
Classifying approaches based on Parallel Proposals in
Asynchronous Search∗

Marius C. Silaghi
Florida Institute of Technology (FIT)

Melbourne

msilaghi@fit.edu

Boi Faltings
Swiss Federal Institute of Technology (EPFL)

Lausanne

Boi.Faltings@epfl.ch

ABSTRACT
Real distributed systems have a limited parallelism capac-
ity, i.e. maximum number of distributed processes of a
given type that can be run concurrently without a decrease
in performance. Once a capacity K is found for running
distributed solvers, the remaining issue (that we address
here) is to design mechanisms to dynamically split dis-
tributed constraint satisfaction problems (DisCSPs) to K
asynchronous solvers such that no resource is wasted.

Parallelism and distribution are two distinct concepts that
are confusingly close. Parallel Search (PS) refers in this work
to the distribution of the search space and Distributed Asyn-
chronous Search (DAS) to the distribution of the constraint
predicates. A certain amount of parallelism exists in any
distributed asynchronous search and it increases with the
degree of asynchronism. Since distributed search is the only
solution for certain classes of naturally distributed problems,
Hamadi in [6], and Denzinger in [4] have independently pro-
posed a smart way of increasing parallelism in distributed
search (namely by running several distributed searches in
parallel on different areas of the problem’s search space).

Note that here we consider each distributed search pro-
cess as a black box (different algorithms could run in differ-
ent such cooperating processes), but classify the techniques
for distributing the problem to these distributed search pro-
cesses, coordinating competition for resources and aggregat-
ing results. We analyze here1 analytically four different al-
ternative ways in which one can integrate the idea of Par-
allel Search in Distributed Asynchronous Search, the first
two following closely Hamadi’s versions, while the other ap-
proaches identify various alternatives. We contribute meth-
ods to maximize use of resources while assuring awareness
of limitations on resources such as bandwidth and CPU. A

∗Most of this research was performed while the first author
was at EPFL and was funded by the Swiss National Science
Foundation.
1This article is a version of [16] updated with discussions
about prior and subsequent work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

technique for dynamic allocation of search space to avail-
able resources is presented. This technique builds on the
procedure for marking concurrent proposals for conflicting
resources, that we have formalized in [19, 12].

1. INTRODUCTION
Each real distributed system has a parallelism capacity,

i.e. maximum number of distributed processes of a given
type that can be run concurrently without a decrease in
performance (such as FTP downloads of a file, or DisCSP
solving). Once a capacity K(T) is found for running dis-
tributed processes of type T on a distributed system, the re-
maining problem (that we address here) is to design mecha-
nisms to dynamically split DisCSPs to K(T) processes, such
that no resource is wasted. E.g., for FTP downloads prob-
lem that coresponds to dynamically splitting the file into
chunks to be concurrently downloaded, such that each time
a process succesfully downloaded its chunk it receives as new
sub-task a part of the remaining chunk of a slower process.
Here we address the more complex case where the task is
a DisCSP problem, the chunks are partitions of the (dis-
tributed) search space of the problem, and the solvers are
asynchronous.

Distributed combinatorial problems can be modeled us-
ing the general framework of Distributed Constraint Satis-
faction (DisCSP). A DisCSP is defined in [28] as: a set of
agents, A1, ..., An, where each agent Ai controls exactly one
distinct variable xi and each agent knows all constraint pred-
icates relevant to its variable. The case with more variables
in an agent can be obtained quite easily from here, while
the case of one variable in several agents can be adapted
as shown in [17]. Asynchronous Backtracking (ABT) [27]
is the first complete and asynchronous search algorithm for
DisCSPs, allowing for completeness guarantees with poly-
nomial space complexity [9, 28]. In [22] we present a tech-
nique for maintaining consistency in asynchronous search.
[19] describes a general technique that allows the agents to
asynchronously and concurrently propose changes to their
order.

Parallelism and distribution are two distinct concepts that
are confusingly close. Parallel Search (PS) refers in this
work to the distribution of the search space and Distributed
Asynchronous Search (DAS) to the distribution of the con-
straint predicates. This is somewhat different from the def-
initions in [4]. Some parallelism exists in any distributed
asynchronous search and it is expected to increase with the
degree of asynchronism. However, in comparison to paral-
lel search [14], the parallel effort in distributed asynchronous

T
im

e

parallelism capacity K

U
nu

se
d

U
nu

se
d

U
nu

se
d

U
nu

se
d

T
im

e

parallelism capacity K

T
im

e

parallelism capacity K

R
el

oc
at

ed

R
el

oc
at

ed

DONE

T
im

e

parallelism capacity K

U
nu

se
d

U
nu

se
d

U
nu

se
d

O
ve

rh
ea

d

O
ve

rh
ea

d
T

im
e

T
hr

es
ho

ld
T

im
e

T
hr

es
ho

ld
T

im
e

T
hr

es
ho

ld
T

im
e

T
hr

es
ho

ld
T

im
e

T
hr

es
ho

ld

a) b) c) d)

Figure 1: Parallelism capacity and approaches for handling it. Figure (a) pictures the idea that K computa-
tional slots are available in a distributed system with parallelism capacity K for a given protocol, e.g. ABT.
Figure (b) shows that some resource slots are sometimes not used with the approach in [6, 7], when processes
using them terminate early. Figure (c) shows the general idea we proposed in [16], namely that processes
can be dynamically split to fill freed slots. Figure (d) depicts a more recent approach [31] where resource
limitations are not taken into account, resulting in a epoch of resource under-usage and an epoch of context
switching overhead.

search can be more redundant. Moreover, agents in DAS can
have periods of inactivity which are much more important
(longer and more frequent) than in parallel search. DAS is
the only solution for certain classes of naturally distributed
problems, such as problems with privacy [18, 5]. A smart
idea independently introduced by Hamadi in [6, 7] and by
Denzinger in [4] is to increase parallelism by running sev-
eral distributed search processes in parallel on different ar-
eas of the search space. Hamadi’s algorithm is called Inter-
leaved Distributed Backtracking (IDIBT), while Denzinger
provides the similar concept of improvement on the compe-
tition approach. The efficiency of this approach for DisCSPs
was experimentally confirmed in [7, 15].

