
P2P Petition Drives and Deliberation of Shareholders

Marius C. Silaghi1 and Song Qin1 and Khalid Alhamed1

Toshihiro Matsui2 and Makoto Yokoo3 and Katsutoshi Hirayama4
1Florida Tech, 2Nagoya Inst. of Technology, 3Kyushu Univ, 4Kobe Marine Univ.

Abstract

We introduce protocols for a fully decentralized syn-
chronization of data items among equal peers in an
argumentation framework (for applications such as
debates in petition signature drives, and deliberation
among shareholders). Here, an argumentation is a
structured exchange of justifications around issues (or
motions). The motions are relevant to organizations,
and the organizations are rules for constituents. A con-
stituent has a certain voting weight (e.g., based on her
shares in the organization). A peer is a group of agents
representing a user. Each peer separately stores all the
data items of interest to her.

To achieve data coherence at convergence for connected
sub-graphs in such a framework we introduce a method
for generating unique identifiers for peers, organiza-
tions and their constituents, as well as for data items
generated by them. This avoids conflicts between se-
mantically distinct data.

Social networks are very successful applications but few
have proven or even formalized their properties. Our
proposal is a framework and protocol for a new type
of P2P Social Network, where peers can congregate
into fully decentralized virtual constituencies mirroring
externally existing organizations. The membership in
such organizations is based on constituents witnessing
about each other. A reference implementation in Java
is made available and can be used to validate claimed
basic functionality.

Introduction

Social networks have emerged into one of the most suc-
cessful applications of computer science. Significant re-
search has focused on studying the complex relation-
ships captured in data recorded by such systems. How-
ever, the most famous problems relate to the fact that
their administrators have the possibility to not meet ex-
pectations in terms of privacy, censorship and balance
in influence through advertisements and media.
Here we undertake the task of formally defining a par-

ticular social network application, its desirable proper-
ties, and to provide protocols that can be proven to
meet these expectations. The result is validated both
theoretically and using a reference implementation.

The application we address consists in the fully de-
centralized creation and management of virtual con-
stituencies for existing organizations.
We view an organization as an immutable set of foun-

dation rules for deliberating on a set of issues and for
defining the decision makers. Examples of organiza-
tions that can have virtual counterparts are: a com-
pany, a department in a university, a neighborhood, a
club, a country, an ethnic group.
A constituency is the body of all the voting members

of an organization. The functioning of a constituency,
such as the frequency of its meetings, the identity and
weight of the votes of each of its members, and the
privileges and limits on the scope of their voting pow-
ers, are defined by the statutes or constitutions of the
organization. While the relevant issues in a statute of a
virtual constituency may be different from traditional
ones, they are encoded in the parameters defining the
virtual organization.
Not all the eligible constituents of a society may be

using software to be active on a virtual constituency.
Moreover, some persons who are not eligible con-
stituents may subscribe to the argumentation as ob-
servers, can help in dissemination and storage of repli-
cas, can even contribute observer arguments and mo-
tions, or maliciously try to attack the deliberations.
The main concrete application we foresee are debates

in petition signature drives, and deliberation among
shareholders. The addressed application is related to
deliberation techniques described in Robert’s rules of
order (Roberts 1989). From these rules we employ
the concept of motion as a formal proposal submitted
to vote. While within common Internet fora the ar-
guments are threaded in a tree structure where each
one answers at most one prior argument, the addressed
application defines arguments as justifications of one’s
vote. As such, their main classification is by the vote
being justified.
For approaches to this application we identify, define

and address the following potential properties: equal
opportunity (of initiative, management, and voting),
non-repudiation of sender, repudiation of false attri-
bution, coherence, self-interest, soundness, scalability,
grassrootedness, verifiability, relevance, openness, and



resilience (from censorship and attacks).
We propose here a protocol for exchanging messages

such that data is synchronized efficiently between peers
found in long-term connections as well as with peers
that have recently joined. The protocol is described as
a set of message definitions together with a recommen-
dation of how these messages should be processed. The
protocol is expected to be robust or gracefully degrade
in the situation where peers do not react according to
the recommendation.
A database schema was developed and a reference

implementation was made available on an open source
code repository. The implementation validates the ca-
pability of the protocol and schema for achieving some
of the desired properties (function behind NATs, seam-
less bootstrap of organizations and deliberations, cor-
rect synchronization in a dynamic set of peers).
First we introduce the related work and main back-

ground knowledge. Then we formalize the employed
concepts. Subsequently we define the desirable proper-
ties expected from the designed protocols, based on the
motivating application. We then detail the proposed
protocol in terms of messages and their semantic. We
also detail the algorithms used in the implemented sys-
tem to handle and generate messages respecting the
described protocol. Some experiments with the system
are detailed in (Qin et al. 2013). A theoretical anal-
ysis is performed proving that some of the introduced
desirable properties are achieved by the new protocol.
Most other defined properties are shown to be reason-
ably handled.

Background

Identification over the Internet has been addressed
from a variety of perspectives (Douceur 2002; Yahalom,
Klein, & Beth 1993). Skype is a successful P2P social
system where the main motivation of the P2P structure
is efficiency (Ford & et al. 2005).
Several P2P Social Network Systems like OStatus

(Status Network), and Diaspora (Federation Proto-
col) are being currently developed by various volunteer
teams as a reaction to the privacy concerns raised by
popular providers like Facebook and Twitter. OStatus
is developed by a W3C group, but it did not yet re-
lease any document. Its stated scope is the interaction
between social networks, rather than interaction be-
tween end-users. Like OStatus, the Federation protocol
is meant for collaboration between providers. (W3C ;
Federation ). Deliberation of stakeholders is discussed
in (Fedoruk 2006).

