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Abstract. We propose to merge the two — privacy and cost/utility — usydi-
mization criteria of Distributed Constraint Optimizati®moblems (DCOPS) into
a unique criterion. Typically, a DCOP requests agents teeagn a tuple of as-
signments of values to variables such that the sum of cositsedeby a set of
secret weighted constraints is minimized. However, theagsi requirements on
constraints is classically used to define an orthogonahupttion criteria (min-
imizing the number of disclosed tuples, or maximizing the@py of the knowl-
edge about constraints). Common complete DCOP searchigeesnook for a
solution minimizing the cost and maintainisgmeprivacy.

We start from the observation that privacy leaks are a cofdGOP whose se-
crets are labeled with the costs of the corresponding prilesks defines a new
framework, that we will call Distributed Private Constrai@ptimization (DP-
COP). We propose to define the cost of an agreed tuple of aseigs as the
sum between the weights of the constraints for the chosede,tapd the cost
induced by secrets leaked before agreeing on the tupleefidrer the cost of a
solution depends on the algorithm used to find it. Differeminpletealgorithms
will return solutions with different (privacy-loss&weighcosts, and these costs
provide a metric to compare algorithms. The level of detaiédifor specifying
costs for privacy leaks can lead to different winners amdggriéghms. A set of
benchmarks is proposed and made available.

1 Introduction

The distributed constraint reasoning (DCR) framework addes problems where a set
of agents participate in distributed problem solving. A eoan assumption (used in
this work) is that the agents are self-interesteshother assumption is that the agents
agree to cooperate for finding the values of some parameXersshich optimize an
objective function defined as a sum of a set of constraintXofMhe motivation of
this agreement is sometimes assumed to be enforced by meeisavutside the DCR,
while sometimes the reward (utility) of finding a solutiorsigecified as an input of the
problem. The constraints themselves are real functionsieSof the constraints may
be public, and some are secrets of different participatgenés. A simple example of
such problem is meeting scheduling with secret constraivitere the parameters are
the meeting place and time, and each agent’s utility to eaemeeting the others is
specified by that agent. When the constraints are Booleahamt(results i 0, co}),

! The main idea in this work (explicitly specifying the utjliof keeping secrets) can also be
used with cooperative agents, defending their privacy foutsiders.



their secrecy can be defined with the DisPrivCSPs framewmdgosed in [15]. The
more general case where constraints can be any real furetidrspecify utilities is
called distributed constraint optimization, (DCOP). DGQORise additional problems,
and several approaches to addressing privacy were dedeabently. Here we present
a solution based on the explicit evaluation of the utilitkeéping the constraints secret.
We propose to assume that this evaluation of utility of sgcoan be performed prior
to the definition of the problem, based on concrete situatiand are an input of the
corresponding agents.

The distributed private constraint satisfaction (DisE8Ps) framework [15] mod-
els problems with privacy requirements and enables qtiskig and quantitatively
comparison of distributed CSP solvers. We introduce a aityilpowerful framework
for distributed constraint optimization (DCOPs), as areaston to DisPrivCSPs. Sig-
nificant attention was previously given to the definition amalysis of privacy require-
ments in distributed constraint satisfaction problems@3P) [19]. For a given agent
A;, all the solutions of a DisCSP have the same value (utillty) At the basis of the
DisPrivCSP theory is the observation that a rational aggnwill drop out of search
when it expects that the price of its future privacy loss ighieir thanU; (intuitively
leading to a negative total utility). Past privacy loss dnesmatter since its value was
already lost. The quality of a solution to be searched for HyigCSP algorithm is
therefore defined only by the privacy criteria.

Distributed constraint optimization problems (DCOPs) ameextension of DisCSP
where constraints have different costs. Some attentionalvaady given to privacy in
distributed constraint optimization [7, 5]. In prior worRCOPs with privacy require-
ments are treated as a multi-criteria optimization wheeedbnstraint weights are of a
different nature from privacy (often perceived from an imfation theoretic perspec-
tive). The changes needed for generalizing the DisPrivGamdwork have not yet
been analyzed. We start by noting that its idea does not inatedg apply to DCOPs,
since in DCOPs the value of the optimal solution is not knowadvance (otherwise
the problem would become a constraint satisfaction propl&vile DisPrivCSPs are
optimization problems for the privacy criterion, DCOPs weso far seen as multi-
criteria optimization problems along two incomparable mest (privacy/entropy and
cost/utility).

