Distributed Simulated Annealing
and comparison to DSA
—trade-offs between ’anytime’ and marginally improved quality,
local effort and communication*—

Muhammad Arshad’ and Marius C. Silaghi
Florida Institute of Technology

{marshad,msilaghi}@cs.fit.edu

Abstract

Distributed Constraint Satisfaction is a framework for
modeling and solving distributed problems. Research
on the topic intensified during the last ten years when
mainly complete techniques were thoroughly explored.
A revival of attention for Distributed Stochastic Algo-
rithms (DSA) was marked by the work of (Fabiunke
1999; Fitzpatrick & Meertens 2001; Zhang, Wang, &
Wittenburg 2002). Remarkably, it was proven that
Distributed Stochastic Search is a competitive tech-
nique. Here we review current DSAs and their intrinsic
problems. We also describe solutions and a new algo-
rithm, Distributed Simulated Annealing (DSAN). We
show theoretically how these solutions can improve the
robustness of DSA. Experimental evaluation on syn-
chronous versions shows that with current heuristics
only DSAN competes with the previous winner, DSA-
B. DSAN offers marginally better quality solutions
than DSA-B for hard and over-constrained problems.
For easy problems DSAN may not reach the solution if
the temperature doesn’t descend to zero.

For very remote agents, when only the cost of commu-
nication matters, DSA-B has a better ’anytime’ behav-
ior than DSAN. The local effort of an agent in DSA-B
is higher than in DSAN with a factor linear in the do-
main size.

Introduction

Constraint satisfaction has proven to be a successful
paradigm for approaching combinatorial problems like
resource allocation, scheduling, or planning in central-
ized settings. A constraint satisfaction problem (CSP)
is given by:

e a set of variables {x1,xa,..., 25},

e a set of domains, {D1, Ds,...,D,}, associated with
the variables, and

*Most content of this paper was taught or discussed in
AT classes at FIT during the 2002 Fall Semester, and the
first version was available on Nov 8, 2002. Grigore Borota
worked on a partial implementation of DSAN in Decem-
ber 2002. We thank anonymous reviewers of FLAIRS03 for
encouragements, despite the fact that one errouneously be-
lieved DSAN would have been already proposed and studied
in (Aarts & Korst 1989).

TUndergraduate student at FIT.

e a set of constraints, C1,Cs,...,C}y, each of them in-
volving a subset of the set of variables,

The solution to a CSP is an assignment of values from
the corresponding domains to each variable such that
the combination of assigned values is allowed by each
constraint. A distributed CSP (DCSP) arises when vari-
ables are distributed among agents so that each variable
can only be assigned values by a single agent (Yokoo et
al. 1992). This is the definition exploited in our tech-
nique, even if DSA/DSAN can be easily extended to
other frameworks of distributed CSPs, notably where
assignments for each variable can be proposed by sev-
eral agents (Silaghi, Sam-Haroud, & Faltings 2000).

Distributed Constraint Satisfaction can model and
solve naturally distributed problems. Research on DC-
SPs has accelerated during the last years when complete
techniques as well as techniques based on tight organi-
zation were thoroughly explored. Attention was drawn
to Distributed Stochastic Algorithms (DSA) by the
work of (Fabiunke 1999; Fitzpatrick & Meertens 2001;
Zhang, Wang, & Wittenburg 2002). Remarkably, it
was reported in (Zhang & Wittenburg 2002) that Dis-
tributed Stochastic Search performs better on coloring
graphs compared with Distributed Breakout, previously
known as particularly efficient. Many researchers di-
rected their attention towards DSA. Five versions of
DSA are compared in (Zhang, Wang, & Wittenburg
2002): DSA-A, DSA-B, DSA-C, DSA-D, and DSA-E.
DSA-B was found to be the best in this family.

Here we review existing DSAs and address their in-
trinsic problems. DSA has no chance to get out of lo-
cal minima. We also describe solutions and show the-
oretically how these solutions can improve the robust-
ness of DSA. Experimental evaluation on synchronous
versions shows that with current heuristics only DSAN
competes with the previous winner, DSA-B. DSAN of-
fers marginally better quality solutions than DSA-B for
hard and over-constrained problems. For easy problems
DSAN may not reach the solution if the temperature
doesn’t descend to zero.

