
Protocol and Heuristics for Synchronizing Opinion Poll Items
in Vehicular Ad-hoc Networks

Osamah Dhannoon and Rahul Vishen and Marius C. Silaghi
Florida Institute of Techology

Abstract

While drivers are not expected to vote while driv-
ing, VANETs can be an excellent media for dissem-
ination of decentralized regional polls and for pre-
recorded votes/opinions on regional issues in a decen-
tralized opinion poll. We propose and evaluate heuris-
tics for scheduling messages in a VANET broadcasting-
based dissemination of decentralized opinion polling
data among self-interested participants. The goal of
the heuristics is to increase dissemination of the polling
data and results under the given assumptions. The self-
interest of participants is assumed to be manifested by
selectivity in the storage and forwarding of topics and
opinions for those topics.

The report starts by describing the concepts enabling
the fully decentralized organization of the polls. The
underlying protocol that we implemented for fully de-
centralized polling of opinions over VANETs is also in-
troduced and evaluated.

Introduction

A protocol is proposed for dissemination of decentral-
ized opinion polling over wireless, Vehicular Ad-hoc
Networks (VANETs). When regional opinion polls are
organized in a decentralized fashion, vehicle to vehicle
(V2V) communication can be exploited for exchang-
ing pre-recorded votes in neighborhoods (without the
drivers being required to interact while driving).
VANETS are composed of wireless devices found in

moving cars. Each of these devices can communicate
with other devices found in its proximity. Common de-
vices with powerful receivers can record messages sent
from emitting devices found hundreds of meters away.
A fully decentralized polling can be based on a decen-
tralized authentication and census mechanism. Each
device is owned by a self-interested user and we assume
that the system is open, which implies that a user has
full control over her device and its software.
Since they have full control, self-interested partici-

pants can refuse to store and forward information re-
lated to polls in which they are not interested. They can
also refuse to store and disseminate opinions that they
do not share. The communication model assumes that
each device broadcasts data it wants to disseminate and

simultaneously listens and processes data broadcast by
passing-by devices. A challenge is to design heuristics
for selecting what to emit to maximize dissemination of
polling data under the working assumptions.

We evaluate heuristics that broadcast data either
with uniform randomness, or favoring certain types of
items such as: new votes, personal votes, votes similar
to the personal votes or the intersection between the in-
terests of the sender and the ones of potential receivers.
Some input for these heuristics may come from infor-
mation about interests of peers, and potentially their
GPS location and velocity (bearing and speed). For
efficiency, once packed, data can be broadcast several
times. A set of queues are maintained to implement
these heuristics.

To enable comparison between the described heuris-
tics, a utility model is introduced where the dissemina-
tion of each item is associated with a numerical value.
For example, the utility value for disseminating per-
sonal votes and opinions can be considered to be the
highest, followed by the utility value for disseminating
votes with similar choices as the personal ones. The av-
erage utility value for disseminating opposing opinions
is assumed smaller, but for various users it can be either
positive or negative (based on whether they want their
choice to succeed by any mean, or they are principled
and ready to submit to the opinion of others, or they
are open and willing to learn from other’s justifications
and to eventually change their minds). The utility for
disseminating votes on which the current user abstains
can be assumed in certain experiments to have an av-
erage value between the utility for similar opinions and
opposing opinions. The impact of the actual numerical
ranges of these utilities on results can also be evaluated.

After presenting the background and related work,
we continue by introducing the concepts involved in
decentralized polling and a sample data model for the
storage of each node. Subsequently we present the pro-
tocol for broadcasting in terms of message components
and their semantic. In section Heuristics we discuss
the tested techniques and the involved data structures.
After describing the preliminary experimental settings
and results, we end with conclusions.

Background

The use of broadcast in high traffic areas is known to
be challenging due to high rates of transmission colli-
sions between data packets. This problem is known as
the broadcast storm problem (Tseng et al. 2002). Sev-
eral broadcasting protocols (such as DV-CAST) have
been proposed to increase the performance of data
transfer in various traffic scenarios for VANET appli-
cations (Kumar & Dave 2012; Tonguz et al. 2007;
EUREKA 2010). A statistical study of broadcasting
between mobile nodes based on requests is available
in (Karlsson, Lenders, & May 2007) and implemented
in Bluetella.
The Local Peer Group (LPG) clusters neighboring

nodes to restrict dissemination range (Chen & Cai
2005). P2P sharing of content over VANETs based on
data popularity is introduced in the Roadcast simula-
tor (Zhang, Zhao, & Cao 2009). It simulates delivery
of relevant data (such as MP3 audio files) based on
peer queries by applying information retrieval mech-
anisms. A VANET P2P file sharing protocol called
SPAWN (gossiping) is introduced by (Nandan et al.
2005). Implementing CarTorrent in a real world sce-
nario is reported in (Lee et al. 2007) which describes
field tests for the SPAWN protocol and exchanges file
chunks based on the AODV protocol.
A set of so called Road-Based Vehicular Traffic

(RBVT) routing protocols on city roads use current
traffic data to initiate the end-to-end communication
paths (Nzouonta et al. 2009). VANET data dissemina-
tion can provide vehicles with parking spots availabil-
ity (Caliskan, Graupner, & Mauve 2006). The Traf-
fic View (Nadeem et al. 2004) project uses VANET
communication to share traffic information among cars
moving on roads. It can disseminate road assessments
(such as foggy weather) helping to find the best route to
a destination. The system aggregates data in packets,
to increase efficiency.
CodeTorrent (Lee et al. 2006) is another protocol for

P2P file sharing over VANETs. It aims to decrease file
downloading time.
The Segment-Oriented Data Abstraction and Dis-

semination (SODAD) (Wischhof, Ebner, & Rohling
2005), aims to increase the communication range be-
tween vehicles for exchanging traffic safety data, and
utilities information (e.g. locating gas stations). SO-
DAD is used in the Self-Organizing Traffic Information
System SOTIS.