We assume that the distributed system (Internet) has
a limited capacity, allowing for a maximum efficiency at
a number of parallel DAS processes, K, dependent on the
problem size and algorithm. We identify here analytically
four distinct families of techniques for integrating the idea of
parallel search in distributed asynchronous search, namely
PAS1, PAS2, PAS3, and PAS4:

PAS1 Several DAS solving processes are run independently
and concurrently on the same problem (eventually col-
laborating via the exchange and reuse of some no-
goods). Also called “improving on the competition
approach”.

PAS2 The search space (Cartesian product of domains) of

the initial problem is statically split in K partitions,
prior to solving. A separate DAS is independently and
concurrently launched for solving each partition of the
search space. When a DAS finds a solution, the other
DAS processes are stopped.

PAS3 The first agent has the task of dealer, i.e., to dynam-
ically distribute the values in the domain of its vari-
able to K running DAS processes, according to their
needs (giving a new value to each DAS that exhausts
its search space).

PAS4 A dynamic and fully asynchronous extension of PAS3
such that, even when the dealer agent exhausts its
values, the search space continues to be split for of-
fering new chunks to the DAS processes that exhaust
their search space. This is done by dynamically and
asynchronously letting dealers to designate new sub-
dealers, to provide new chunks of search space to ter-
minated DAS processes.

The first two approaches described here are similar to
Hamadi and Denzinger’s versions in [6, 7, 4], while the other
two approaches seem original. Techniques for dynamic re-
allocation of the search space to available resources are pre-
sented to enable PAS3 and PAS4. The technique for PAS4
builds on the procedure for marking concurrent proposals
for conflicting resources, that we have formalized in [19].
The more recent work in [31] independently introduces a

method related to PAS3 but which does not handle resource
limitations (assuming infinite bandwidth and computation
power).

The main motivation of this paper results from consider-
ing that before search it can be established that the optimal
number of distributed DAS processes is K. A DAS pro-
cess (set of negotiating local threads, containing one local
thread in each agent) is the equivalent of a processor in par-
allel search approaches [14] and is called slot (i.e., slot of
available resources). The tasks of the slots can be defined
prior to search. For versions with dynamic reallocation of
sub-problems to slots, we propose to handle these slots as
conflict resources [19] and the agents make concurrently pro-
posals about their allocation.

This kind of asynchronous search algorithms allow for par-
allel proposals which cannot be gathered into one Cartesian
product. They are neither a generalization2 nor an instance
of AAS [17], since the different proposals can be consid-
ered separately in consistency maintenance. Our descrip-
tion builds on ABT since it is an algorithm easier to de-
scribe than its subsequent extensions. The techniques can
nevertheless be integrated in a straightforward manner in
most extensions of ABT, such as AAS and R-MAS [21].
In certain settings, especially in combination with R-MAS,
parallel proposals can also offer additional opportunities for
improving privacy besides improving efficiency.

Hamadi and Denzinger in [6, 4] also discuss improvements
by exchanging nogoods between distributed processes run-
ning in parallel. While that is a good way to speed up
different processes, it is a feature that depends on the na-
ture of the algorithm used by the distributed processes. In
this article we aim at presenting techniques for managing
concurrent distributed processes in a way as independent as
possible of the exact algorithms used by these processes. For
this reason we avoid losing focus by delving too much in de-
tails about how to speed them up (with nogood exchanges,
etc.).

1.1 Parallelism Concepts and Limitations
Our DisCSP solvers are designed for distributed systems

where computation nodes belong to different users. Our
concept of distributed system is defined as follows.

Definition 1 (distributed system). A distributed
system is composed of a set of nodes with limited compu-
tational capability and linked by communication channels
with limited bandwidth.

Processes can be “concurrently” run on mono-processor
systems by time sharing and sometimes users launch such
parallel threads with a misguided hope to increase perfor-
mance. However, it is known that more parallel threads
than the number of actual hardware processor of a system
only slows down the overall performance [3]. This is due to
overhead due to the context switching used to implement
such parallelism. Peculiarities in operating systems sched-
ulers sometimes slightly shift the number of useful processes,
but the principle remains valid.

The same considerations generalize to the “parallel” run-
ning of distributed computational threads on a distributed
system with limited bandwidth and limited computational
power in nodes (e.g. as often reported for FTP transfers).

2If not built on AAS.

Namely, beyond a certain amount of parallelism allowed by
the available resources (and type of computation), the sys-
tem is expected to chock due to overhead for context switch-
ing and maintenance. Each (distributed) system has a cer-
tain parallelism capacity.

Definition 2 (parallelism capacity). The paral-
lelism capacity of a distributed system is defined by the
number of parallel distributed processes (of a given type)
that can run without decreasing the total efficiency due to
overhead in context switching.

Given a certain type T for distributed processes (a known
algorithm, like ABT) and given a certain distributed system,
it is complex to assess theoretically the expected parallelism
capacity K of that system. Nevertheless, that capacity can
be predicted through experimentation on the given system,
as done by Hamadi in [7], and as done by Debes in [3].

In conclusion we will assume here that each given dis-
tributed system has a parallelism capacity K(T) that can
be found prior to running our distributed processes (see
Figure 1.a). In practice, algorithms T may be designed to
integrate the detection of K(T) in an initial phase or dy-
namically, but that is outside the scope of this article.