P2P Systems P2P systems have been used for a
multitude of applications, such as efficient videocon-
ferencing (Skype (Xie & Yang 2007)), efficient down-
loads (Bittorrent (Cohen 2003)), file sharing, and ad-
hoc routing. Besides efficiency, the P2P paradigm can
also bring about decentralization and an inherent fair
(or democratic) structure. The best known prior usage

of such decentralization has so far been at the limits
of legality (Nieminen 2003; Gu, Jarvenpaa, & others
2003). However, this decentralization can be put to
more popular tasks, such as ad-hoc routing and the
application suggested here. The P2P social network
infrastructure PeerSon for private exchange of data is
proposed in (Buchegger et al. 2009). They use emails
or public keys hashes as global identifiers. Like Skype,
they differentiate between peer and agent concepts, and
solutions for handling multiple agents per peer. The
P2P Java platform JXTA also provides needed NAT
support, but the peer groups are centralized by a par-
ent group structure.

Concepts

Now we detail the concepts used here, and imple-
mented in the DirectDemocracyP2P (DDP2P) system:
github.com/ddp2p/DDP2P. To uniquely identify items
exchanged by the protocol, we design methods for gen-
erating Global Identifiers (GID) that are supposed to
uniquely identify each semantically independent piece
of information. When a piece of information can have
several versions (like several votes of a participant on
the same issue at different moments, where the newest
vote overrides older votes), then the design is such that
the GIDs of all versions are identical. The following def-
initions make use of the function HASH(M) which is a
secure hash function (such as SHA-256). Given a public
key P, the function SK(P) is used to indicate the secret
key associated to P. The function SIGN(§,m) returns
a secure digital signature of the message m with the se-
cret key §. The function V ERIF (P,m, σ) returns the
Boolean result of the verification of the digital signature
σ for the message m using the public key P.
As discussed further, the GID of an item is sometimes

built using the HASH() function on some parameters.
In that case those parameters are not allowed to change.
When the item is a virtual representation of a human
person (e.g., of a peer, constituent, authority), then we
use her public key as her GID. Each time that the public
key has to be revoked, all the items she generated and
signed with her public key have to be regenerated by
her agent using her next public key. Note that, when
communicating GIDs based on public keys for purposes
other than signature verification (e.g., references), then
we exchange HASH(GID), to reduce the message size.

Peers and Agents Most users are familiar with soft-
ware agents for tasks such as communication over Skype
and management of emails (email agents). The con-
cepts of peer and agent are not new but here we need
to be specific as to the exact definition used here. A
software agent acts on behalf of its owner by communi-
cating with remote servers and maintaining local data.
The concept of peer is used in the community of peer-

to-peer computing referring to a software that is simul-
taneously a server and also a client to other similar



servers. While not all the peers have to function iden-
tically, many systems strive to achieve such a behavior.
Formally, a peer is specified by a tuple ⟨P, p, a, d, σ⟩

where P is the GID of the peer selected as its pub-
lic key, p is the set of properties declared by the peer,
such as name and email, and d is the date and time
when p was declared. A signature σ is computed as:
σ = SIGN(SK(P), p). A set of Internet addresses a
is also specified with the peer and is not signed, as it
may contain any IP address ever used by this peer and
known attacks on it does not significantly disrupt the
protocol. Since a peer is identified by a public key, it
can be represented by a group of software agents work-
ing for the same user (e.g., on different devices) and
using the same public key. Similarly, a peer can be the
input point for data from a set of users (for which the
main user has proxy rights of representation).
Each peer separately stores all the data items of in-

terest to her, and can share them with her direct con-
nections. Even as current experiments only test local
storage (which can pose challenges for devices with lim-
ited memory), a peer can store its data in the cloud.

Organizations, Constituencies, Majority voting
Countries and businesses are organizations. While in
some countries there are large differences in the way
a typical business is run versus the way the country
is run, most governing mechanisms are encountered for
both businesses and countries (ranging from democratic
companies to privately owned countries) (Kagawa 1936;
K. Raaflaub & Wallace 2007). In referendums the con-
stituency can vote on pre-established choices for an is-
sue but cannot select other choices or raise new issues.
The raising of new issues by constituency members is
sometimes made available via different mechanisms: the
petition or citizen initiative processes.
In some systems, the constituency is required to

transfer its power to proxies via an election, and these
proxies are the ones running the daily activities. Func-
tion of the type of organization, the proxies are called:
mayor, congress, presidents, committees or board.
As per the above competing models, we support:

• authoritarian organizations that are managed by an
authority to make decisions as to who is a constituent
of the organization (potentially the elected represen-
tative/proxy for these decisions).

• grassroot organizations where no user has any partic-
ular rights or delegation and each and every decision
(including on the acceptance of each candidate to be
a constituent) is always taken directly by the whole
constituency by vote. In this case, even when they
see the same data, constituents may draw different
conclusions as to the composition of the constituency.

Formally, we define a grassroot organization as a
tuple ⟨O, p⟩ where O is the GID of the organization and
p is a set of parameters describing it and its constitu-
tion/statute. For grassroot organizations,

O = HASH(p).

An authoritarian organization is a tuple
⟨O, p, r, d, σ⟩, where its GID O is the public key of the
authority that controls p and decides the composition
of the constituency, r is the revocation status of O, d is
the date and time when these parameters were set by
the authority and σ is the signature of ⟨p, r, d⟩ with the
secret key associated to O:

σ = SIGN(SK(O), ⟨p, r, d⟩).