Concepts

In this section we introduce formally the concepts that
can make possible a fully decentralized opinion polling
process. They define the data items exchanged by the
proposed protocols.
Polling is a process whereby one gathers the opin-

ion of a sample from a certain population on a given
question. For the statistical relevance of the result it is
important that only opinions of the members of the tar-

geted population are recorded and that each of them is
recorded only once. Minor errors can still leave the re-
sults relevant in case the support of competing opinions
differs by large margins. However, it should be difficult
to systematically manipulate the outcomes.

Definition 1 (Peer) The set of software agents that
coordinate publicly to represent a given user is referred
here as peer. A peer may have agents running on var-
ious devices (laptops, desktops, phone of a user) and
which share the same public and secret key pair. The
peer is globally identified by its public key.

Each semantically independent type of item (vote,
justification, etc.) is uniquely identified by a Global
Identifier (GID). To guarantee that there is no volun-
tary or involuntary conflict between GIDs, these are
built either as public keys for a secret, or as digests of
the information that they represent.
A working definition of the population eligible for a

set of polls, is captured in the concept of organization.

Definition 2 (Organization) An organization is an
entity defining the mechanism whereby an authority is
defined for specifying and controlling eligibility for vot-
ing on a set of issues. An organization is defined by
the unchangeable set of parameters describing its gov-
ernance and function. This unchangeable characteristic
is captured in its global identifier.

The fact that an item is generated for this organiza-
tion is specified by tagging the item using the global
identifier (which is included in the digitally signed data
for the item). The parameters of the organization can
specify the criteria for eligibility to vote on items, and
the ontology for the related communication.
Decentralized governance is currently rare. Some or-

ganizations are appropriate for a decentralized gover-
nance, such as: a diaspora, a union, or a club.

Definition 3 (Grassroot Organization) A grass-
root organization is a tuple ⟨O, p⟩. The global identifier
O is the digest of a set of parameters p, which can
never change and are referred to as its constitution.

Other organizations are more appropriate for central-
ized governance, such as: a class of students specified
by their instructor, a faculty coordinated by the depart-
ment head, or a committee coordinated by its chair.

Definition 4 (Authoritarian Organization) An
authoritarian organization is a tuple ⟨O, p, r, d, s⟩. The
global identifier O is the public key of the authority,
which can change any of its parameters, and is referred
to as the dictator of the organization. The parameters
of the organization are specified by p, the revocation
status by r, and the date of this declaration by d. A
signature s is used by the authority to certify this data:
s = SIGN(SK(O), ⟨p, r, d⟩).
The participants defined by an organization as eligi-

ble to vote on its issues, and whose votes matter with
a predefined weight in decisions, are referred to as its
constituents.

Definition 5 (Constituent) A constituent of an or-
ganization is a person that is eligible to cast a vote with
a predefined weight on the issues relevant to that orga-
nization. A constituent can be either active (i.e., gen-
erating data items) or inactive (i.e., its existence is dis-
cussed but it is not active). A constituent is defined by a
tuple ⟨C, C′,O, i, r, d, s⟩ where C is the constituent GID,
C′ is the GID of the active constituent submitting this
data, O is the GID of the organization, i contains the
identity details (as defined by O), r is the revocation
status of the constituent, d is the date and time of the
data creation, and s the signature generated by C′.

The definition of identity details is specified by the pa-
rameter p of the organization refered by O. An active
constituent is identified by its public key, which is used
as its global identifier. An inactive constituent is iden-
tified by its available description, and its global iden-
tifier is a digest of this data. The revocation status is
a boolean flag that blocks any further update or usage
of the constituent item, other than its dissemination.
Items depending on it can be discarded. C′ is redun-
dant for an active constituent, being the same as its
own GID C, but for the conciseness of the description
we prefer to use it, to unify the notation with the one
of inactive constituents.
As data structure, a constituent is described by the

set of parameters that enable his classification as to
weather it is eligible to vote in the given organization.
Certain organizations can define voting eligibility

based on a centralized mechanism, such as an authority
that issues eligibility certificates according to its crite-
ria. Decentralized organizations addressed here employ
a mechanism that defines eligibility based on witness-
ing.

Definition 6 (Witnessing) An act of witnessing is a
process whereby a first participant states whether the
conditions for eligibility in an organization are satisfied
by a second participant. A witnessing act is described by
a tuple ⟨W,O, S, T,m, e, d, σ⟩ where W is the witness-
ing stance GID, O is on organization identifier, S is
the constituent identifier of the witnessing participant,
T is the constituent identifier of the witnessed partici-
pant, e is an explanation, d is the time and date of the
witnessing and σ is a signature of the data. The mode
m of the witnessing consists of a set of semantic state-
ments, each of them being either positive witnessing or
negative witnessing about some quality of the target.