1.2 Solvers started simultaneously
In [6, 7, 15], Hamadi uses a scheme where a number of K

parallel distributed processes are simultaneously launched
at the beginning for solving a given distributed CSPs. Two
used approaches consist in either:

• having all processes solve the same problem (different
orderings), or

• have the different processes run on different partitions
of the search space of the problem.

The critique that can be brought to this approach is that
some of these distributed processes may end before the oth-
ers, and their resources are wasted during the remaining part
of the computation (see Figure 1.b).

1.3 Reusing resources of terminated processes
Our main contribution (introduced in [16] and described

here) consists of proposing approaches for:

1. dynamically splitting the not yet explored search space
of the DisCSP to be solved, each time hardware re-
sources are freed by a terminating distributed process

2. creating distributed processes for solving those new
partitions, and allocating them to the freed resources.

The concept is pictured in Figure 1.c, showing that the ter-
mination of each process is used to split the task of some
other still running process, using the available slot of com-
putational resources. We will show several ways of doing
this without renouncing to asynchronism.

1.4 Fallacies from disregarding resource con-
straints

It may be tempting to disregard the hardware limitations
on computational resources and to go with the common (but
erroneous) assumption that the more parallelism the better.
The way in which such an assumption can be put in prac-
tice [31] is illustrated in Figure 1.d, namely continuously
creating new processes at certain intervals of time, until the
problem is solved. The expected consequences are that:

• at the beginning resources are insufficiently exploited
(i.e., during the time when less than K(T) processes
are used).

• in the second part of the computation (if the problem
is sufficiently hard to reach the moment when all re-
sources are used), then too many processes start to be
created and the system will suffer of excessive overhead
from context switching and from context maintenance
(just as a computer running too many processes). The
space complexity is no longer be polynomial, either.

The way [31] goes around these problems is by using a sim-
ulator with infinite parallelism capacity in experimentation.
Since in this work we assume real distributed systems (that
do not have infinite parallelism capacity), we no longer dis-
cuss it in the rest of the article.

2. RELATED WORK
The first complete asynchronous search algorithm for

DisCSPs is the Asynchronous Backtracking (ABT)[27]. The
approach in [27] considers that each agent maintains only
one variable. More complex definitions were given later [29,
26]. Other definitions of DisCSPs [30, 23, 17] have consid-
ered the case where the interest on constraints is distributed
among agents. [23] proposes versions that fit the structure
of a real problem (the nurse transportation problem). The
Asynchronous Aggregation Search (AAS) [17] algorithm ac-
tually extends ABT to the case where the same variable
can be instantiated by several agents (e.g. at different lev-
els of abstraction, or (dichotomous) splitting [21]) and an
agent may not know all constraint predicates relevant to its
variables. AAS offers the possibility to aggregate several
branches of the search. Methods for ordering variables in
distributed search are proposed in [25, 1, 19]. [6, 2] shows
how add-link messages can be avoided in ABT. [8] stud-
ies the usefulness of Petri-Nets for analyzing asynchronous
protocols.

The Parallel Search has been analyzed in [14, 10, 13, 6, 4].
It consists in dynamically splitting the problem and redis-
tributing it to free processors. Important nogoods discov-
ered by individual processors can be distributed and reused.
[24] discusses how one can exchange nogoods between inde-
pendent solvers running concurrently. Hamadi in IDIBT [6]
and Denzinger in [4] explain a way to hybridize the two
approaches by having several distributed search processes
simultaneously explore different areas of the search space of
a given problem. The efficiency of the approach is confirmed
by experimentation described in [7].

3. ASYNCHRONOUS BACKTRACKING
(ABT)

In asynchronous backtracking, the agents run concur-
rently and asynchronously. Each agent owns exactly one
distinct variable. The variable of Ai is xi. Each agent in-
stantiates its variable and communicates the variable value
to the relevant agents. Since here we don’t assume general-
ized FIFO channels, in our version a local counter, Cxi

i , is
incremented each time a new instantiation is proposed, and
its current value tags each generated assignment.

Definition 3 (Assignment). An assignment for a
variable xi is a tuple 〈xi, v, c〉 where v is a value from the
domain of xi and c is the tag value (current value of Cxi

i).

Given two assignments for the same variable, the one with
the higher tag (attached value of the counter) is the newest.
A static order is imposed on agents and we assume that Ai

has the i-th position in this order. If i>j then Ai has a lower
priority than Aj and Aj has a higher priority then Ai.

Rule 1 (Constraint-Evaluating-Agent). Each
constraint C is evaluated by the lowest priority agent whose
variable is involved in C.

Each agent holds a list of outgoing links represented by
a set of agents. Links are associated with constraints. ABT
assumes that every link is directed from the value sending
agent to the constraint-evaluating-agent.

Definition 4 (Agent View). The agent view of an
agent, Ai, is a set containing the newest assignments re-
ceived by Ai for distinct variables.

Based on their constraints, the agents perform inferences
concerning the assignments in their agent view. By inference
the agents generate new constraints called nogoods.

Definition 5 (Nogood). A nogood has the form ¬N
where N is a set of assignments for distinct variables.

The following types of messages are exchanged in ABT:
ok?, nogood, and add-link. An ok? message transports
an assignment and is sent to a constraint-evaluating-agent
to ask whether a chosen value is acceptable. Each nogood
message transports a nogood. It is sent from the agent that
infers a nogood ¬N , to the constraint-evaluating-agent for
¬N . An add-link message announces Ai that the sender Aj

owns constraints involving xi. Ai inserts Aj in its outgoing
links and answers with an ok?.

The agents start by instantiating their variables concur-
rently and send ok? messages to announce their assignment
to all agents with lower priority in their outgoing links. The
agents answer to received messages according to the Algo-
rithm 3 [19].

Definition 6 (Valid assignment). An assignment
〈x, v1, c1〉 known by an agent Al is valid for Al as long as
no assignment 〈x, v2, c2〉, c2>c1, is received.