For very remote agents, when only the cost of com-
munication matters, DSA-B has a better ’anytime’ be-
havior than DSAN. The local effort of an agent in DSA-
B is higher than in DSAN with a factor linear in the

Cycle | A;(NY,LA,W) A,(D,LA,P,W) A3(W) A,(LAW.D)

NY D W LA

1 A =1 >0 =>]A =1 >0 =>[A=0)=>W |(A =1 > 0 =>
W, LA(p)NY (1 —p) W, LA(p)D(1 — p) W, D(p)LA(1 — p)
NY LA W D
NY LA W% D

2 A =1 >0 =]A =1 >0 =[A=0)=W |A =1 > 0 =
W, LA(p)NY (1 —p) D, W(p)LA(1 —p) LA W(p)D(1 —p)
LA LA W W
LA LA W \WY

3 A =1 >0 =]A =1 >0 =[A=0)=W |(A =1 > 0 =
W(p)LA(1 — p) W (p)LA(1 — p) LA(p)W(1 - p)
W LA W LA
W LA W LA

4 A =1 >0 =|A =1 >0 =|AQA=0=W [(A =1 > 0 =>
LA(p)W(1 —p) W(p)LA(1 — p) W(p)LA(1 — p)
W W W W
W W W W

5 (A=0)=>W (A=0)=>W (A=0)=>W [(A=0)=>W
W W W W

Figure 1: Successful trace of the problem with DSA-B. For each cycle, the first row show the result of the exchange
stage, the second row show the parameters for the (stochastic) decision step, and the third row show the outcome of

the decision i.e. the chosen value.

domain size.

Distributed Stochastic Algorithm

The properties of distributed algorithms that express
ideal behaviors are: uniformity, simplicity, robustness,
and efficiency. Distributed stochastic search algorithms
(DSA) offers three of these properties. Uniformity is
the property of a distributed algorithm where all pro-
cesses have equal priority for every act. This also im-
plies that they do not need identities to distinguish one
another for breaking ties. An uniform algorithm does
not need a central authority and it is simple to launch
or to restart (Tel 1999). There are very few known
uniform algorithms as most algorithms are almost uni-
form, meaning that all but one of the processes are
identical (Collin, Dechter, & Katz 2000).

Algorithm 1: The algorithm performed by all agents
for DSA
procedure DSA do
Randomly choose a value;
while (no termination condition is met) do
if (a new value is assigned) then
send the new value to neighbors;
end
collect neighbors’ new values, if any;
select and assign the next value (See Figure 2)

end
end do.

Second, DSA is a very simple algorithm (Zhang,
Wang, & Wittenburg 2002). The single procedure of

DSA is shown in Algorithm 1. The agents start pick-
ing random values for their variables. Then they enter
a loop until the termination condition is met. At the
beginning of each cycle, each agent sends its variable
value to its neighboring agents. The value is sent only
in the first cycle or if it was changed at the end of the
previous cycle. Simultaneously each agent listens and
gets the changes of the states, i.e. value assignments,
of the neighbors. After all exchanges were made, each
agent decides whether to change the current value for
its variable. The decision can be taken either deter-
ministically or stochastically. The values are changed
according to a min-conflict behavior, aiming to reduce
the number of constraints that are not satisfied.

The existing versions of DSA are synchronous. This
means that the agents start each cycle in a synchronized
way and also take a decision only after making sure that
all exchanges of the current cycle have been terminated,
e.g. by an additional synchronization. Note that each
DSA cycle has two stages: value exchange, respectively
decisions for changing values. These synchronizations
actually mean that no message sent by an agent in a
certain stage of a cycle reaches another agent in another
cycle or even in another stage of the same cycle.

The existing versions of DSA differ in the way an
agent decides the next value. The decision is based
on its current state and the values received from the
neighboring agents. The state of an agent is quanti-
fied by its current value and by the number of conflicts
it knows between its value and other values. An agent
only changes its value if this does not increase the num-
ber of conflicts it knows. If there exists a value that im-
proves or maintains state quality, the agent may or may

not change to the new value. The decision is based on
a stochastic scheme, depending on the chosen strategy.
Figure 2 (Zhang, Wang, & Wittenburg 2002) shows the
schemes defining the five existing versions of the DSA
algorithm. C stands for conflict, A is the best possible
conflict reduction between two steps, v is the value for
which A was obtained. p is the probability to change
the current value. It was notice that p has a relation
to the intensity of the computation and therefore it is
called the degree of parallel executions. “-” in the Fig-
ure 2 means that the value is not changed. A > 0 im-
plies that there exists a conflict, since an improvement
is possible.
Here are the differences between the five versions:

A Whenever the current state can be improved, the
change is made stochastically. Otherwise no change
is made.