We handle two types of constituents:

• Active constituents are data items representing the
users that created these items and that can generate
other data items, that they digitally sign. We say
that the active constituent has generated these items.

• Inactive constituents are data items representing a
person other than the one generating it, and can-
not generate other items itself. They may stand for
sick, elderly or other persons that are not able to par-
ticipate themselves in such a process but should be
counted when one makes decisions.

The formal definition of an active constituent is
a tuple ⟨C,O, i, d, r, σ⟩ where C is the GID of the con-
stituent, O is the GID of the organization of the con-
stituent, i are the identity details of the constituent
(name, email, etc.), and d is the timestamp when i
was declared. C is specified as a public key, r is the
revocation status of C, and the constituent data is
signed with σ = SIGN(SK(C′), ⟨C,O, i, r⟩). An in-
active constituents is a tuple ⟨C,O, i⟩, whose GID is
C = HASH(O, i).

Motion, Justifications While the currently en-
trenched practice on the Internet fora is to provide
threaded discussions around articles, one of the most
studied and practiced argumentation mechanism for de-
liberation by constituencies is defined by Robert’s rules
of order (Roberts 1989). Robert’s rules of order pivot
around the notion of motion. A motion is a formal
proposal around which arguments take place and that
is eventually voted on. Several Robert’s rules of order
(like tabling a motion) are arguably irrelevant to Inter-
net venues where participation is asynchronous, but we
find that the general concept remains the most appro-
priate for a virtual constituency.
Formally, a motion is a tuple ⟨M, t, o⟩ where M is

the GID of the motion, t is its text, and o is a list of
possible answers. The GID is computed as:

M = HASH(t, o).

In our motivating application, the arguments are not
just answers to other arguments but they are justifi-
cations of a vote. We start from the principle that
information is relevant only if it can be retrieved ef-
ficiently (i.e., if it is structured). As such, the main
classification of the justification is given by the vote
answer submitted by its supporters. Since each user
has a single vote for a motion, she can support a single



related justification. We note that the same justifica-
tion can be used for different answers. For example,
given the motion: Should a tunnel be built under the
Gibraltar straits? with possible answers Support and
Oppose, both possible answers could be justified with:
It would make the travel safer for African immigrants to
Europe! For pro-immigration minded people, this may
be a justification for a tunnel, and for anti-immigration
minded people this may be a justification against its
construction.
Formally, a justification is a tuple ⟨J ,M, t⟩ where
J is the GID of the justification, M is the GID of a
motion, and t is the text of the justification. The GID
J is computed as:

J = HASH(M, t).

A vote is a tuple ⟨V,M, c, C,J , d, σ⟩ where V is the
GID of the vote, M is the GID of a motion, c is the
answer selected (one of the values in the element o of
the motion), C is GID of an active constituent, J is the
GID of the justification (potentially empty), and d is
the date and time of the vote. The GID V is computed
as:

V = HASH(M, C,J ).
and the digital signature σ is computed as:

σ = SIGN(SK(C), ⟨M, c,J , d⟩)

Desirable Properties
Desirable Properties Given the target application,
management of constituencies, we define and address
the following properties, that are desirable for solutions:

• equal opportunity of initiative: any
peer/constituent has equal opportunity to start
a virtual constituency (various instances of virtual
constituencies for the same external organization can
be used simultaneously for their different properties,
or users can converge naturally towards the most
used instance, just as currently most users converge
towards a few social networks despite the existence
of many alternative platforms).

• equal opportunity of management: any
peer/constituent has equal decision power and pri-
ority in defining who is an eligible member of that
constituency (the aggregation of thereof is outside the
scope of this article).

• equal opportunity of voting: any
peer/constituent has equal weight and priority
in submitting motions, justifications and in voting.

• non-repudiation of sender: the peer/constituent
generating an item can be identified.

• repudiation of false attribution: it is impossible
to falsely attribute an item to another peer.

• coherence: a total order should exist between items
with similar semantic (e.g., vote, version of the profile
of the same constituent or of the same organization),
to ensure that all peers coherently store the same one.

• self-interest: each peer only needs to store the data
of interest to her, and only helps disseminating the
data that she wants to support.

• soundness: each peer eventually gets the data of
interest for her.

• scalability: each constituent only needs to commu-
nicate with a limited number of peers.

• grassrootedness: each constituent only needs to be
known and supported by a limited number of other
constituents.

• verifiability: the identity of virtual constituents one
knows is verifiable with reasonable effort (using con-
firmation via email, phone numbers, or visit to an
address).

• relevance: relevant argumentation items are visible
and distinguishable from spam (e.g., using collabora-
tive filtering or intelligent classifiers).

• openness: if any number of peers fail, leave, or join,
the remaining ones are able to continue their delib-
eration without lossing data generated by themselves
and with a coherent view of data generated by dis-
appeared peers.

• resilience from censorship: no peer/constituent
can block the dissemination of data between other
directly connected peers.

• resilience from attacks: the supported properties
hold even in the case of active attackers (indepen-
dently of whether the software of other users follow
the desired protocols or not).