A nogood is invalid if it contains invalid assignments.

4. PARALLEL PROPOSALS
In this section we describe the concept of slots. The slots

are at the heart of parallel proposals in asynchronous search.
The dynamic reallocation of the slots is discussed in subse-
quent sections.

4.1 Slots as abstract distributed processors
For simplicity, we assume that prior to search each agent

allocates resources for handling K DAS processes involved in
solving the current DisCSP (each DAS handled by a distinct
local thread). This assumption can be slightly relaxed, as
mentioned later. For an agent Ai, these resources/threads,
are ordered and are identified using an additional index:
Ai,k, k ∈ [1..K].

Definition 7. The slot j is defined as the set of local
threads Ai,j , i ∈ [1..N] (Figure 2).

when received (ok?,〈xj, dj , cxj
〉) do

if(old cxj
) return;

add(xj,dj ,cxj
) to agent view;

eliminate invalidated nogoods;
check agent view;

end do.
when received (nogood,Aj ,¬N) do

when any 〈x, d, c〉 in N is invalid (old c) then
send (ok?,〈xi, current value, Ci

xi
〉) to Aj ;

return;
when 〈xk, dk, ck〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, dk, ck〉 to agent view;

put ¬N in nogood-list for xi=d;
add other new assignments to agent view;

0.1 eliminate invalidated nogoods;
old value ← current value;
check agent view;
when old value = current value

0.2 send (ok?,〈xi, current value, Ci
xi
〉) to Aj ;

end do.
procedure check agent view do

when agent view and current value are not consistent
if no value in Di is consistent with agent view then

backtrack;
else

select d ∈ Di where agent view and d are consistent;
current value ← d; Ci

xi
++;

send (ok?,〈xi, d, Ci
xi
〉) to lower priority agents in outgoing links;

end
end do.
procedure backtrack do

nogoods ← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution, terminate this algorithm;
for every V ∈ nogoods;

select (xj ,dj ,c) where xj has the lowest priority in V ;
send (nogood,Ai,V) to Aj ;
eliminate invalidated explicit nogoods;
remove (xj ,dj ,c) from agent view;

check agent view;
end do.

Algorithm 1: Procedures of Ai for receiving messages in ABT with nogood removal.

A1,1 A2,1 A3,1 A4,1

A1,2 A2,2 A3,2 A4,2

A1,3 A2,3 A3,3 A4,3

Slot 1

Slot 2

Slot 3

Agent A1 Agent A2 Agent A3 Agent A4

Figure 2: A slot is a set of abstract agents, one for
each initial agent.

The agents own private constraints, but every process Ai,j

knows all the constraints of Ai. Therefore a slot can be

used to perform a distributed computation independently
from other slots. Any asynchronous protocol can be used in
any slot, with the simple modification that the index of the
current slot has to tag any message for identifying the tar-
get thread. Obviously, different distributed computations
launched in such slots could exchange some nogoods to im-
prove search similarly as computations on real processors
do in [24]. This version will be referred to as Parallel Asyn-
chronous Search I (PAS1). Techniques belonging to this
family are described in [6, 7, 4].

When the order of the agents is different in distinct slots,
the computational load of different agents can become more
balanced.

Further in this paper we rather discuss techniques that
distribute the search space among different slots. A family
of nogood sharing techniques is naturally obtained when the
nogoods involve common segments of the search tree.

4.2 Slots Statically Allocated (SSA)

The simplest way to distribute a search space among exist-
ing slots, is to statically split the domain of a variable prior
to search and to distribute it among the slots. Imagine that
the agents in Figure 2 work on a DisCSP P . Assume that in
P , the domain of x1, D1 has at least K values (here K = 3).
D1 can then be split in K nonempty disjoint partitions, here
D1,1, D1,2, D1,3. Let Pi be the problem P where the domain
of xi is restricted to D1,i. Any slot i can work independently
on the problem Pi, eventually exchanging some nogoods as
in PAS1. This technique can always be used for continuous
domains.

When D1 has less than K values, the splitting of the prob-
lem can continue with domains of subsequent variables. We
want to balance the effort in distinct slots. The split has
to ensure that the number of tuples (volume) of the search
space in slots is not very different. A greedy approximate
technique is to choose the allocation by a breadth first tech-
nique, calling greedy-split(1,K,P). The variables are or-
dered according to the descending size of their domains.

Procedure greedy-split(i,K,P)

• If |Di|≥K, split Di in K partitions, as equally as pos-
sible. Return.

• If |Di| < K, split P by splitting Di in domains of one
value. p = K%|Di|. For each obtained subproblem
Pk,k>1, call greedy-split(i + 1,K/|Di |+ (k≤p),Pk).

D1={a} D1={b} D1={c} D1={d}

D2={a,b} D2={c} D2={a,b} D2={c}

P1 P2 P3 P4

P5 P6

Figure 3: Weak performance of the greedy-split al-
gorithm.

In the example of Figure 3, K = 6, D1 = {a, b, c, d} and
D2 = {a, b, c}. The problems obtained for slots are: P1 =
{D1 = {a}×D2 = {a, b}}, P2 = {D1 = {a}×D2 = {c}},
P3 = {D1 = {b}×D2 = {a, b}}, P4 = {D1 = {b}×D2 =
{c}}, P4 = {D1 = {c}×D2 = {a, b, c}}, P5 = {D1 =
{d}×D2 = {a, b, c}}. Their size varies between 1 and 3.

In order to obtain a better equilibrium between the size of
search spaces for slots, we introduce another heuristic. This
is obtained by calling prime-split(K,P).