We propose a new framework called Distributed Private Gairgt Optimization
(DPCOP) where the two — previously incomparable — metrid@OPs are redefined
and merged under the utility theory, yielding a unique arayea analyze optimization
criteria. We explicitly model the loss of privacy as a costlave assume that this cost
is provided as a part of the input specification. When thescoktevealing each secret
can be obtained like this, they allow for much better tardetzategies, keeping the
most valuable secrets and revealing less valuable secagiel than just maximizing
the entropy by guarding many irrelevant secrets). A set ofchenarks are proposed
for the new framework (see [2]), and baseline algorithmspmoposed and analyzed
experimentally.

The DPCOP framework also defines a new hybrid between the De@@Ehe multi-
agent planning research areas, since a DPCOP solver beeopiaaner (where the
actions taken during search have an impact on the solution).



2 Related Work

Privacy has been a fundamental motivation for distributetbtraint optimization, since
the early beginning of the field [19]. However, due to wideadieement on how to
formalize privacy requirements, proposed techniques #isn@valuated not from the
privacy perspective but solely from the perspective of &fficy and cost. The first
gquantitative measurement of privacy loss was based on gisminting the number
of disclosed tuple values [3]. The distributed private ¢aiat satisfaction problems
introduced in [15] label each secret with a number corredpanto the cost induced
by its privacy loss. The privacy loss incurred during a cotagion is given by the sum
of the the privacy values of each leaked secret. Other appasao quantifying privacy
loss are based on information theory, maximizing entrojne frivacy loss is therefore
expressed in bits of information, or some related units Affjthese approaches lack a
clear way to trade off privacy for solution quality, resaljiin a difficult multi-criteria
optimization.

2.1 Distributed Private CSPs

With DisPrivCSPs [15], each secret (cost/weight of a caiistior combination thereof)

is associated with @rivacy value The privacy value of a secret specifies the incre-
mental loss of utility due to the revelation of that secreptéNthat DisPrivCSPs could
only model additive privacy loss, restriction also remowedhe definition proposed
here. Thereward for solving the problers given as a constant. The weights (satisfy-
ing/unsatisfying) of a constraint have no direct relatiorthe utility. Agents in Dis-
PrivCSPs abandon the search when the utility loss due taqtadde privacy loss (next
incremental privacy loss) is higher than the reward for figda solution. A qualitative
comparison of algorithms was possible based on the abdligpotve problems without
abandoning the search.

2.2 Baseline Algorithms

The simplest distributed algorithm for solving distribdt€SPs is the one proposed
in [3]. In this algorithm, an agent proposes a value for thealdes (a solution) at a
time, and the other agents answer with messages specifjiether their constraints
are satisfied by that assignment.

There are other algorithms for solving DCOPs such as ADORTO®OP [11],
and DisAO [8]. There also exist DCOP optimization technigjusing cryptographic
protocols [16, 5], and which offer significantly high levelsprivacy guarantees.

3 DPCOP Framework

While prior work treated distributed constraint optimizett problems (DCOPs) with
privacy requirements as a multi-criteria optimization,eshthe constraint weights are
measured in utility and privacy is measured in informati@s br related metrics, here
we propose to measure privacy in the same type of utility astinstraint weights.



In order to extend the DisPrivCSP framework to DCOPs, we ftam the obser-
vation that the DCOP constraint weights, normally used éxahjective function of the
optimization, can also be considered to be a positive (oatiag) utility — or cost — of
the same nature as the cost induced by privacy loss. As sSUBIGOPsminimizingthe
sum of the constraint weights (i.e., where weights represamst, with negative util-
ity), the total cost is given by the sum between the value etdial lost privacy and the
cost of the selected solution. The reward for each agentlaiigpthe problem will still
be considered in this setting to be a previously known (fbsénfinite) value, like with
DisPrivCSPs. A rational participating agent is expectealtandorthe search if its next
revelation would lead to a value for tlrecremental privacy loswhich, together with
a lowest bound on the cost of the solution, becomes largertti@reward for solving
the problem.

For maximizatiorDCOP problems, namely problems seeking a solution maximiz-
ing the sum of the constraint weights (i.e., where constra@ights represent rewards),
privacy loss becomes the only cost. The utility is definedhgydifference between the
reward of the solution and the value of the privacy lost dytine search. A rational
agent will therefore abandon the search problem if its nextekpected) disclosures
leads to arincremental privacy losthat is larger than the expected total reward of the
solution.