Protocol
Now we describe at a high level the communication pro-
tocol used by peers in DDP2P. For each message ex-
changed we provide a logic description the parameters
passed and of their semantic. Each message also re-
ceives as parameter the address R of the remote peer,
and the transport layer protocol prot used for commu-
nication (e.g., TCP or UDP ).
Each software agent maintains a list of known peers

and a list of directory servers which help it advertise its
current address when this changes. A software agent of
the peer consists of:

• a database replica (storing its data of interest),

• a human interface (e.g., GUI, for visualization, con-
trol and configuration),

• a client (who takes initiative to contact other peers),

• a TCP data server (for synchronization by stream-
ing),

• a UDP data server (for communication behind
NATs),

• a TCP directory server (for queries about addresses
of peers), and

• a UDP directory server (for helping to pierce NATs
using a version of STUN)



Each of these components of the agents are optional,
except for the database. The database schema, not de-
tailed in this report, can be normalized according to
desired trade-offs between the costs to store the data
with reduced replication, and to access fast the desired
information. Each item stored into the database is as-
sociated with a timestamp of arrival, returned by the
function arrival(item). Similarly, each item can be
marked as blocked to tell that one does not want to
store related items, broadcastable to tell whether it
should be shared with others, or interest to tell that
related items should be requested from others.
The human interface is optional and certain modes

of operation do not employ it. For example, a human
user can start a directory service as a background pro-
cess (e.g., UNIX daemon) in which case the only active
components are the database and the two (TCP and
UDP) directory servers.

Algorithm 1: Directory Server Procedures

on registration (prot,R,⟨P, I,A, σ⟩) do
1.1 ⟨P, I ′,A′, σ′, date′⟩ ← db retrieve (P);
1.2 if (prot=UDP) then
1.3 A← ⟨UDP : R⟩ ∪ A; // for NAT piercing;

1.4 db store (⟨P, I,A∪trim(A′, date′), σ, getDate()⟩);
1.5 send(confirm registration, prot, R, (R));

on address(prot,R,Pt,Ps, t, σ) do
1.6 ⟨Pt, It,At, σt, datet⟩ ← db retrieve (Pt);
1.7 NAT adr ← extract NAT address(At);
1.8 if (prot=UDP) ∧ (prot(NAT adr)=UDP) then

if (sample drawn for full test) then
1.9 send(pierce NAT, UDP, NAT adr,

from dir,⟨Pt,Ps,R, t, σ⟩);
else

1.10 send(pierce NAT, UDP, NAT adr,
⟨⊥,Ps,R,⊥,⊥⟩);

1.11 send(answer address,prot,R,
⟨Pt, It,At, σt, datet⟩);

on alive(prot,R) do
if accounting open NATs then

1.12 put(open NATs, R, getTime());

The directory servers start by binding to their well-
known predefined port numbers. Both directory servers
handle registration, address, and alive requests as
per Algorithm 1. The registration request has as
parameters a tuple: ⟨P, I,A, σ⟩, as detailed in Al-
gorithm 1. Here, P stands for the global identi-
fier (GID) of a peer that is registering its addresses
A. The request can contain up to a certain number,
MAX PEERINFO, of bytes of extra searchable in-
formation I about the peer and is signed with

σ = SIGN(SK(P), ⟨P, I,A⟩).

The registration procedure, receives as additional in-
formation the perceived address of the remote peer, R,
and the transport layer protocol prot. If the proto-
col is UDP, then R is added to the list of addresses
advertised by the peer. The operator ∪, employed at
Lines 1.3 and 1.4, combines two vectors of addresses by
appending to the first operand the new elements found
in the second operand, in the order of appearance in
the second operand. At Line 1.3, the perceived address
of the client is added to the front of the addresses, to
enable potential future participation in NAT piercing
requests. The function trim() used on Line 1.4 reduces
from the vector of addresses A′ found in the local stor-
age (Line 1.1) a number of addresses function of how
old those addresses are (the date′ parameter). A con-
firmation is sent at Line 1.5 to the client, informing it
of its address R as perceived by the directory server.
Based on this address R, the client is able to detect
whether it is located behind a NAT.
When a peer queries another’s peer address using an

address message, the directory server answers with the
corresponding procedure in Algorithm 1. The parame-
ters passed with the address request are the GID of the
requested peer, Pt, the GID of the peer issuing the re-
quest, Ps, the time t of the request, and the signature of
the request σ = SIGN(SK(Ps), (address,Pt, t)). Af-
ter retrieving the current stored addressesAt (Line 1.6),
the answer is sent to the requesting peer at Line 1.11.
If the protocol used by the request is UDP, and if
the stored address can potentially come from a NAT
translation, being a UDP address (function prot() in
Line 1.8), then a message is sent to the target peer
(Line 1.9) to let it know it should open its NAT transla-
tion table for a connection with Ps at address R. While
all these parameters can be used to identify certain at-
tacks from requesting peers, for efficiency this is done
only with a small probability (probabilistic check of se-
curity) and most often the actual sent parameters con-
tain just (Ps,R) (Line 1.10).
Peers found behind NATs will send frequent UDP

alive messages to keep their NAT translation tables
available. As it can be observed in Algorithm 1, the
directory servers need not react to this messages. In
practice, the directory server can keep a hashtable
open NATs storing for each R address the time of the
last contact time (Line 1.12), to enable an evaluation
on whether the NATs to a given address are currently
open.
The data servers render the software agent available

to other peers (see Algorithm 2). Data servers start
by attempting to bind to a predefined port (Line 2.1).
The detected addresses of the local host and the re-
ceived port for the UDP and TCP listening sockets are
stored in server addresses, and are sent to the set of di-
rectory servers listing directories supporting this user
(Line 2.2).
If the registration confirmation signals that this host

is behind a NAT, the address perceived by the direc-
tory is stored in a list of NAT addresses NAT state at