For large decentralized organizations it is impractical
to detect whether an isolated group of people witnessing
for each other are really eligible or just elements of an
attack. This problem is partly addressed by the concept
of neighborhood.
The constituency of an organization is classified in a

hierarchical tree structure where each constituent be-
longs to a single leaf node and each node of the tree is
called a neighborhood.

Definition 7 (Leaf Neighborhood) A leaf neigh-
borhood is a sufficiently small subgroup of the con-

stituents of an organization such that each constituent
of a leaf neighborhood can verify the eligibility of the
other members of the subgroup with reasonable effort,
and where the existence of the subgroup as a whole can
be verified by other members with reasonable effort. A
leaf neighborhood is identified by its parameters and its
global identifier is given by their digest. A neighbor-
hood is a tuple ⟨N , n, t,P, c, C, σ⟩ where N is the GID,
n is the name of the neighborhood, t is its level (e.g.
city,street), P is the GID of the parent neighborhood
(empty for the root), c is the list of expected neighbor-
hood levels under this neighborhood, C is the GID of a
constituent supporting its existence and σ is her signa-
ture for the data.

We need to formalize the concept of reasonable effort
and that can be done in terms of the cost it brings to
a volunteer participant.

Definition 8 (Reasonable Effort) In this paper we
say that an effort is reasonable in the context of an or-
ganization if the majority of constituents of the given
organization can perform it in a predefined unit of time
(e.g., one day), fixed for that organization, without
consuming extra resources besides their taxed revenue
(given applicable laws) for that period of time.

The neighborhood immediately above the current
neighborhood in this tree is referred to as its parent
neighborhood. The set of ancestor neighborhoods for a
constituent contains the leaf neighborhood where the
constituent is currently declared to belong, together
with all the hierarchically higher neighborhoods con-
taining this leaf neighborhood.
By convergence of polling data we understand that,

once the generation of new data stops, eventually every-
body that is connected and interested in a given topic
sees the same items for that topic.

Communication items

Besides the above mentioned items used for managing
the organizations (organizations, constituents, neigh-
borhoods and witnesses), agents communicate items re-
lated to polling. The question raised by a poll is cap-
tured by the concept of motion.

Definition 9 (Motion) A motion is a formal ques-
tion with a predefined set of possible responses on which
each willing constituents is called to select an answer.
A motion is defined by a tuple ⟨M, t, o, C, σ⟩ where C is
the GID of a constituent supporting the motion, t is its
text, o is a list of possible answers of the motion, and σ
is the signature generated by C. The motion is globally
identified by the hash of its data, M.

Definition 10 (Justification) A justification is an
explanation that a constituent provides for his selection
of an answer for a motion. It is defined by the tuple
⟨J ,M, t, C, σ⟩ where J is the justification GID, C is the
GID of the constituent supporting the text of the justi-
fication, M is the motion GID, t is the text of the jus-
tification, and σ is its signature. J = HASH(M, t, C).

Definition 11 (Vote) A vote is the selected answer to
a motion, as submitted by a constituent. Each vote con-
sists of a tuple ⟨V,M, c, C,J , d, σ⟩ where V is its GID,
C is the GID of the constituent authoring the answer
to the motion, M is the motion GID and c the selected
answer. J is the GID of a cited justification, and can
be empty, d is a date and time, and σ is the signature
of C.

Data Model

Each self-interested software agent stores the data of
related to its own interest into a local database. The
agent stores the received data if it refers to organiza-
tions, neighborhoods, constituents and motions of in-
terest. By default, received definitions of peers and
definitions of organizations received from non-blocked
peers are stored. This gives users an opportunity to
inspect and define their interest about them.
The database schema allows for storing the following

types of items that have a stand-alone semantic and
that are digitally signed, individually, by the entity gen-
erating them: peer, organization, neighborhood, wit-
nessing, motion, justification, vote.
Each item, is tagged with three user controlled

flags: blocked, broadcastable, interest. These
flags control the communication as described in the next
section. Each received data item is also associated with
the arrival time, which is the date of the latest regis-
tered change to the digitally signed parameters of the
item. The signed parameters of each item contain the
creation time, which is the data when the signature was
issued. The creation time is used to compare and select
the newest item among items whose parameters change
over time, such as active constituent, vote, and author-
itarian organization.
For the case where an attacker or mistake leads to

two distinct versions of the same item claiming the same
creation time, the comparison is made on the hash of
the data. This is used to prove that at convergence all
participants have coherent databases.

Protocol
Let us now describe the structure of the exchanged mes-
sages. Software agents found on wireless enabled de-
vices with ad-hoc capabilities are assumed to broadcast
messages continuously (potentially with short pauses).