B DSA-B is like DSA-A but agents also change their
values if they know conflicts and changing the values
does not increase the number of conflicts.

C DSA-C allows agents to change their value in the
same conflict conditions as DSA-B. Additionally.
DSA-C allows the agents to change their value if there
is no conflict and they introduce no conflict by their
change.

D DSA-D is a version of DSA-B where the probability
to move when A > 0 is 1.

E DSA-E is a version of DSA-C where the probability
to move when A > 0 is 1.

Algorithm A>0 C,A=0|noC,A=0
DSA-A v with p - -
DSA-B v with p | v with p -
DSA-C v with p | v with p v with p
DSA-D v v with p -
DSA-E v v with p v with p

Figure 2: Alternatives of existing DSA differ in their
value selection. Here is the exhaustive list of their de-
tails (Zhang, Wang, & Wittenburg 2002).

DSA-B has the best performance (Zhang, Wang, &
Wittenburg 2002). This can be explained by the fact
that agents may change their current state even if it
does not bring improvements directly. Even if the im-
provements are not made directly, the change may en-
able a neighbor to find a descent out of the local min-
ima. The agents may have been in a global state where
two or more changes were required for an improvement
and they do not require any increase of the conflicts in
the intermediary steps. DSA-C tries to extend this be-
havior for states with no conflict but no improvement
was found. DSA-D and DSA-E make an improvement
whenever they can, but this was proven not to be wise.
The fact that all agents make many changes in paral-
lel with the two last versions, activates the conditions

foreseen in (Collin, Dechter, & Katz 2000) to lead to
long/infinite loops and used as argument against uni-
form techniques.

An asynchronous version of DSA

Algorithm 2: An asynchronous version of DSA

procedure DSA do
Randomly choose a value;
while (no termination condition is met) do
if (a new value is assigned) then
send the new value to neighbors;
end
set alarm;
at alarm collect neighbors’ new values
received since the last alarm, if any;
select and assign the next value;

end
end do.

As mentioned before, one can easier understand DSA
by analyzing it as a synchronous algorithm. Neverthe-
less, asynchronous versions can be obtained very easily.
The Algorithm 2 gives an example where synchroniza-
tions are replaced with a timeout. It is assumed that
an additional thread collects incoming messages while
the agent is found in the second stage.

Local Minima

This section highlights an issue obvious for all Al re-
searchers but that escapes students, mainly due to the
fact that it isn’t mentioned in other reports on DSA.

Let us now analyze the following problem with the
best of the previous techniques, DSA-B: Four agents,
Aq, As, Az, and A4 want to meet and will choose a city.
Each of them has the constraint of wanting to be with
the others: x1 = x93, 1 = 3, ¥1 = T4, T2 = T3, T3 =
T4, T3 = 4. In fact A; only evaluates the constraints
T1 = xa, T1 = T3, £1 = T4. Evaluating any of the other
constraints could only switch us from the last column in
Figure 2, no C, A = 0, to the previous column: C, A =
0. (Note that this would lead to behaving according to
DSA-C instead of DSA-B.) Similarly, A5 only evaluates:
Tr1 = T2, g = X3, Ty = T4. A3 evaluates: r1 = I3,
Ty = x3, T3 = x4. Ay evaluates 1 = x4, T2 = T4,
T3 = X4.

Agent A; can only go to New York (NY), Los Angeles
(LA), or Washington DC (W) i.e. 1 € {NY,LA, W}.
Agent Ay can only go to Dallas (D), Los Angeles (LA),
Pittsburgh (P), or Washington DC (W) ie. z2 €
{D,LA,P,WW}. Agent Az can only go to Washington
DC (W) i.e. x3 € {W}. Agent A4 can only go to Los
Angeles (LA), Washington DC (W), and Dallas (D) i.e.
x4 € {LA, W, D}.

In Figure 1 is given a successful trace of DSA-B for
our problem. As it can be seen, 4 cycles with DSA-
B and acceptable outcomes of the random generators
used for randomizing the decisions lead to convergence.

Cycle | A;(NY,LA,W) A,(D,LA,P,W) A3 (W) A,(LA,W,D)

NY D \W% LA

1 A =1 >0 =>]A =1 >0 =>[A=0)=>W |(A =1 > 0 =>
W, LA(p)NY (1 —p) W, LA(p)D(1 — p) W, D(p)LA(1 — p)
NY LA W D
NY LA W% D

2 A =1 >0 =]A =1 >0 =[A=0)=W |A =1 > 0 =
W, LA(p)NY (1 —p) D, W(p)LA(1 —p) LA W(p)D(1 —p)
LA LA W LA
LA LA W LA

3 (A<0)=>LA (A<0)=>LA (A=0)=>W |(A<0)=>TLA
LA LA W LA

Figure 3: Less successful trace of the problem with DSA-B.

with an unfortunate chance.