Algorithm 2: Data Server Procedures

Data: listing directories: a set of directory server
addresses that support me

Data: my GID: GID of this peer

Data: info: declared information of this peer

on startup do
2.1 server addresses ← bind server to a local port,

preferably PORT;
foreach directory ∈ listing directories do

2.2 send(registration,⟨my GID, info,A, σ⟩);

on confirm registration(prot,R,perceived address)
do

if (perceived address ̸∈ server address) then
2.3 NAT state.add(R,perceived address);
2.4 setIntervalTimer(NAT DELAY,

send(listing directories, alive)));

on pierce NAT(prot,R,src,(Pt,Ps, peer addr, t, σ))
do

verify σ if available and quit on failure;
2.5 if src = from dir then
2.6 send(pierce NAT, UDP, peer addr,

from target,(Pt,⊥,⊥,⊥,⊥));
2.7 if src = from src then
2.8 send(pierce NAT, UDP, peer addr,

from target, (Pt,⊥,⊥,⊥,⊥));
if src = from target then

sendDataRequest();

on data request(prot,R,Ps,Pt,items src, inter-
ests, filter,horizon,flags,σ) do

2.9 validate peer Ps and signature σ;
2.10 integrate(items src);
2.11 req items ← buildAnswerItems(Ps,interests);
2.12 time horizon ←

buildAnswerHorizon(Ps, filter, horizon);
2.13 available ←

buildAnswerAvailable(Ps,time horizon, filter);
2.14 send(data answer,prot,R,req items,available,

time horizon, σ’);

on data answer(prot,R, requested items, avail-
able, horizon, σ) do

2.15 integrate(requested items, horizon);
2.16 foreach (GID,time) ∈ available do

if full data for GID not available since time’
then

schedule (GID,time’) for the next request;

Line 2.3, and an interval timer is set to keep the NAT
translation tables alive by re-sending an alive messages
at an interval NAT DELAY (Line 2.4).

When a peer gets a pierce NAT message, it can

learn via the src parameter that it may come from a
client (from src), from a directory server (from dir),
or from a target that was contacted (from target). If
the sender is a client (Line 2.7) then the NAT was al-
ready pierced and the client has to be announced about
it with a reply pierce NAT message sent at Line 2.8.
In case the message comes from the directory servers
(Line 2.5), the NAT with the requesting client may not
yet be pierced and the message at Line 2.6 will open it.
Either this message will reach the client (if the client
has already sent its request), or the direct request from
the client is sent later and then the message at Line 2.8
reaches it. If the message comes from the target, it sig-
nifies that the NAT translation tables are set for direct
connection with the target, and the current peer can
send its request.
When a data request message is received, first the
Ps is verified (Line 2.9). If it is blocked then the mes-
sage is discarded. If this peer is unknown, based on con-
figuration settings, the user may be questioned about
whether it should be blocked and/or served. If the peer
is not blocked then any data item it delivers on request
are integrated in Line 2.10 (in case they are not blocked
based on other criteria, such as of pertaining to blocked
organizations, neighborhoods, constituents or motions).
Peers can specify particular items by listing their GIDs
in the parameter interests of data request. If these
items are found in the local storage, at Line 2.11 a sub-
set of them are prepared for sending back to the re-
quester (subset selected such as not to create an answer
message that is too large).

Time Horizon The messages exchanged are limited
in size to an arbitrary bound in order to enable the
use of reasonable buffer sizes and to increase simplic-
ity when communicating over UDP. Nevertheless, mes-
sage sizes are not bounded by the size of the UDP
datagrams, since the implemented communication en-
gine is able to break a message into several datagrams
and reassemble the message at the destination (with
a simple mechanism of flow control and reliable deliv-
ery that we do not detail here). Each data request
message provides in the parameter horizon a value
specifying that it, Ps, thinks it already knows all the
data items that have arrived at this peer, Pt, at times
arrival(item)≥horizon. In case there is still space
left in the answer message, in terms of a number of
items that can be sent out given the aforementioned
bound on message size, then a time horizon is com-
puted at Line 2.12, based on the available data in the
local database. This time horizon, time horizon, is
computed such that every item with arrival timestamp
t preceding it, t ≤ time horizon, and not yet sent to
this destination, t > horizon, would still find space in
the answer message. The obtained time horizon is sent
with the data answer message such that the remote
peer may communicate it back in future requests.
The GIDs of all items with arrival time between

horizon and time horizon, and of interest to this peer



(based on her declared set of interests, filter, in terms
of GIDs of organizations and motions marked with the
interest flag in its database), are extracted from the
database (Line 2.13) and sent to the data requesting
peer 2.14. In the available data structure sent in the
data answer message, all such GIDs are first grouped
by the organization to which they pertain, and then
by the type of item they represent (peer, organization,
motion, etc.). In case the remote peer has lost some
of the items sent to it in previous communication or
changed its interests in organizations and motions, it
can retrieve them back by specifying an appropriate
value for horizon or by listing their GIDs in the pa-
rameter interests. The way we structure the filter pa-
rameter allows for specifying such horizons separately
for different organizations. The full data for the items
whose GIDs are included in available (Line 2.13) and
are advertised in this way can be requested using the
interests parameter of future data request messages
from this peer, in case the peer does not yet have them.
When sending available GIDs for items that can

change in time, such as votes, constituents, peers or
organizations, the peer also packs their creation date,
such that remote peers can check whether they have the
most recent version.
The peers can be configured to immediately pack