In order to formally define the framework described so far,fikgt formalize the
concept of privacy leaks in a way general enough to modeladititive functions.
Given a set of secrets, a leaked information about some séthecrets will be called
revelation

Definition 1 (Revelation).Given a set of secretS and a set of agentd, the set of
possible revelationg(S, A) is a functionR(S, A) : A — (S — [0,1]) which maps
each peer agent to a functional relation specifying the pitulity learned by that agent
for each secret.

Note that this definition of revelation is more general thamversion used by Dis-
PrivCSPs, as here it can model statistical privacy lossésléthe above definition has
a rich modeling power, one can assume that sometimes useréimdait difficult to
provide the data related to all possible revelations definduis way. We therefore also
consider a simplified version that requires less data (bsdiisewhat less general):

Definition 2 (simplified revelation). Given a set of secretS and a set of agentd,
the set of possible revelatiod® S, A) is the functionR(S, A) : A — PS(S), which
maps each peer agent to the element of the power-set of tbésmtretsPS(S), that
he learns.

The simplified revelation definition assumes that privadp$ only when a secret
is completely revealed. It does not account for secrets talhich other probabilistic
information is made available. Now we can formally define EHRRCOPs.

Definition 3 (DPCOP). A (minimization) Distributed Private Constraint Optimiza
tion Problem (DPCOP) is defined by a tudld, X, D,C, P,U). A is a set of agents
{A1,...,Ax}. X is a set of variables{z1,...,xz,}, and D is a set of domains



{D», ..., D,,} such that each variable, may take values only from the domdm. The
variables are subject to a sét of sets of weighted constrain{€’, C1, ..., Cx }, where
C; = {¢}, ..., "} holds the secret weighted constraints of agépntandC, holds the
public constraints. Each weighted constraint is defined &sration; : X; — Ry
whereX; C X. The value of such a function in an input point is calehstraint entry
and eachC; can be seen as a set of such constraint entries.

P is a set of privacy loss cost functiofi®y, ..., Pk }, one for each agen®; defines
the cost inflicted to4; by each revelatiom of its secrets, i.e.P;(r) : R(C;, A) — Ry.

A solution is an agreement between agentslion a tupler* of assignments of
values to variables that minimizes the total cost:

T = argmin, Z(Z ¢Z (1)) + P (I1;(7))

%

wherelI,; (7) is the revelation inR(C;, A) performed during the process leading to the
agreement on the assignments

U is a set of rewardé/1, ..., Uk, one for each agents, that the corresponding agent
receives if a solution is found, and that agents use for degidshether to abandon a
search given their foreseen incremental privacy loss.

The set of reward$/ can be used to qualitatively compare DCOP solvers, as to
which solver can solve more problems than another solvérouitany agent abandon-
ing the process. Such a hierarchy of solvers was built foPENSCSPs in [15]. Formally,
the agentd; abandons the search if:

Pi(r«) — Pi(r) + W>U;

wherer is the revelation performed hyt; up to this moment;x is the revelation after
the next planned sequence of actions, Hnds a low bound on the quality (cost) of the
expected solution.

The privacy-loss cost functionB; are a new concept. These functions are part of
a problem model (just like utilities of auction outcomesegdigo infer bids in Vickrey
auctions). Just as utilities are an agent’s input for anstia privacy-loss cost function
is an agent’s input for DPCOPs. An agent can infer a privasgIcost function by
simulating how much utility it may lose when each revelai®performed.

The above DPCOP definition is for the general case where th&ti@int of an agent
may involve all variables. Many approaches consider a sfiraglversion (equivalentin
expressive power) where each agewnssome variables, and agents enforce only con-
straints with variables assigned by previous agents. Weigeanext the corresponding
DPCOP simplification, allowing for most existing DCOP aligjoms.

Definition 4 (simplified DPCOP). A (minimization) distributed private constraint op-
timization problem is defined by a tupled, X, D,C, P,U). A is a set of agents
{41,...,A,}. X is a set of variables{z1,...,x,}, and D is a set of domains
{Dz, ..., D, } such that each variable; may take values only from the domd. The
variables are subject to a sét of weighted constraints se{&’y, C4, ..., Cy, }, where
C; = {¢},...,¢5"} holds the secret weighted constraints of agdnt and C; holds



public constraints. Each weighted constraint is defined sﬂsrm:tiongb{ X, = Ry
whereX; C {z1,...,z;}.

P is a set of privacy loss cost functiofi®, ..., P,, }, one for each agen®; defines
the cost inflicted by the revelation of any subset of secezhehts of; : R(C;, A) —
R+.