Procedure prime-split(K,P)

• Let a decomposition of K in prime numbers be
p1p2, ..., pn. Choose (i, j) such that |Di| is divided
by pj . If this is not possible, choose (i, j) =
argmax

i,j

[|Di|/pj]. [f] denotes the truncated integer of

f . Among remaining competitor pairs, choose the one
with highest pj .

• If |Di|≥pj , split Di in pj partitions, as equally sized
as possible. For each obtained sub-problem Pk, call
prime-split(K/pj ,Pk).

• If |Di|<pj , split P by splitting Di in domains of one
value. p = pj%|Di| For each obtained subproblem
Pk,k>1, call prime-split(K/|Di|+ (k≤p),Pk).

D1={a,b} D1={c,d}

D2={a} D2={b} D2={b} D2={c}

P1 P2 P5 P6

D2={a}D2={c}

P3 P4

Figure 4: Results of the prime-split algorithm.

As shown in Figure 4, the algorithm prime-split can ob-
tain better partitions. The protocol where the slots solve
independently problems partitioned according to algorithms
similar to those presented in this subsection are referred to
as PAS2. As for PAS1, it is recommended to order the agents
differently in distinct slots in order to balance their load.

4.3 Slots Statically Allocated to Agents
(SSAA)

The main drawback in PAS2 is that the partitioning of
the problem does not take into account the constraint pred-
icates. One search space may be much harder than another
and some slots can end their activity immediately. Now
we propose to give certain agents power to split the search
space among groups of slots. A hierarchy of agents can have
a hierarchical control on the distribution in slots.

A1,1 A2,1 A3,1 A4,1

A2,2 A3,2 A4,2

A3,3 A4,3

Slot 1

Slot 2

Slot 3

Agent A1 Agent A2 Agent A3 Agent A4

A1,4 A2,4 A3,4 A4,4 Slot 4

Figure 5: Agent-based static allocation.

The example in Figure 5 shows a case where the first pro-
cess of agent A1, A1,1, takes the first position in all asyn-
chronous search protocols for the slots 1 to 3. The second
process of agent A2, A2,2, takes the second position in the
asynchronous search protocols for the slots 2 and 3.

For this case, the initial domain D1 of the variable x1 of
agent A1 is statically split in two partitions: D1,1 for the
slots 1 to 3, respectively D1,4 for the slot 4. The slot 4
behaves like in PAS2. A1,1 starts by making two different
proposals in parallel, by sending a set of ok? messages in
the slot 1 and another set of ok? messages with the second
instantiation of x1 to the slots 2 and 3. A2,2 also sends
two sets of ok? messages, one to slot 2 and the other to
slot 3. Whenever a proposal of one of these two agents is
refused (e.g.. by a nogood message) in a slot, that agent
sends a new proposal for that slot. Any nogood message (or
propagate message in R-MAS) that has to be sent to A2

by lower priority processes in slots 2 and 3, are sent to A2,2.

Those from slots 2 and 3 towards A1, are sent to the process
A1,1. This can be implemented very efficiently by defining
the addresses of processes A1,1, A1,2, and A1,3 (respectively
A2,2 and A2,3), as synonyms.

The processes A1,1 and A2,2 are a bottleneck, but in gen-
eral this drawback is reduced when the branching factor is
low and the agents that are sources of branching have high
priority. The computational load is dynamically distributed
to different slots. The domain of x2 is incrementally dis-
tributed to the slots 2 and 3 on request. Only when A2,2

has exactly one valid proposal available, a possible value for
x2, then one of the slots 2 and 3 remains unused. The gen-
eralization of these rules for general trees of access to slots
is obvious and the obtained protocol is called PAS3.

The only modification to the messages in ABT (and its
extensions) is that each message has to be tagged with the
name of its slot, so that the target process can be discrim-
inated by the receiving agent. The procedures for receiving
nogoods and the procedure check agent view have to be
modified as shown in Algorithm 2.

Assumption 1. We assume in the following that all the
threads of an agent can share data.

5. SIGNATURES
Now we recall [19] a marking technique that allows for

the definition of a total order among the proposals made
concurrently and asynchronously by a set of ordered agents
on a shared resource (e.g. a label-AAS, an order-ABTR, an
allocation of a slot).

Definition 8. A proposal source for a resource R is
an an agent or a thread that can make specific proposals
concerning the allocation (or valuation) of R.

We consider that an order ≺ is defined on proposal sources.
The proposal sources with lower position according to≺ have
a higher priority. The proposal source for R with position k
is noted PR

k , k ≥ xR

0 . xR

0 is the first position.

Definition 9. A conflict resource is a resource for
which several agents can make proposals in a concurrent and
asynchronous manner.

Each proposal source PR

i maintains a counter CR

i for the
conflict resource R. The markers involved in our mark-
ing technique for ordered proposal sources are called sig-
natures3. They are similar in structure (but not in usage)
with the vector clocks proposed by Mattern in [11]. A vector
clock tagging a message is a list with the value of the counter
of each agent, as known by a sender of a message at the mo-
ment when the message was sent (i.e., |c1, ..., cn| where ck is
the value of CR

i known by the sender). We historically used
for the vector clocks in our signatures a compact represen-
tation where zero valued counters are not listed and instead
each counter value is associated with its position.

Definition 10. A signature is a chain h of pairs, |a:b|,
that can be associated to a proposal for R. A pair p=|a:b|
in h signals that a proposal for R was made by PR

a when its
CR

a had the value b, and it knew the prefix of p in h.

3In early publications they were called histories.

A signature where the clock values are described in the
format proposed by Mattern (i.e., a simple list) is denoted
in our recent work signatures vector clock.

An order ∝ (read “precedes”) is defined on pairs such that
|i1:l1| ∝ |i2:l2| if either i1 < i2, or i1 = i2 and l1 > l2.

Definition 11. A signature h1 is newer than a sig-
nature h2 if a lexicographic comparison on them, using the
order ∝ on pairs, decides that h1 precedes h2.