and send the full data items rather than just their
GIDs. This is more efficient for synchronizing with
newly starting peers, but more inefficient with seasoned
peers that already have most data from other sources.
Peers can signal their desire to receive the full data
immediately by setting the corresponding flag in the
data request message.
When a data answer message is received by the

data server (event which can happen only for the UDP
version of the data server), the peer saves items in
requested item that are not related to blocked or-
ganizations, constituents, neighborhoods or motions
(Line 2.15). If any of the data (GID, time) advertised
by this peer in available is unknown since certain time
time′, then the corresponding GID are stored with the
associated organization structure (Line 2.16) and will
be requested from any peer serving that organization.
If no instance of the item identified by GID is known,
time′ is set to ⊥ (empty). Queried peers will provide
versions of the item for GID that have creation data
newer than time′ (any, when time′ = ⊥).
Note that the requested creation time for the re-

quested version of the item is not set to time but to
time′. Setting it to time could have enabled a freeze
attack where a valid instance with creation timestamp
time′ < t < time cannot be requested since the peer
is waiting for a newer inexistent version with creation
timestamp time.

Data Client The client (whose procedures are in Al-
gorithm 3) starts by setting up a TCP socket (Line 3.1).
For UDP communications, the client uses the socket of
its UDP server. The client proactively connects in an

Algorithm 3: Data Client Procedures

on startup do
3.1 set up TCP client socket;
3.2 forever // each loop defines a round

wait timeout or data to send;
3.3 foreach peer ∈ peers to poll do

contacted[peer] ← FALSE;
3.4 foreach a ∈ addresses(peer) do

if (!contacted[peer]) then
if (type(a) = DIR) then

addr ← send(TCP, a,
(peer, my peer GID,
getT ime(), σ));

if (addr has NAT entry) then
send(UDP, a,

(peer, my peer GID,
getT ime(), σ));

3.5 put addr in addresses(peer);
continue;

if (prot(a)=TCP) then
3.6 if connect(a) then break;

else
3.7 send(pierce NAT, UDP,

a, peer, myself, σ);
3.8 send(pierce NAT, UDP,

directories(peer), peer,
myself, σ);

if (peer contacted via TCP) then
3.9 sendDataRequest();

3.10 integrate answer;

infinite loop (Line 3.2) to all the peers configured by
its user for polling. For each such peer (Line 3.3), the
client attempts to connect using all addresses it knows
(Line 3.4). Addresses have types: e.g., directory.
If an address of the polled peer corresponds to a

directory server, then an address message is sent to
that server. All the addresses returned by the direc-
tory server are inserted into the head of the list of
addresses to be tried next (Line 3.5). If needed, the
directory server also contacts the remote peer using a
pierce NAT message, initiating eventual NAT pierc-
ing procedures. For any UDP address, a data request
message can be sent directly. If the UDP address can
be behind a NAT, or to avoid useless work preparing a
request when the remote peer is off-line, the communi-
cation can be started by a pierce NAT message sent
by this peer at Line 3.7. The reply from the remote peer
will trigger the sending of the data request message
by the UDP data server, as seen before. TCP addresses
are attempted with TCP connections and, if success-
ful (Line 3.6), a data request message is immediately



sent over the obtained channel (Line 3.9). Eventual re-
sults from the peer, if not blocked, are integrated at
Line 3.10.

Verification of Constituent Identity When a user
wants to verify that the public key used as GID by an
active constituent item really corresponds to the real
human with the name, address and email specified in
its identity details, the user can meet that human and
they can compare the public keys visually (as with PGP
fests). Alternatively, the DDP2P software agents can
generate a file containing a formal query ⟨C, n, s, a, d, r⟩
to be pasted/sent via a trusted authenticated channel
(e.g., built on email/SMS) to the known constituent.
Here C stands for the GID of the constituent being
verified, n is its declared name and information, s is
the name of the peer performing the verification, a
is the set with its addresses, d is a timestamp and r
is a random challenge. The user being verified can
pass this file to its agent which can generate an an-
swer (σ, r′), where σ = SIGN(SK(C), ⟨C, n, r, r′, d⟩)
and r′ is a random number. The answer is sent to a
in a verification answer message by the agent of the
system being verified, and the agent of the verifier can
automatically verify the answer, comparing r, and gen-
erate the witness stance item for C. An attacker cannot
generate this answer since it cannot learn r.
Alternatively, the answer can also be copied and

pasted into an email by the user being verified, from
where the verifier can load it into its own agent for ac-
complishing the verification and witnessing.

Attacks Note that, for security reasons discussed be-
low, we currently do not allow for the public key of the
authority in an authoritarian organization to be auto-
matically replaced in case it is revoked. Similarly, the
constitution of a grassroot organization cannot change,
without migrating to a completely new organization.

Attack on global identifiers The above mentioned
security considerations refer to the attacks based on
generating new organizations with the same global iden-
tifier as the attacked organization but with different pa-
rameters. Since the organization parameters define the
ontology of the activity and the employed criteria for
eligibility of constituents, such an attack can mislead
the constituents of the attacked organization to gener-
ate data that is inconsistent with the constitution and
rules of the organization. For example, a constituent
A of an attacked grassroot organization O1 could be
misled by the constitution of the organization O2 of
an attacker to support the eligibility of another partic-
ipant B (eligible with O2 but not with O1), support
that would be transferable as valid into the attacked
organization, O1.