Communication control The default settings of our
current implementations assume that a self-interested
receiver normally refuses to store items about unknown
organizations, as well as items relating to organizations,
constituents, neighborhoods or motions that are specif-
ically blocked by the user. To refuse items about un-
known organizations, newly received organizations are
blocked by default. Organizations where the user reg-
isters are automatically unblocked.
By default, all the stored data about items that are

not blocked is made available for broadcasting, but that

behavior can be manually controlled for each item using
a flag called broadcastable.
For example, if an organization is blocked, then we

store only its parameters but any extra data associated
with it (e.g., constituents, neighborhoods, motions) are
discarded. Similarly we handle blocked constituents,
neighborhoods, or motions.
Messages received can refer to the GID of an un-

known item (constituent, neighborhood, motion, jus-
tification). If users decide to store the item referring
to unknown GIDs, then temporary items are created
for each of the unknown GIDs, to enable their control
(blocking, broadcastability). The enabling of certain
temporary items, such as temporary constituents, open
the door for Storage Attacks, namely where attackers
attempt to fill users databases with data that is more
difficult to verify. If temporary data is enabled, then
remaining data for temporary items can be advertised
as requested in subsequent broadcast messages. Various
mechanisms (such as references to source peers) can be
used to mitigate these attacks.
Items of particular interest to the user, such as mo-

tions, constituents or organizations that the user is par-
ticularly involved with, can be announced as interests
in broadcast messages. This feature can inform cooper-
ating peers, which can thereby give priority in sending
such data back to the user. To enable this feature, each
stored item is associated with the interest flag that
the user can manually set and that the system can use
to generate the corresponding interest information in
messages.

Messages Each broadcast message contains a self-
contained information. The two most complex types of
messages are the ones carrying votes and the ones car-
rying witness acts (since they include data about many
other types of items but are not included in other types
of data).
A message containing a witness act consists of a tuple

⟨p, o, cs, Ns, cd, Nd, w⟩ describing the definition of the
relevant organization o, the definition p of the peer that
created the organization, the definition cs of the con-
stituent making the witness stance, the definition cd of
the constituent for which the witness stance is made,
the definition w of the witness stance. It also contains
the set of definitions of ancestor neighborhoods Ns of
the neighborhood of cs and the set of definitions of an-
cestor neighborhoods of the neighborhood of cd.
A message containing a vote consists of a tuple

⟨p, o, c,N,m, j, v⟩ describing the definition of the rel-
evant organization o, the definition p of the peer that
created the organization, the definition c of the con-
stituent making the witness stance, the definition m of
the motion, the definition j of the justification and the
definition v of the vote. It also contains the set of defini-
tions of ancestor neighborhoods N of the neighborhood
of the c.
Each broadcast message is also attaching a set of in-

terest hints. This set contains some of the GIDs of the

organizations, neighborhoods, constituents and motions
that the user has marked with the interest flag.
Probabilistically, the data concerning the details of

the organization, the peer or the constituent can be
dropped from a vote message or a witness message to
reduce some of the replication, with the risk of render-
ing some messages useless (as those messages may be
dropped by receivers missing one of the items required
for storing it: its organization, neighborhood, etc.).

Handling Here we describe reference procedures for
handling received messages. In Algorithm 1 we intro-
duce the method used by a software agent to manage
the knowledge it has about interests of peers found in
passing-by cars. An interest consists of the GID of
an organization, neighborhood, constituent, or motion.
Whenever indication of a particular interest is received
from a peer, it is stored locally, tagged with the GID of
the sending peer and an expiration time. The expira-
tion time is computed based on the arrival time of the
message containing this interest, the available informa-
tion about the relative speed between that peer and the
vehicle of the users, and an estimation of the maximal
distance within which the two devices can communi-
cate.
When the devices are not equipped with GPS (as in

the experiments reported here), then the computation
simply returns the estimated expiration time as the sum
between the current time and a constant life span
(Line 1.3). In our experiments this constant is set to 1
second. Note that each time that a message is received
from the same peer, the expiration time of its inter-
ests is updated, thereby accounting for devices that are
reachable for a longer period of time than the selected
life span constant.
A variable min interest stores the current time, up-

dated on the clock (Line 1.5) and any interests with
higher expiration time is removed at that moment
(Line 1.6).

Algorithm 1: Management of interest without GPS

1.1 procedure handle interests (Peer, interests) do
1.2 for i in interests do
1.3 set interest-value(i, min interest+life span);

1.4 procedure on clock() do
1.5 min interest++;
1.6 drop expired interests;

Next we describe the algorithms used to handle
received witness and vote messages (Algorithms 2
and 3). Similar and simpler algorithms are used to han-
dle messages carrying other types of items.
The algorithms for handling messages employ

the procedure handle interests() defined in Algo-
rithm 1, and a procedure verifySignature(item)
that is checks the signature of the item passed

Algorithm 2: Receiving and Handling a Witness

2.1 on witness(Peer, interests, (p, o, cs, Ns, cd, Nd, w))
do

2.2 handle interests(Peer, interests);
2.3 if !verifySignature(p) then return;
2.4 store-or-update(p);
2.5 if (blocked(p)) then return;
2.6 if !verifySignature(o) then return;
2.7 store-or-update(o);
2.8 if (blocked(o)) then return;
2.9 for n in Ns do

2.10 if verifySignature(n) then
2.11 store-or-update(n);
2.12 if (blocked(n)) then return;

2.13 for n in Nd do
2.14 if verifySignature(n) then

store-or-update(n);

2.15 if !verifySignature(cs) then return;
2.16 store-or-update(cs);
2.17 if (blocked(cs)) then return;
2.18 if !verifySignature(cd) then return;
2.19 store-or-update(cd);
2.20 if verifySignature(w) then store-or-update(w);

in parameter, quitting on failure. The procedure
store-or-update(item) verifies whether a previous
version of the item is already available and whether
its creation date is newer than the received item. On
failure it store the item (if no other version was found),
or updates it (if a version with earlier date or iden-
tical date but lexicographically smaller digest value is
found);
Before handling any item, first the software agent

checks whether the item is not blocked by the user (i.e.,
by being generated by a blocked peer, or constituent,
or for a blocked organization, neighborhood, motion,
justification, or choice for the motion).
The procedures to handle messages start by handling

first the more basic types of items before handling the
ones that are based of the first. The typical order is:
peer, organization, constituent, neighborhood, motion,
justification, vote. Note that there can be a circular
relation between constituent and neighborhood since a
constituent may reside in a neighborhood and the neigh-
borhood is supported/created by a constituent (poten-
tially the same). In this case the two are stored only
either if they are simultaneously available, or if storage
of temporary items is enabled (as discussed earlier).