PR

k builds a signature for a new proposal on R by prefix-
ing to the pair |k:value(CR

k)|, the newest signature that it
knows for a proposal on R made by any PR

a , a<k. The CR

a

in PR

a is reset each time an incoming message announces
a proposal with a newer signature, made by higher priority
proposal sources on R. CR

a is incremented each time PR

a

makes a proposal for R.

Definition 12. A signature h1 built by PR

i for a proposal
is valid for an agent A if no other signature h2 (eventually
known only as prefix of a signature h′

2) is known by A such
that h2 is newer than h1 and was generated by PR

j , j ≤ i.

For example, in Figure 6 the agent P x
3 may get messages

concerning the same resource x from P x
1 and P x

2 . In Fig-
ure 6a, if the agent P x

3 has already received m1, it will al-
ways discard m3 since the proposal source index has prior-
ity. However, in the case of Figure 6b the message m1 is
the newest only if k1f < k1l and is valid only if k1f ≤ k1l.
In each message, the length of the signature for a resource
is upper bounded by the number of proposal sources for the
conflict resource.

6. DYNAMIC ALLOCATION IN PARAL-
LEL ASYNCHRONOUS SEARCH

Here we show how the marking technique presented in
the previous section can be used by agents to make parallel
proposals while dynamically allocating slots. In [19], an or-
der on agents is modeled as a resource while each proposal
defines guidelines for reordering and a recommended order.
The guidelines from high priority agents have priority, and
are followed by the recommended orders of lower priority
agents that respect the valid guidelines.

To asynchronously and dynamically allocate slots to par-
allel proposals, we consider each slots as a conflict resource.
The proposal sources for each slot consists of an ordered set
of N−1 threads. The mapping of these threads to processes
of initial agents can be modified identically as for reordering.
Each proposal consists in:

• a working slot, and

• a set of free slots.

The free slots are the ones that can theoretically receive the
control of this slot, but the working slot is the recommended
one.

The next convention helps to aggregate messages contain-
ing proposals on the allocations of several slots into messages
called slots.

Convention 1. By convention, the proposal sources for
a slot, s, are delegated to the threads in the current working
slot for s, and are ordered according to the current order of
the processes in the asynchronous protocol.

when received (nogood,Aj,slot,¬N) do
when any 〈x, d, c〉 in N is invalid (old c) then

send (ok?,〈xi, current value[slot], Ci
xi
〉) to Aj,slot;

return;
when 〈xk, dk, ck〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, dk, ck〉 to agent view;

put ¬N in nogood-list for xi=d;
add other new assignments to agent view;

2.1 eliminate invalidated nogoods;
old value ← current value[slot];
check agent view;
when old value = current value[slot] (= d)

2.2 send (ok?,〈xi, current value[slot], Ci
xi
〉) to Aj,slot;

end do.
procedure check agent view do

when agent view and any current value are not consistent
if no value in Di,k is consistent with agent view then

if no current value is consistent with agent view then
backtrack

else
set inconsistent current values to -1

end
else

select d ⊆ Di,k where agent view and d are consistent;
inconsistent current values ← elements of d;
for every modified slot, s, do

Ci
xi

(s)++;

send (ok?,〈xi, d, Ci
xi
〉) to lower priority processes of slot s

for agents in outgoing links
end do

end
end do.

Algorithm 2: Procedures of Ai,k for receiving nogoods in PAS3.

P1
x

P2
x

P3
xm1:x={..}|1:k1l|

m3:x={..}|2:k2h|

m1:x={..}|1:k1l|

m2:x={..}|1:k1f|

a) b)

x

x

x x

x
x

P1
x P3

x

m3:x={..}|1:k1f|2:k2g|

P2
x

Figure 6: Simple scenarios with messages for proposals on a resource, x.

When a process is proposal source for several slots and the
proposals for those slots are identical, those proposals need
to be sent only once. The payload of the slots messages,
consisting in a proposal on allocating available slots, tags
each ok? and nogood message. Therefore no slots mes-
sage is needed to announce allocation proposals to agents
found in outgoing links, since those agents learn the newest
proposals from the tags of the received ok? message.

The PAS4 family of algorithms contains protocols where:

• Proposals are made according to the previous conven-
tions.

• When a reallocation is proposed, all the proposal
sources for the corresponding slots, placed on higher
positions, are announced. On the receipt of newer al-
locations, data tagged with invalidated signatures of
slot allocation is removed.

• Each message is tagged with the newest allocation for
the receiving slot, as known at sender. For propagate

messages in DMAC and R-MAS, this corresponds to
the tag of their level.

• A proposal source only makes a finite number of pro-
posals on slot allocations after a proposal of variable
instantiation was refused for the delegated process.

• In ABTR, the order of successor agents can only be
modified when a reallocation of their slot is made. (In
order to reorder the agents, a new proposal for reallo-
cation has to be defined and it has to tag the proposal
on order)

The pair added in the signature of a proposal on slots
reallocations has the form|(i : cS) : c|, where cS is the slot
of the process delegated as the proposal source which builds
this pair. i is its position. c is the value of the counter of
proposals for this proposal source.