Other Attacks on Authoritarian Organizations
The Freeze Attack is an attack possible only on author-

itarian organizations where the secret key of the au-
thority is destroyed. The State Coup Attack is also an
attack possible only on an authoritarian organizations,
where an attacker steals the secret key of the authority
while destroying all the copies available to the origi-
nal authority. The Confuse Attack on an authoritarian
organization is where the attacker gets a copy of the
secret key of the authority and issues contradictory pa-
rameters for the organization.
In the case of the Confuse Attack, the original au-

thority can issue a revoke message (a new definition
of the organization with the r parameter set) and the
organization is blocked, hinting the constituents that
they have to move their activity to a new organization.
For Freeze Attacks and State Coup Attacks, the con-
stituents cannot be warned automatically.

Attack on Grassroot Organizations An Identifi-
cation Attack is where an attacker creates an organiza-
tion with similar but not identical parameters, to the
attacked organization. Since not all parameters are eas-
ily visible in graphical widgets, attacker organizations
where the most visible part (in some GUI) is similar
to the view of the attacked organizations can create
confusion among users. This attack also works against
authoritarian organization. The Creator Attack on a
grassroot organization is an attack whereby the secret
key of the creating peer of the organization is compro-
mised. Such an attack can facilitate an Identification
Attack by setting the name of the creator to values that
are not recognizable to users.
To detect storage attacks, any received item is tagged

with the GID of the peer from which it is received.

Theoretical Analysis of DDP2P
Not all the desirable properties (scalability, non-
repudiation, etc.) discussed in the previous sections
can be easily proven for the described protocol. Now
we address independently each of them. Some of these
properties hold by construction while others are not yet
supported.

Property 1 (Opportunity) The DDP2P protocol
provides equal opportunity of initiative, equal oppor-
tunity of management and equal opportunity of voting,
as defined here.

The above properties follow immediately by construc-
tion, since DDP2P provides no mechanism that could
stop any user from creating an organization, witness for
other constituents, or submit or vote a motion. Even
in the case where a newly submitted motion is identi-
cal to an existing one (identical GIDs), the second in-
stance of the motion will be automatically assimilated
and merged to its original instance.

Limits to opportunity for visibility What is im-
possible is for a user to act (initiate an organization,
witness or submit a voting item) using somebody else’s



secret key. There is no privileged administrator or user
and all items have equal opportunity to get visibility.
There can be other differences in opportunity stemming
from the date when the item is submitted and the net-
work of peers that disseminate and provide the support-
ing votes to make a new motion or justification visible.

Property 2 (Sender) The DDP2P protocol provides
non-repudiation of sender for senders whose identity is
verified and not revoked.

Limits of non-repudiation of sender This prop-
erty is not trivially ensured by the usage of digital signa-
tures since users can only trust those senders whose key
was witnessed by other trusted constituents or whose
identity was directly verified (e.g., confirming their GID
using the protocol in the previous section).
Attackers can create false identities under which they

can distribute digitally signed items. Items from un-
trusted constituents (not yet verified) do not offer non-
repudiation of sender. Peers may block transmission
of items from constituents that are not trusted either
directly or via transitivity from trusted constituents.

Property 3 (Attribution) DDP2P provides repudi-
ation of false attribution when secret keys are not
compromised, when either constituents are trusted only
based on direct verification or any trusted constituents
witness correctly about verified peers.

Proof For an attacker A to attribute an item to
another user B it needs to steal the secret key of B.
In case A creates a false user B′ with the same name
and parameters as B, then A needs to convince other
users to trust B′, which contradicts the assumptions. □

In conclusion, a user can prove her innocence and any
careful user can avoid believing false attributions.

Property 4 (Coherence) The items disseminated
using the DDP2P protocol offer coherence.

Proof Items with GIDs and authentication based
solely on secure digest values (e.g., grassroot organi-
zation) are immutable, each of them is stored indepen-
dently, and the GIDs based on secure digest avoid con-
flicts. The same holds for items with GIDs based on
public keys. Mutually exclusive items (e.g., vote by the
same constituent for the same motion and witness from
the same constituent for the same target) that are dig-
itally signed and have different creation dates can be
robustly and coherently compared by all participants
(storing only the one with the newest date).
The fact that for exclusive items that are different

but have identical date we store the ones with lexico-
graphically the largest digest value, guarantees that all
correct peers coherently store the same alternative of
the two conflicting items. □

This coherence property guarantees that any con-
nected peers will have identical items at quiescence if
there is a path between them where those items are
correctly accepted as of interest and broadcastable by
all peers on the path (and under the assumption that
synchronization between immediately connected peers
is complete).

Self-interest Since the reference implementation is
open source, programmers can easily change its behav-
ior to fit their interests. Users are also provided with
ample configuration options to specify their filters on
received and sent data. The stronger these filters, the
less paths will be available between users interested in
the same items (needed for synchronization).
Given the mechanism used by DDP2P for synchro-

nizing systematically any two immediately connected
peers, we can state the provided version of the sound-
ness property as:

Property 5 (Soundness) Each DDP2P constituent
eventually gets any item of information interesting to
her, whenever there exists a chain of immediately con-
nected peers interested in storing and broadcasting that
type of information, and linking her to the constituent
generating that item.

Grassrootedness By construction, grassroot organi-
zations enable the collaboration of people that are not
known or supported by any central authority. In con-
trast authoritarian organizations only enable the coor-
dination of citizens witnessed by its authority.

Property 6 (Verifiability) The DDP2P protocol en-
ables the verification of the identity of known con-
stituents with reasonable effort.