With this example, it happens that sometimes two dis-
tinct values offer simultaneously the best A > 0. In this
case we change the value with probability p and the next
value is chosen with equal probability among those of-
fering the improvement A. To distinguish this version
of the DSA-B algorithm, we denote it by DSA-B. Sim-
ilarly one can get DSA-A, DSA-C', DSA-D, DSA-E.

But let us notice how fragile our success was. In Fig-
ure 3 is given a trace where the outcome of the used
random generators in cycle 2 moves us into a bad min-
ima. It is therefore clear that for many problems, DSA
can converge to suboptimal minima with high proba-
bility.

Improvements to DSA

DSA1/DSA2 There are two obvious improvements
to be brought to the DSA family. The first is to al-
low the agents to move up the hill, i.e. to increase
the number of conflicts (even when an improvement ex-
ists) with an acceptable low probability. This version
is called DSA1. The strategies for DSA1 are shown in
Figure 4. They correspond to the mentioned strategies
for DSA, but a small probability allows agents to get
out of local minima. For example, in the trace of Fig-
ure 3 the agent A, has a chance (p2/2) to change its
proposal back to W and later the trace can develop as
in Figure 1. Another alternative, DSA2, consists of al-
lowing the agent to move towards more conflicts only
when A<0 (see Figure 5).

Distributed Simulated Annealing (DSAN) The
drawback of both DSA1 and DSA2 is that the probabil-
ity p2 has to be chosen very low to avoid that the system
leaves too easily the global optima. But choosing it too
low reduces the chance of passing any sufficiently high
barrier towards the global/better optima. This is not
a lost war, and a principled solution has been found
much time ago (Kierkpatrick, Gelatt, & Vecchi 1983;
Aarts & Korst 1989). The solution is to follow the
example of physical annealing by simulating it with
the distributed search. Note that Distributed Simu-

A local minima and deadlock is reached after 2 cycles

lated Annealing (DSAN) is closer to the real phenomena
than the description in (Kierkpatrick, Gelatt, & Vecchi
1983). All that has to be changed to DSA is to use
a decreasing schedule of temperatures T' = {t1,2,...}
in each agent and to move in cycle ¢ to a randomly
selected next value with the famous probability e®/?i
when A < 0, or with probability 1 otherwise. Here A
is the improvement that would be brought by the new
value (see Algorithms 3, 4).

In the described experiments we have choosen a
schedule of temperatures given by ti = const/i*, where
we used k = 2 and const = 1000, 1000 being also the
maximum number of iterations that we run. Following
our experiments we conclude that a sequence of sub-
sequent iterations with temperature zero should follow
at the end. This schedule also starts with a too high
temperature which leads to poor starts, therefore lower
values for const should be recommended.

Note that extensive work exists in the field of Simu-
lated Annealing. Still, the only non-centralized versions
that we have found in literature so far were limited to
parallelizations that let several processors pursue the
same problem with different heuristics (initial values
and formulations, random number generators, seeds,
ete.) (Aarts & Korst 1989).

Extensions

An unlimited number of other alternatives is possible
(e.g. using the strategies DSA1/DSA2 where psy de-
creases according to a schedule of temperatures) and
their merit remains to be explored. We will call the
techniques obtained this way: DSAN1, DSAN2

We have seen a large number of alternatives for im-
proving DSA. All of them allow to get out of the minima
that put DSA-B in trouble. Given its experimental suc-
cess, we expect that Distributed Simulated Annealing
(DSAN) and its versions will remain among the most
important distributed techniques from the point of view
of efficiency.

We also designed a hybrid DSAN-DSA that alter-
nates between the two algorithms. According to exper-

Algorithm A>0 C,A=0 noC,A=0 C,A<O0
DSA-A1 gv with p1/g, ov with p2/o ov with p2/o ov with p2/o ov with p2/o
DSA-B1 gv with p1/g, ov with p2/o | gv with p1/g, ov with p2/o ov with p2/o ov with p2/o
DSA-C1 gv with pi/g, ov with p2/o | gv with p;/g, ov with p2/o | gv with p;/g, ov with p2/o | ov with p2/o
DSA-D1 gv gv with pi/g, ov with p2/o ov with pa2/o ov with p2/o
DSA-E1 gv gv with pi/g, ov with pa/o | gv with p1/g, ov with pa/o | ov with p2/o

Figure 4: Alternatives of DSA1 algorithms. gv is any of the values resulting in the best A. ov is any of the other
values than the current value or an gv. g is the number of gv values and o is the number of ov values. p; and po are
two probabilities.