Proposition 1. When the protocols used in slots are
complete extensions of polynomial space ABT (e.g. AAS,

A1
A2

A3

A4

=

=

=

==

1: A1,1 ok?〈x1, a, 1, (1, {1, 2})|(1 : 1) : 0|〉 → A3,1, A4,1

// message 1 proposes x1=a to slots 1 and 2,
// allowing future agents to split it further
2: A1,1 ok?〈x1, b, 1, (3, {3})|(1 : 1) : 0|〉 → A3,3, A4,3

// message 2 proposes to use slot 3 for the assignment x1=b
3: A2,1 ok?〈x2, a, 1, (1, {1, 2, 3})|(2 : 1) : 0|〉 → A3,1, A4,1

// message 3 is discarded upon reception because its signature
// is weaker than signatures of messages 1 and 2
4: A1,1 slots〈(1, {1, 2})|(1 : 1) : 0|〉 → A2,1

5: A1,1 slots〈(3, {3})|(1 : 1) : 0|〉 → A2,3

// messages 4 and 5 tell unlinked lower priority agent A2 about the slot allocation
6: A2,1 ok?〈x2, a, 1, (1, {1})|(1 : 1) : 0|(2 : 1) : 0|〉 → A3,1, A4,1

// message 6 proposes to allocate slot 1 for the assignment x2=a
7: A2,1 –ok?〈x2, b, 1, (2, {2})|(1 : 1) : 0|(2 : 1) : 0|〉– → A3,2, A4,2

// message 7 proposes to allocate slot 2 for the assignment x2=b
8: A3,1 ok?〈x3, b, 1, (1, {1})|(1 : 1) : 0|(2 : 1) : 0|〉 → A4,1

// message 8 proposes the assignment x3=b in slot 1 which leads
// to A4 selecting x4 = c, and terminating with a solution

A1,1 A2,1 A3,1 A4,1

A2,2 A3,2 A4,2

A3,3 A4,3

Slot 1

Slot 2

Slot 3

Agent A1 Agent A2 Agent A3 Agent A4

4 6

7

A1,2

A1,3 A2,3

5

1

2

8

Figure 7: Example of a trace with PAS4.

R-MAS), PAS algorithms are complete, correct and termi-
nate, and require only polynomial space.

Proof. The proof is obvious for PAS1-PAS3 and results
from the corresponding properties of the used asynchronous
algorithms, and on the completeness of the problem parti-
tioning.

In PAS4, the working slots elected by the first agents can-
not be continuously disturbed and interrupted until a solu-
tion is found or the proposal launched on them is refused.
Whenever a reallocation is proposed, all involved processes
are announced and they will update their proposals. When
any complete extension of ABT (AAS, R-MAS) is used in
slots, the termination of PAS4 results by induction. Namely,
once a process and its predecessors are no longer refused, the
reasoning applies to the process on the next position in the
working slots. The completeness is a consequence of using
only logic inference. The use of signatures for slot reallo-
cations leads to coherent views in processes for each given
allocation. The soundness is ensured by the fact that co-

herent views lead to generation of nogood messages at any
contradiction. Actually, the complete extensions of ABT
ensure that processing of such valid nogood messages leads
to soundness when they are tagged with valid signatures.

The required space complexity is K times the highest
space complexity required by the asynchronous protocols
used in slots.

In Figure 7 is given a simple example of a trace of PAS4
with ABT in 3 slots, for the shown coloring problem. When
a message is sent to several agents, a single message is shown
and the list of target agents is shown on the right-hand side.
The proposal on the slots relevant for each message is shown
in parentheses after the other parameters. It is followed
by the signature for that proposal. All the processes start
having by default available as free slots all the slots, and
having the slot 1 as current working slot. The proposal
sources in agent A1 propose to split the free slots in two.
These proposals are attached to the ok? messages that have
to be sent to processes of agents A3, A4. They are sent by

slots messages to the agent A2 since no other message is
scheduled toward A2. Meanwhile, the agent A2 also made
proposals in message 3, but their tag is recognized as invalid
by the receiving processes which know tags from messages 1
and 2. The slots message 4 is delivered by the process A2,1

to its both proposal sources for slots 1 and 2.
The example is shown only up to a point where a solution

is found, but most slots are still working. The signature of
the slot proposals in nogoods are trimmed as for the signa-
ture of proposals on orders in ABTR-wc1 [19]. The target
slot for a nogood is computed as the slot in the last pair
in the trimmed signature of the nogood. If nogoods would
have to be sent from the process of A3 in slot 2 to A1, they
would be sent to the process in slot 1 of A1, as read in the
pair |(1 : 1) : 0| found in valid signatures.

6.1 Nogood reuse across reallocation (PAS4r)
Similarly with the nogood reuse across reordering [20], no-

goods can be saved when new proposals for reallocations are
received. For example, in Figure 7, the inferences resulting
from assignments in message 3 can be temporarily stored as
redundant constraints by all the working processes of agents
A3, and A4. When new assignments arrive in messages 6 and
7, if nothing changes, the corresponding receiving processes
only need to update the tags and recover the corresponding
nogoods (e.g. this happens in the slot 1). Otherwise, the
stored invalidated nogoods can be discarded (slot 2). The
corresponding protocol is called PAS4r.

6.2 Dynamic reconfiguration in PAS4r
During search, a proposal of Ai might be refused and Ai

may want to offer to other existing working slots the set of
freed slots. Ai can do it by simply broadcasting the new
proposal on the modified slots using slots messages with
tags with incremented counters.

If the current proposal source wants to make a slot avail-
able to predecessor proposal sources, dedicated heuristic
messages can be defined easily without modifying the prop-
erties of PAS4r. Let us look again at the example in Fig-
ure 7. If a nogood would be received by the process A1,3, this
could either propose c in slot 3, or allocate the slot 3 to the
proposal in A1,1. In the last case, the current computation
in the slots already allocated to the current instantiations
proposed by A1,1 will not be disturbed by reallocation.

The proposal sources in the process in slot 1 for agent A2,
can detect after receiving nogoods for two proposals that A2

can make only one more proposal and that they have two
available slots in the current allocation. In this situation
heuristic messages can be sent to proposal sources in A1

such that the slot 2 can be reallocated (e.g. to the proposal
in message 2).