A solution is an agreement between the agent$ on a tupler™ of assignments of
values to variables that minimizes the total cost:

™ = argmin, Z(Z ¢l (1)) + Pi(IT;(7))

%

wherell;(7) is the revelation inR(C;, A) performed during the process of agreeing on
the assignments.

U is a set of rewardé#/1, ..., Uk, one for each agents, that the corresponding agent
receives if a solution is found.

Maximization Maximization DPCOPs are defined similarly, but without thengent
U, and redefining the solution as:

™ = argmaz, Z(Z ¢l (1)) — Pi(ITi(7)).

An agent abandons the maximization search if;
W — (Pl(T‘*) — Pl(T‘))SO

wherer is the revelation performed hy; up to this moment;x is the revelation after
the next planned sequence of actions, &inids an upper bound on the quality of the
expected solution.

Simplified cost functiongVhile (in general) privacy-loss cost functions are not &iddj
we expect that additive randomly generated benchmarks theveimplicity that can
help in the theoretical understanding of the new framewbrka simplified version,
the value of privacy leaks towards a peer agent can also bsidered independent
of privacy leaks towards other peers (assumption not agiplécto all problems). For
additiveprivacy cost functions, an array of privacy costs can sinfggattached to each
constraint tuple.

An important case ohon-additiveprivacy-loss cost function is where the cost of
a leak is independent of the agent (revelation to an agemghminsidered to be a
revelation to all agents), while being additive along thelnsion of the secrets. Such a
privacy cost function can be represented by a single costaged with each constraint
tuple.

4 Comparison with previous frameworks

The closest previous framework is the Distributed PrivagP€ (DisPrivCSPs) that
we introduced in [15], which deals with distributed consttasatisfaction problems



(DisCSPs). DisPrivCSPs also have costs for privacy logghai cost is not integrated
in any way with the cost of the agreement tuples.

DisCSPs can be modeled as a special case of DCOPs, namelyiveheomstraints
are functions with results only ifi0, oo}, rather than in R. This is because:

Sl

%

has the same value for all the satisfying tuples of the DisF3P.

Previous research related to privacy in DCOPs has alreadydfanspiration in
DisPrivCSPs [7], and can be seen as straightforward apjplitsaof DisPrivCSPs to
DCOPs. DPCOPs are a less straightforward extension of DSBPs. We think that the
main innovation in DPCOPs versus a straightforward DigP&Rs usage with DCOPs
is:

— DPCOPs unify the metric for cost of privacy loss with the riratised for specifying
weights of constraints (in DisPrivCSPs they were incomblarenetrics).

— The revelation is more general in DPCOPs, allowing for statl and non-additive
privacy loss functions.

Among smaller differences, while with DisPrivCSPs an agénwill abandon the
search when incremental costs are higher thignwith maximization DPCOPs there
may be no known finite limit on the reward of the agent. Alsa, BasPrivCSPs we
provided only theoretical and qualitative comparison afhtg@ques, while with DP-
COPs we provide benchmarks, random problem generatorgxgatimental analysis
of techniques.

5 Baseline DPCOP Solvers

Any of the existing DCOP techniques can be used to solve DRCD#thniques us-
ing cryptographic methods, such as the ones in [16, 5], camagiiee optimality with
minimal privacy leak. Other techniqgues may offer more efficy at the expense of
optimality. We evaluate simple algorithms for solving DPEX Probably the simplest
technique consists of an agent consecutively asking ealslicjyupossible tuple one
after another, while the other agents answer with theirscoghis is an adaptation to
optimization of the technique proposed in [3]. The ageniraskhe questions in this
1-leader version is calledhe leader In the N-leadersvariant, the search space is
distributed between agents (related to [6]), and each aagkst costs for his part. The
baseline version we evaluate in the N-leaders version is sivepler, with agents acting
in turn rather than simultaneously, each question alsogdéds the leader for the next
question. At the end, the agents publish the best tupleh&ir sub-parts, and the best
overall tuple is selected.

Leaders may propose tuples that are suboptimal (with warsal kcost than their
currently best tuple), lying to increase privacy (lying acgalso in [1]).



procedure leaderdo
foreach next tupler with better local weight than currently best tupe
decide nexieader // only N-leaders version;
send asKr,nextleader);
set next leader // only N-leaders version;
wait answers;

update identity of best tuple;

end
end do.

procedure slavesdo

whenask ¢, nextleader)do
compute local cost for;
send answe(r, cost) to leader;
recompute privacyoss;
leader := nextieader // only N-leaders version;
if (leader = myselfthen

change to leader mode // N-leaders version;

end
end do.
end do.