Algorithm A>0 C,A=0 noC, A=0 C,A<O0
DSA-A2 gv with p1/g ov with pa2/o ov with p2/o ov with p2/o
DSA-B2 gv with p1/g | gv with p1/g, ov with pa/o ov with p2/o ov with p2/o
DSA-C2 gv with p1/g | gv with p1/g, ov with pa/o | gv with pi/g, ov with p2/o | ov with pa/o

Figure 5: Alternatives of DSA2 algorithms. The notation is similar to the one for DSA1 strategies.

Algorithm 3: The algorithm performed by all agents
for DSAN
procedure DSAN do
Randomly choose a value;
1<—0;
while (no termination condition is met) do
11+ 1;
if (a new value is assigned) then
send the new value to neighbors;
end
collect neighbors’ new values, if any;
select randomly a value and adopt it with
probability €2/ when A<0),
or with probability 1 otherwise;

Algorithm 5: The hybrid DSAN-DSA algorithm.

procedure DSAN-DSA do
choose Ke [1..10], & € [2.4], and MaxItera-
tionsNr (approx. 1000);
for (i=0;i< MaxIterationsNr;i++) do
DSA-step();
if (quality did not improve 1% in last MaxIt-

en(fr(li((i). erationsNr*(0.1 steps) then
store solution; break;
end
end

for (;i<MaxlterationsNr*0.8;i++) do
temperature«K*0.64/i";
DSAN-step();

Algorithm 4: An asynchronous version of DSAN

procedure DSAN do end
Randomly choose a value; for (;i<MaxlterationsNr*0.9;i++) do
1—0; temperature«0;
while (no termination condition is met) do DSAN-step();
i—1i + 1; end
if (a new value 1s assigned) then for (;i<Ma:1:]temtion5Nr*0. 9,‘i++) do
send the new value to neighbors; DSA-step();
end en
set alarm; end do.

at alarm collect neighbors’ new values
received since the last alarm, if any;
select randomly a value and adopt it with
probability e®/* when A<0,
or with probability 1 otherwise;

end
end do.

conflicts

B

50

Figure 6: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 av-
eraged on 100 problem instances with tightness 20%.

iments, hybrids between DSAN and DSA, (e.g. DSAN-
DSA, DSAN1, DSAN2) are expected to inherit all good
properties of both DSAN and DSA. Running first DSA
will offer its good ’anytime’ value. When DSA’s con-
vergence is detected, the best solution can be stored
and DSAN can be launched to lead to better solution
quality. Whenever DSAN is stopped, DSA can be re-
launched to lead to the neighbor local minima.

Experiments

A set of tests has been run where we are comparing
DSAN, DSA1, DSA2, and DSA-B for different values
of p, p1, and py. For DSAN with I = 1000 iterations,
the schedule of temperatures at iteration ¢ was chosen
as given by the function t; = ZLQ

We have generated randomly CSPs with 100 vari-
ables and 10 values per domain. The density arcs was
choosen of 30% of the total number of possible arc. The
tightness, probability of a tuple being feasible for an ex-
isting arc, was between 10% and 50%. We tested 100
problem instances randomly generated for each of the
tightness values 10%, 20%, 30%, 40%, 50% (500 ran-
domly generated problem instances).

Each problem was solved with DSAN, DSA-B, DSA-
B1, DSA-B2 and MaxlIterationsNr was always set to
1000. p and p; were set to 20$ while po was set to .5%.

Figures 6-9 show that DSA-B, DSA-B1, DSA-B2
prove a very good anytime behavior descending quickly
in about 100 steps almost to their final solution. DSA-
B1 and DSA-B?2 have a very irregular curve due to their
probability ps of jumping out of the best solution and
consistently lie significantly higher than the curve of
DSA-B. DSA-B gets trapped into a local minima after
300-500 steps.

DSAN starts much worse than than DSA | mainly also
due to its high initial temperature. It approached DSA
only after 100 steps, this is when the temperature is

1 i T T ; =
0 100 200 300 400 500 600 700 800 900 1000

conflicts

350 +
300
250 1

K
200

150

steps

100 I I I I I I I I I

0 100 200 300 400 500 600 700 800 900

Figure 7: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 av-
eraged on 100 problem instances with tightness 30%.