Heuristics
To model incentives and their relation with the behavior
of the users, we formalize the utility of a message. In
practice each item has its own utility, and a different
utility for different users.

Definition 12 (Utility of messages) Each user

Algorithm 3: Receiving and Handling a Vote

3.1 on vote(Peer, interests, (p, o, c,N,m, j, v)) do
3.2 handle interests(Peer, interests);
3.3 if !verifySignature(p) then return;
3.4 store-or-update(p);
3.5 if (blocked(p)) then return;
3.6 if !verifySignature(o) then return;
3.7 store-or-update(o);
3.8 if (blocked(o)) then return;
3.9 for n ∈ N do

3.10 if verifySignature(n) then
3.11 store-or-update(n);
3.12 if (blocked(n)) then return;

3.13 if !verifySignature(c) then return;
3.14 store-or-update(c);
3.15 if (blocked(c)) then return;
3.16 if !verifySignature(m) then return;
3.17 store-or-update(m);
3.18 if (blocked(m)) then return;
3.19 if !verifySignature(j) then return;
3.20 store-or-update(j);
3.21 if verifySignature(v) then store-or-update(v);

draws a certain utility for learning an item, depending
on that item. A user also gains a given utility for
disseminating an item.

In the following we assume that the utility of storing
items is flat for the items in an organization, while the
utility of forwarding an item depends of its similarity
with the items generated by the user (and therefore
describing her values).

Uninformed heuristics for broadcasting corre-
spond to an assumption that hints received from peers
are not trusted, and transmission is made based on an a
priori model of frequency for encountering vehicles with
peers traveling in the two directions. With uninformed
heuristics, all peers are assumed to be interested in all
items that the current peer has, and to be able to store
all messages that they receive from this user. Such a
model assumes that a number of A reachable vehicles
travel in the same direction with a relative speed vA
while a number of B reachable vehicles travel at each
moment in opposite direction with relative speed vB.
The local computer is able to load new items from a
local database with an efficiency of M messages a sec-
ond. Messages (each with utility uM) can be emitted at
a speed of vM messages a second from a sending queue
of size Bs, the buffer of the queue being reloaded from
database at a period of time:

Preload ≥ Bs

min(vM ,M)
. (1)

If D is the communication range of the device then
TA = D

vA
is the duration for which a car traveling in the

same direction is reachable, and TB = D
vB

is the simi-
lar duration for the opposite direction. We also assume
that the assumption that the queues of preloaded mes-
sages used for sending data are long enough to provide
data for the whole time TB , i.e.,

Bs

vM
≥ D

vB
. (2)

Then, the utility of sending data during time TA is:

UTA
= uM ·A·Bs·⌈

TA

Preload
⌉+ uM ·B·TA

TB
·TB ·vM

where the first part of the right hand expression refers
to the utility obtained by sending items to cars in the
same direction (cars that each receive the content of
⌈ TA

Preload
⌉ full buffers of messages, each of size Bs). Note

that in this equation we assume that the reminder of
Preload : TA is larger than Bs

vM
. The second part of the

expression is the utility from the items transmitted to
cars driving in opposite direction. There are TA

TB
road

segments of sizeD with such cars that travel in opposite
direction, each holding B cars, and each of these cars
receives vM ·TB messages.
If one set Preload to the closest (smaller) divisor of

TA, then the utility rate per unit of time that the agent
gets for broadcasting from a given queue of messages in
this condition is approximated to (obtained by dividing
UTA

by TA):

∂U

∂t
= uM

(
A·Bs

Preload
+B·vM

)
(3)

The current peer has a number NP of personal items,
a number NS of similar items, a number NO of other
items and a number NF of opposing opinions of pos-
itive utility (opposing opinions of negative utility are
not sent). An assumption is that NP ≪ NO. Based
on this model we search for the best policy in terms of
number of times that items with high utility should be
broadcast before broadcasting some items with a lower
utility.

Informed heuristics assume that peers announce
their interests as sets of GIDs for organizations, con-
stituents, neighborhoods, motions or justifications for
which they want to get related items, and that they
drop any other messages. Senders thereby build spe-
cial queues with data of interest to these peers and give
these messages priority over other items. In our exper-
iments, agents broadcast only data relevant to current
peers and found in current queues.
Each message loaded in sending queues is tagged

with information about contained organizations, con-
stituents, neighborhoods, motions, justification (and
potentially vote choice), to help dynamically retrieve
those of interest to new detected peers.
While our experiments were run with laptops that

were not provided with GPS sensors, such sensors can

provide extra information as to when the peers travel
in the same direction or in opposite direction, and for
how long the peer be reachable.

