-Box Design
	The CSP Approach
	Notations
	Variables and Domains for an nm S-Box
	The Nonlinearity Constraint S-2
	Constraints for Criteria S-4 to S-6
	The Global Constraint S-7

	The Advantages of the CSP Approach
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