1000

conflicts
(o2}
o
o

@
o
o

o
a
o

500 |
450 |-
400 f
350 ‘;

:

300

250

Csteps

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Figure 8: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 av-
eraged on 100 problem instances with tightness 40%.

1000

800 T
dsan
dsab -------

dsabt --------

dsab2

conflicts

750
700
650 |
600 |-
550 [t
500 :

450 |

400

steps

350

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Figure 9: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 av-
eraged on 100 problem instances with tightness 50%.

1000

conflicts

steps

0 - rasy I I T I 1 I
0 100 200 300 400 500 600 700 800 900

Figure 10: DSAN vs DSA-B vs DSA-B1 vs DSA-B2
averaged on 100 easy problem instances with tightness
10%.

©
S
S

1000

conflicts

N
=}
S

600 -

500 |

400 |14

200 | "

100 | 5

steps

0 . \ L n s L s n L
0 100 200 300 400 500 600 700 800 900

Figure 11: DSAN averaged on 100 problem instances
for each tightness 10% to 50%.

1000

close to 1. However soon after that, at about 200 steps,
it reaches better solutions that DSA-B. The improve-
ment in the solution offered by DSAN vs. the one of
DSA-B is visible in hard regions of phase transition
between easy and hard problems, which in our case is
at tightness of 20$-303. There the improvement is of
about 2% less conflicts with DSAN than with DSA-B.

In simulator, DSA-B, DSA-B1, and DSA-B2 are all
about an order of magnitude slower in time than DSAN
(10 being the domain size), meaning that in simula-
tor DSAN solved problems much quicker than DSA-B.
This measure has no influence on distributed runs where
the agents are remote and the cost of messages is high
compared to local constraint checks.

Further tests

By the time of the presentation of this article we plan
to also describe the behavior or DSAN-DSA, DSANT,
DSAN2, as well as DSAN for temperature schedules
1/4%.

Conclusions

Distributed Stochastic Search Algorithm (DSA) is an
important new family of algorithms that has been
quickly imposed due to its simplicity and efficiency. The
algorithm is uniform, i.e. all the agents perform identi-
cal functions and there is no need of names to break
ties (Fabiunke 1999; Fitzpatrick & Meertens 2001;
Zhang, Wang, & Wittenburg 2002). We discovered that
even the best among the versions of DSA has a high
risk to get caught in local minima. Moreover, none of
the existing DSA variants have any means or chance
to get out of such minima. We find that versions of-
fering chances to get out of such minima are possible
and we propose a few such variants. The centralized
techniques already classified such techniques as more
promising than the strict descent. For example, Simu-
lated Annealing (Kierkpatrick, Gelatt, & Vecchi 1983)
is so important that it became a field by itself. Dis-
tributed Simulated Annealing may have the same des-
tiny.

References

Aarts, E., and Korst, J. 1989. Simulated Annealing
and Bolzmann Machines. John Wiley & Sons.

Collin, Z.; Dechter, R.; and Katz, S. 2000. Self-
stabilizing distributed constraint satisfaction. Chicago
Journal of Theoretical Computer Science.

Fabiunke, M. 1999. Parallel distributed constraint
satisfaction. In PDPTA, 1585-1591.

Fitzpatrick, S., and Meertens, L. 2001. An experimen-
tal assessment of stochastic, anytime, descentralized,
soft colourer for sparse graphs. In Symp. on Stohastic
Algorithms: Foundations and Applications, 49-64.

Kierkpatrick, S.; Gelatt, C.; and Vecchi, M. 1983. Op-
timization by simulated annealing. Science 220:671—
680.

Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B.
2000. Asynchronous search with aggregations. In Proc.
of AAAI2000, 917-922.

Tel, G. 1999. Multiagent Systems, A Modern Approach
to Distributed AI. MIT Press. chapter Distributed
Control Algorithms for Al, 539-580.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara,
K. 1992. Distributed constraint satisfaction for formal-
izing distributed problem solving. In ICDCS, 614—621.
Zhang, W., and Wittenburg, L. 2002. Distributed
breakout revisited. In Proc. of AAAI’2002.

Zhang, W.; Wang, G.; and Wittenburg, L. 2002. Dis-
tributed stochastic search for constraint satisfaction
and optimization: Parallelism, phase transitions and
performance. In PAS.