Figure 1: Architecture of the Peer

Our utility model can be combined with the statisti-
cal model of the efficiency of communication described
at uninformed heuristics (as shown in the Experiments
section), to decide the policy of transmission for each
type of data (what percentage of each type of data
should be sent at each moment of time). One can se-
lect the ratio of data of each type such as to maxi-
mize the expected utility of the sender. Rather than
using the model resulting in Equation 3, one can intro-
duce utilities in decisions based on the statistical models
in (Karlsson, Lenders, & May 2007).

Agent Architecture Details

We performed experiments with our implementation of
a VANET platform, based on agents running on lap-
tops that are located in moving vehicles. We allocate an
Ad-Hoc wireless cell based on the open (unencrypted)
SSID DirectDemocracy at Frequency 2.462 GHz result-
ing in the cell 46:32:D1:F2:88:67. The architecture of
the server is depicted in Figure 1. Each agent starts a
server bound to local port UDP/54321 and accepting
broadcast messaged. Our experiments were done with
the Network ID of the network card set to “10/8”. The
local Host ID part of the IP is set to a random value.
If the random part of the IP is considered insufficient
to avoid IP collisions between peers, an additional ran-
dom identifier is also generated to uniquely detect the
agent, and messages tagged with this identifier can be
discarded assuming that their source is the agent of the
server. When the device has more than one wireless
card, the agent can be configured to only use a sub-
set of them for this protocol. Each agent has a client
that broadcasts messages on the network interfaces al-
located to our protocol, sending them to the address
“10.255.255.255:54321” from a set of queues prepared
with preloaded messages. A small pause (e.g. 5 ms)
can be introduced between the transmission of packets,

as this was found to slightly improve transmission rates
as well as CPU load (see the section Experiments).
Each of the queues with preloaded messages has a

special policy as to the type of contained items (per-
sonal, similar to personal, recent, random, round-robin,
requested) and its mechanisms for loading and reload-
ing. The broadcast client picks items from the vari-
ous existing queues based on a probability distribution
that can be specified by the user. We experiment with
various heuristics for specifying these probabilities. To
maximize its dissemination efficiency, the probability
of sending items of interest must grow with the number
of receivers having expressed that interest (potentially
serving only the items of interest to most current peers).
Before broadcasting a message, the client prepends to
it a header describing: the interests of the current user,
its random identifier, and available GPS data about cur-
rent location and velocity. Potentially this header can
include extra information about the content of the body
of the message (such as GIDs of organizations, motions,
etc) to help receivers decide faster on storing or drop-
ping messages that are not of interest. The existence
of peers that drop messages not tagged with interest
could push self-interested agents to provide this extra
information (which otherwise reduces their bandwidth).
The servers may not be fast enough in handling and

storing all the data they can receive in real time and
therefore incoming data is stored in buffers. Our server
has a receiving buffer of size Br set to 20000 messages
(average message size being measured to be 5kB in the
current experiments). The server extracts the interests
advertised by peers from the header of received mes-
sages and enqueues all the message bodies deemed new
based on their size (or hash). A separate storing thread
is used to dequeue received messages and to store their
data based on the aforementioned algorithms.
If the receiving buffer is full, until the internal storing

thread frees some entries, the server drops new incoming
messages except if they are tagged in their header with
information specifying that they contain items of inter-
est to the receiver (in which case these messages are
used to replace untagged messages from the buffer).

Experiments

Our implementation can run on Linux, Windows, and
MacOS. The network configuration is automated on
Linux and Windows while the MacOS network config-
uration has to be performed manually.
For the reported measurements, the databases of the

agents were filled with 60000 votes for 10 organizations
(O1 to O10) and 3816 motions, 9094 justifications, 629
constituents, and 4486 witness stances. These num-
bers were chosen based on our estimation of the ratio
of the various types of items in a deployed system. To
generate these items we implement a simulator that al-
locates each new generated vote probabilistically. First
we manually generated a certain number of organiza-
tions. Then, each generated vote is allocated to a new

Time (minutes)

2

2

2

2

Figure 2: Experiments measuring the speed of messages
transmitted (vM). Averages for duplex communication
is: 3ms pauses at 10.2 msg

sec , 5ms pauses at 10.78 msg
sec ,

and 10ms pauses at 9.97 msg
sec

organization with probability 10−5, otherwise it is uni-
formly assigned to one of the existing organizations.
Similarly, each vote is allocated with probability 10−2

to a new constituent. The size of the text of each artifi-
cially generated motion is 1000 characters and the size
of each justification is 300 characters.
We performed experiments with transitive dissemi-

nation across several vehicles, validating the fact that
data can be disseminated between cars that do not have
direct contact. First we report numerical results about
the measured characteristics of the communication be-
tween immediately connected nodes.
We measure the speed of communication vM be-

tween two nodes in ideal conditions (when the nodes are
placed far from other wireless devices). Communication
is measured between an HP G62-111EE with 3GB RAM
and an Acer Aspire P5WE0 with 4GB RAM running
Ubuntu 12.04 on an I3 processor. Preliminary measure-
ments were made with different pause duration (0, 3, 5,
10, 15, 250, 500, 750, 1000 ms) between transmitted
packets. This pause impacts on the number of packet
collisions, and therefore on the transmission efficiency.
More extensive measurements were performed on the
values that showed promise (3, 5, 10 ms). Measure-
ments were taken over 25 minutes of communication
for each pause duration and for each of the following
two cases: when both devices transmit data. and when
only one device transmits data. The results, averaged
over a sliding window of size 30 seconds, are displayed
in Figure 2. The maximum value of 26.7 messages per
second for one direction broadcasting at 5 ms pause
duration is used as reference.
We measure an estimate of the range of communica-

tion D and of the time TB during which two devices
are able to communicate. These measurements are per-
formed with laptops found in two vehicles moving in
opposite direction in several scenarios: in a parking lot
(crowded) at 15 mph, on a city street in an open area

roads speed TB M = vM ·TB

Parking lot – crowded 15 15 158
Street – open area 40 4.3 50
Street – school area 35 2.6 15