7. CONCLUSIONS
We are motivated by the fact that each real distributed

system has a parallelism capacity, i.e. maximum number
of distributed processes of a given type that can be run
concurrently without a decrease in performance. Once a ca-
pacity K(T) is found for running distributed asynchronous
solvers of some type T on a distributed system, the remain-
ing problem (that we addressed here) is to design mecha-
nisms to dynamically split the search space of a DisCSP to
K(T) concurrent asynchronous solvers such that no resource
is wasted.

We analyzed existing techniques for exploiting parallelism
in asynchronous search (extensions of ABT), and identified
4 classes of algorithms among those designed for realistic
distributed systems (namely systems with finite resources).
We have proposed techniques enabling two such classes of
techniques, continuing ideas introduced in IDIBT [6] and
in [4]. This family of techniques is called Parallel Asyn-
chronous Search. Note that here we discuss techniques for
distributing the problem search space to a set of concurrent
distributed search processes (treated as black boxes), coor-
dinating competition for resources and aggregating results,
rather than caring how this processes work.

Our new technique are the only ones to allow for dynamic
allocation of the problem search space to the optimal num-
ber of asynchronous search processes, such that none of them
wastes time before the search ends.

8. ACKNOWLEDGEMENTS
This research was supported by the Swiss National Science

Foundation under project number 21-52462.97.

9. REFERENCES
[1] A. Armstrong and E. F. Durfee. Dynamic

prioritization of complex agents in distributed
constraint satisfaction problems. In Proceedings of
15th IJCAI, 1997.

[2] C. Bessière, A. Maestre, and P. Meseguer. Distributed
dynamic backtracking. In Proc. IJCAI DCR
Workshop, pages 9–16, 2001.

[3] Eric Debes. Exploitation of Parallelism in General
Purpose Processor Based Systems for Multimedia
Applications. PhD thesis, EPFL, Lausanne,
Switzerland, December 2000.

[4] J. Denzinger. Distributed knowledge based search.
IJCAI tutorial notes (MA2), 2001.

[5] E.C. Freuder, M. Minca, and R.J. Wallace.
Privacy/efficiency tradeoffs in distributed meeting
scheduling by constraint-based agents. In Proc. IJCAI
DCR, pages 63–72, 2001.

[6] Youssef Hamadi. Traitement des problèmes de
satisfaction de contraintes distribués. PhD thesis,
Université Montpellier II, Juillet 1999.

[7] Youssef Hamadi. Interleaved backtracking in
distributed constraint networks. In ICTAI, pages
33–41, 2001.

[8] M. Hannebauer. On proving properties of concurrent
algorithms for distributed CSPs. In Proceedings of the
CP Workshop on Distributed Constraint Satisfaction,
2000.

[9] W. Havens. Nogood caching for multiagent backtrack
search. In AAAI Constraints and Agents Workshop,
1997.

[10] Q.Y. Luo, P.G. Hendry, and J.T. Buchanan.
Comparison of different approaches for solving
distributed constraint satisfaction problems. Technical
Report No. RR-93-74, University of Strathclyde, 1993.

[11] F. Mattern. Algorithms for distributed termination
detection. Distributed Computing, 2:161–175, 1987.

[12] Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings.
Dynamic distributed backjumping. In DCR Workshop,
pages 51–65, 2004.

[13] N. Prcovic. Un algorithm distribué pour la résolution
des problèmes de contraintes en domaines finis.
Technical Report CERAMICS 95.44, CERAMICS,
Novembre 1995.

[14] V. N. Rao and V. Kumar. On the efficiency of parallel
backtracking. IEEE, 4(4), Apr 1993.

[15] G. Ringwelski and Y. Hamadi. Multi-directional
distributed search with aggregation. In IJCAI-DCR,
2005.

[16] M.-C. Silaghi and B. V. Faltings. Parallel proposals in
asynchronous search. Technical Report 01/#371,
EPFL, August 2001.

[17] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with aggregations. In Proc. of
AAAI2000, pages 917–922, Austin, August 2000.

[18] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with private constraints. In Proc.
of AA2000, pages 177–178, Barcelona, June 2000.

[19] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. ABT
with asynchronous reordering. In IAT, 2001.

[20] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Hybridizing ABT and AWC into a polynomial space,
complete protocol with reordering. Technical Report
#01/364, EPFL, May 2001.

[21] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Polynomial space and complete multiply asynchronous
search with abstractions. In IJCAI-01 DCR
Workshop, pages 17–32, Seattle, August 2001.

[22] M.-C. Silaghi, Djamila Sam-Haroud, and Boi Faltings.
Maintaining hierarchical distributed consistency. In
Workshop on Distributed CSPs, Singapore, September
2000. 6th International Conference on CP 2000.

[23] G. Solotorevsky, E. Gudes, and A. Meisels.
Algorithms for solving distributed constraint
satisfaction problems (DCSPs). In AIPS96, 1996.

[24] Cyril Terrioux. Cooperative search and nogood
recording. In Proc. of IJCAI-01, pages 260–265, 2001.

[25] M. Yokoo. Asynchronous weak-commitment search for
solving large-scale distributed constraint satisfaction
problems. In 1st ICMAS, pages 467–318, 1995.

[26] M. Yokoo. Distributed Constraint Satisfaction.
Springer, 2001.

[27] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing
distributed problem solving. In ICDCS, pages
614–621, June 1992.

[28] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
Formalization and algorithms. IEEE TKDE,
10(5):673–685, 1998.

[29] M. Yokoo and K. Hirayama. Distributed constraint
satisfaction algorithm for complex local problems. In
Proceedings of 3rd ICMAS’98, pages 372–379, 1998.

[30] Y. Zhang and A. K. Mackworth. Parallel and
distributed algorithms for finite constraint satisfaction
problems. In Proc. of Third IEEE Symposium on
Parallel and Distributed Processing, pages 394–397,
1991.

[31] R. Zivan and A. Meisels. Concurrent backtrack search
on discsps. In FLAIRS, 2004.