Proof Constituents with which this user is in contact
can be queried by external means (e.g., using direct
physical contact or electronic contact via externally-
learned email or SMS addresses) whether they know
the secret key for the GID of a constituent item with
their name, address and email/SMS (see Verification
of Constituent Identity in section Protocol). □

Relevance Collaborative filtering is enabled by the
structure of the items, since each of them is voted (par-
ticipants, neighborhoods, motions, justifications). Or-
ganizations are scored by the number of registered con-
stituents, constituents by the witness stances, neigh-
borhoods by witness stances and inhabitants, motions
and justifications by the votes. Further collaborative
filtering is ensured by the fact that users can separately
block receipt and broadcasting of items. While these
measures match state of the art, additional techniques
may be needed in the future to counter future attacks.

Property 7 (Openness) DDP2P provides the open-
ness property to a social network (users do not lose



personal data when somebody else’s system fails, and
new users can dynamically join at any moment).

Proof Each agent has its own copy of the whole
data, therefore none of the items it generates or store
can be lost due to the failure of any other peer. Any
new agent starting the system starts synchronizing
from time 0 and can therefore get all the items offered
from the databases of its peers. □

Property 8 (Resilience from Censorship) The
DDP2P protocol provides resilience from censorship.

Proof By construction, whenever a user directly
broadcasts an item to a peer, that item can be reg-
istered by the destination and stored. There is no
mechanism provided by DDP2P by which another
constituent could remove that item. □

Resilience from Attacks While it is in general hard
and rare to prove that any given technique would re-
sist to unknown future attacks (and we do not prove it
here), the proposed peer-to-peer architecture is particu-
larly resilient in the sense that all agents have copies of
all data of interest to them and an attack, to be success-
ful, has to disrupt most of these peers simultaneously.
For resilience to sybil attacks, see (Qin et al. 2013).

Conclusions
A framework, a peer-to-peer (P2P) communication pro-
tocol, and a system implementing them are proposed
for a fully decentralized coordination. The properties
of this system are studied for an argumentation appli-
cation. With this framework, a constituency can be
built in a complete bottom-up fashion. The eligibility
is defined among participants by voting on each other
according to principles that can be defined by anybody.
Anybody can submit formal proposals (motions) to be
debated and voted by the constituency. Any set of de-
fined principles constitute an organization and any peer
agreeing with these principles can join the correspond-
ing organization. Based on transitivity of trust, each
constituent has her own view of the status of the con-
stituency and of the argumentation around motions.
The proposed P2P protocol enables synchronization

of data provable to converge to a coherent state at qui-
escence given minimum connectivity. A key element is
provided by a mechanism of referring to items using
global identifiers (GIDs) defined in a way that avoids
voluntary and involuntary collisions (by generating the
GIDs as public keys or digest values). The protocol is
based on a fully decentralized communication, where
each peer can learn about other peers using existing
connections or external addresses. Similarly, each peer
can simultaneously be a supernode (helper for commu-
nication behind NATs and mobility), and can have a

list of its own personal supernodes to enable roaming.
Communication uses a combined pull-push mechanism
where locally known items are segmented into groups
based on their arrival time and on the capacity con-
figured for individual messages given the current com-
munication mechanism. Transfers only communicate
GIDs for items as long as the peer does not identify
these items as new for her and needed.
A reference implementation is provided as a P2P sys-

tem for fully decentralized voting, where the above con-
cepts and protocols were verified and validated. The
studied properties of the new framework are coherence,
self-interest, soundness, verifiability, scalability, rele-
vance, openness, resilience and repudiation of false at-
tribution. It also provides equality of opportunity for
initiative, management and voting.

References
Buchegger, S.; Schiöberg, D.; Vu, L. H.; and Datta,
A. 2009. PeerSoN: P2P social networking. In WSNS,
46–52.

Cohen, B. 2003. Incentives build robustness in bit-
torrent. In Workshop on Economics of Peer-to-Peer
systems, volume 6, 68–72.

Douceur, J. 2002. The sybil attack. Peer-to-peer Sys-
tems 251–260.

Federation. Federated social web. http://www.w3.
org/2005/Incubator/federatedsocialweb/wiki/
Main_Page.

Fedoruk, A. ; Denzinger, J. 2006. A general framework
for multi-agent search with individual and global goals:
Stakeholder search. ITSSA 1(4):357–362.

Ford, B., and et al. 2005. Peer-to-peer communica-
tion across network address translators. In USENIX
Annual Technical Conference, 179–192.

Gu, B.; Jarvenpaa, S.; et al. 2003. Are contributions
to p2p technical forums private or public goods? In
Work. on Economics of P2P Systems.

K. Raaflaub, J. O., and Wallace, R. 2007. Origins of
Democracy in Ancient Greece. Univ. California Press.

Kagawa, T. 1936. Brotherhood Economics. Harper &
Brothers.

Nieminen, K. 2003. Legal issues in p2p systems. Peer
to Peer and SPAM in the Internet 115.

Qin, S.; Silaghi, M.; Matsui, T.; Yokoo, M.; and Hi-
rayama, K. 2013. P2p decentralized population census.
In Workshop on Decentralized Coordination.

Roberts, H. M. 1989. Rules of Order. Berkeley.

W3C. Ostatus community group. www.w3.org/
community/ostatus/.

Xie, H., and Yang, Y. 2007. A measurement-based
study of the skype p2p voip performance. In IPTPS.

Yahalom, R.; Klein, B.; and Beth, T. 1993. Trust re-
lationships in secure systems-a distributed authentica-
tion perspective. In Research in Security and Privacy,
150–164.