Highway – free 70 6.3 91
Highway – trucks 70 4.5 34

Table 1: Average time of encounter (seconds) and num-
ber of exchanged messages in this time for various ve-
hicle speeds (mph) and environments, with communi-
cation in one direction (5 ms pauses)

S

E

S

E

S

S

E

E

Car-B
Car-C

Car-A

Figure 3: Trajectories in the chain topology. Areas
of communication for each meeting point start at the
corresponding S point and end at the corresponding E
point, for each car.

(10 wireless networks) with median strip at 40 mph, on
a city street close to a school (35 wireless networks)
with median strip at 35 mph, on an empty highway
with median strip at 70 mph, and on the same highway
(with trucks separating the communicating cars). The
measurement in the parking lot and on the city street
were averaged over 10 encounters. The numbers of mes-
sages successfully transmitted in the three scenarios are
shown in Table 1, as well as the duration TB estimated
from logs. It can be noticed that the speed of commu-
nication between devices is strongly influenced by the
number of wireless networks in that area.
To have all messages available for a peer encountered

while driving in opposite direction in a crowded parking
lot, the sender needs queues of size Bs≥D·vM

vB
, which

correspond to the maximum number of messages M in
Table 1.

Dissemination over chains of vehicles To evalu-
ate and confirm empirically the dissemination between
vehicles that do not meet each other but communicate
via other intermediary vehicles, we run experiments
with three cars: A, B, and C. The car C contains a
device with a preloaded database (as per the previous
experiments) while the devices in the other two cars
are initially empty. We evaluate two topologies of com-
munication patterns between these vehicles: chain and
triangle. For each topology the vehicles have a fix tra-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20

N
um

be
r

of
 n

ew
 m

es
sa

ge
s.

Rounds

Car A triangle
Car B triangle

Car B chain
Car A chain

Figure 4: Received items (votes and witness stances)
for cars A and B in the chain and triangle topologies.
The ratio votes to witness stances is approx 2:1.

S

E

S

E

S

S

E

E

S

E

S

E

Figure 5: Trajectories in the triangle topology. Areas
of communication for each meeting point start at the
corresponding S point and end at the corresponding E
point, for each car.

jectory that they repeat 20 times, synchronized in such
a way that pairs of vehicles meet at the same location.
We evaluate the impact of the studied heuristics and of
the user interests on the efficiency of dissemination.
The trajectory of these cars on a map in the chain

topology is shown in Figure 3. Two curves in the dia-
gram in Figure 4 shows the number of new data items
received and stored in each of the two cars during 20
rounds of encounters with this topology. We remark
that the Car A chain curve shows that its device re-
ceives approximately 60% of what is received by the
device in car B (see Car B chain). It is nevertheless log-
ical to expect that the ratio would decrease with time
and rounds due to the expected decrease in overlap be-
tween messages received by B from C, and messages
sent by B when her database increases. The usage of
queue handled (containing data recently received from
other peers) is meant to mitigate this effect.
A comparison is made with the situation when the

three cars communicate according to a triangular topol-

Served Organization Interests

2
2

Figure 6: Comparison of efficiency with and without
advertisement of interests.

ogy (see Figure 5). We see that the number of messages
received by the car B (and car A) in this topology is
approximately 50% more than the number of messages
received by car B in the chain topology.

Impact of Interests on Efficiency We count the
number of messages of interest to the receiver, suc-
cessfully transmitted to a given peer, in scenarios with
the studied peer expressing interests in two organiza-
tions, while other peers also express their interests. The
graph in Figure 6 shows the number of received mes-
sages given the number of different interests considered
by the sender. It can be observed that the efficiency
for the receiver decreases with the number of interests
submitted by neighboring peers.The other straight hor-
izontal line in the graph shows the efficiency of the re-
ceiver when no interests are advertised by anybody and
the sender transmits randomly data from its 10 organi-
zations. Note that the efficiency of the server is given
by the sum of the efficiency of its receivers, being ex-
pected to grow monotonically with the number of peer
vehicles receiving its data. The efficiency of the sender
in disseminating its data without advertisement of in-
terest is smaller than with advertisement, except when
all the available data is of equal interest to receivers.
With the computed parameters, when we use a sin-

gle sending queue with randomly picked data or with
round-robin transmission, the occurrence of personally
generated items has a negligible probability and the
utility is practically equivalent to sending only mes-
sages of type other. Assuming that the transmission
of each item has a utility of 1c for the sender and the
utility of a personally generated item is 10c, the ob-
tained utility per second with A = 2 vehicles driving
in the same direction and B = 2 vehicles traveling in
opposite direction on a highway is ≈107 c

s (based on
Equation 3). For the case NP = 10, on a highway, the
speed of sending messages with personal items has to
be vPM ≥ Bs

TB
= 10

3.4 ≈ 3. Therefore the speed of sending

the other types of messages (assumed to be all of type

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

Nu
mb

er
of

ne
w

me
ss

ag
es

.

Rounds

Car B with advertisements triangle
Car B no advertisements triangle

Car A no advertisements chain
Car B no advertisements chain

Figure 7: Impact of interest advertisement.

“other”) can be vmax
M − vPM ≈ 23.7. The total utility

with this configuration is 117 + 95 = 212 c
s (117 c

s for
personal messages). This proves that it is useful to sep-
arate messages into queues of specialized types (gaining
212 c

s rather than 107 c
s).

Empirical Results with Interests We ran exper-
iments with the three cars (A, B, and C) where A is
only interested in storing and forwarding the organi-
zations O1 to O7, and B is only interested in storing
and fowarding organizations O4 to O10. The impact of
advertising their interests is shown in Figure 7, with
an improvement of 28%, proportional with the ratio of
interest in the available organizations. It can be seen
that, when devices filter received data based on their in-
terests, car A eventually receives a lower fraction (36%)
of the data received by B than in the absence of such
filtering (54%, see Figure 4). Advertisement of interests
compensates for this difference.

Conclusion
A set of techniques for dissemination of data in decen-
tralized opinion polls via a Vehicular wireless Ad-hoc
Network of self-interested peers is proposed and eval-
uated. For comparing heuristics we compute the util-
ity of achieved dissemination from the perspective of a
given sender. The long term goal is to find the behav-
ior at equilibrium of self-interested senders. A utility
model is discussed where the highest utility is for items
generated by the sender, followed by items with similar
opinion, while the least utility is assigned to items of
opposing opinion (potentially negative utility).
Based on a set of experiments with our VANET im-

plementation we compute the parameters of a model for
the vehicle to vehicle interaction. Strategies for broad-
casting based on several queues are evaluated as well
as percentages of broadcast time to allocate to different
types of data items. The tested heuristics can be unin-
formed or informed with data received from peers such
as their interests, identity, position and relative speed
and bearing. Interests of peers are expressed in terms
such as opinion (vote choice), issues (motions), voters
(constituents), or topics (organization).
Separate outgoing queues can be maintained for data

of different types (random, generated by sender, similar
with sender, opposing senders, others). Cars traveling
in opposite direction should get the most valuable data
(generated by this sender) while cars traveling in the
same direction and in contact for a long time should
eventually fully synchronize with the sender on all items
with positive utility and of interest to them.

References
Caliskan, M.; Graupner, D.; and Mauve, M. 2006.
Decentralized discovery of free parking places. In
VANET, 30–39.

Chen, W., and Cai, S. 2005. Ad hoc peer-to-peer net-
work architecture for vehicle safety communications.
Communications Magazine, IEEE 43(4):100 – 107.

EUREKA. 2010. http://www.eurekanetwork.org/
project/-/id/6252.

Karlsson, G.; Lenders, V.; and May, M. 2007. Delay-
tolerant broadcasting. IEEE Transactions on Broad-
casting 53(1):369–381.

Kumar, R., and Dave, M. 2012. A review of various
vanet data dissemination protocols. Intl. Journal of u-
and e-Service, Science and Technology 5(3):27–44.

Lee, U.; Park, J.-S.; Yeh, J.; Pau, G.; and Gerla, M.
2006. Code torrent: content distribution using net-
work coding in vanet. In MobiShare, 1–5.

Lee, K.; Lee, S.-H.; Cheung, R.; Lee, U.; and Gerla, M.
2007. First experience with cartorrent in a real vehicu-
lar ad hoc network testbed. In 2007 Mobile Networking
for Vehicular Environments, 109 –114.

Nadeem, T.; Dashtinezhad, S.; Liao, C.; and Iftode, L.
2004. Trafficview: traffic data dissemination using car-
to-car communication. SIGMOBILE Mob. Comput.
Commun. Rev. 8(3):6–19.

Nandan, A.; Das, S.; Pau, G.; Gerla, M.; and Sanadidi,
M. 2005. Co-operative downloading in vehicular ad-
hoc wireless networks. In WONS, 32 – 41.

Nzouonta, J.; Rajgure, N.; Wang, G.; and Borcea,
C. 2009. VANET routing on city roads using real-
time vehicular traffic information. IEEE Trans. on
Vehicular Technology 58(7):3609 –3626.

Tonguz, O.; Wisitpongphan, N.; Bai, F.; Mudalige, P.;
and Sadekar, V. 2007. Broadcasting in VANET. In
Mobile Networking for Vehicular Environments, 7 –12.

Tseng, Y.-C.; Ni, S.-Y.; Chen, Y.-S.; and Sheu, J.-P.
2002. The broadcast storm problem in a mobile ad
hoc network. Wirel. Netw. 8(2/3):153–167.

Wischhof, L.; Ebner, A.; and Rohling, H. 2005. In-
formation dissemination in self-organizing intervehicle
networks. IEEE Trans. on Intel. Transportation Sys-
tems 6(1):90 – 101.

Zhang, Y.; Zhao, J.; and Cao, G. 2009. Roadcast: A
popularity aware content sharing scheme in VANETs.
In ICDCS, 223 –230.