Algorithm 1: Baseline (1-leader and N-leaders versions)

6 Non-cooperative multi-agent problem solving

The DPCOP framework typically models semi-cooperativeageyms. Some other
agent paradigms that are also useful are:

— Cooperative in which agents are willing to readily exchaagy data that can
improve their global performance (e.g., robots or humans iteam exploring
Mars [13]).

— Non-cooperative and self-interested in which the agergseaemies and do not
coordinate with each other and do not agree on any protocgl, (eciprocally
spying robots or humans in a war [10]).

— Semi-cooperative and self-interested in which the agerttssir own interest agree
to follow social protocols in order to coexist (bidders inaurction [18]).

The two self-interested situations are extreme and ofterpractice, the self-
interested situations are in-between. For example, erseimig cold war are interested
in destroying each other, but (since a blunt nuclear war d@delktroy all parties) agree
to coordinate (unreliably) to minimize the probability afihg destroyed. This is repre-
sentative of the situation of communication between thedwators in the well known
Prisoner’s Dilema game, each trying to convince the othetay silent, while trying to
catch an opportunity to betray.

The DPCOP framework assumes that the agents are involveahie smportant
amount of coordination, and desire to maximize the sum oépethdently declared
utility functions (with trustworthiness guaranteed by etlexternel mechanisms, such
as Clarke tax).



Privacy as utility in non-cooperative self-interested @digms However, our idea of

modeling privacy as utility also applies to non-coopemrtbelf-interested situations.
While DPCOP solving is a kind of multi-agent planning (MARpn-cooperative sit-

uations are more commonly addressed in general approachéAP, such as partial
order planning or POMDPs [12, 4]. While current MAP approeshbnforce privacy us-
ing entropy maximization [10], our idea of modeling privdogs with utility (cost) can

be utilized to get simpler and more intuitive frameworkseTgffort then shifts toward
specifying the privacy loss functions.

7 Evaluation

It is easy to learn a secret weight of a constraint entry foagent when a message
sent by this agent is based solely on the weight of that seomttraint entry. If an
agent controls a single secret constraint, each messaghéhagent sends in response
to a leader’s challenge reveals a secret weight. If an ageldstseveral secret con-
straints, a message is an aggregation of secrets from toosgraints, and learning the
component secrets is sometimes possible, but more corngnahly involved (solving
the corresponding systems of equations, when they arendieted). First we perform
an experimental study for the simpler case whesieh agent enforces a single private
constraint

Random problem generatokn important component of constraint-based frameworks
consists in the development of random problem generatows. MPCOP genera-
tor (made available on the DPCOP site [2]) is based on a ty@i&P generator
parametrized by density and number of values per varialile. Weights we gener-
ate for constraint tuples are finite, generated according distributionD,,,, defined
by the uniform distributior/ (0, B,,) between 0 and an upper bous},. Each con-
straint is tagged with the ID of an owner agenfdr agentA;). For additive privacy
functions, each secret constraint tuple is tagged with tovet privacy loss costs, one
for each non-owner agent. The privacy loss cost is drawn famwother distribution,
D,, also chosen as a uniform distributidi{0, B,,) between 0 and a bourfd,. For the
version with costs of privacy leaks independent of the taagent, the array of costs
per constraint entry has length 1. The rewards generategtémhing a solution with
minimization DPCOPs are infinite.

DPCOP filesEach randomly generated DPCOP, as well as any non-randachimamk
we generate is stored in a file in the following format:

<nb variables>
<var_namel> <dom_size> <val 1> ... <val d>
<var_name2> <dom_size> <val_1> ... <val d>

<nb constraints>
<arityl>
<owner>



<size privacy-vector/tuple>
<varl_name>

<weightl> [<privacy vector>] ...
An example file (with additive privacy costs) is:

2 # nb agents

2 #
x0
x1

2 #

nb variables
3012
3012

nb constraints

1 # arity first constraint

0 # owner agent (-1 means public)
2 # length privacy-leaks vector

X0 # variable_name
3[04 J]O[O1 ]3[01 ]

2 # arity second constraint
1 # owner agent (-1 means public)
2 # length privacy-leaks vector

x1 # varl
x0 # var2
3[30 ]4[00 ]1[30 ]
3[40 ]2[10 ]3[10 ]
1[30 ]1[30 ]11[30 ]
‘giZZZi Random problems
(S //
Eeooo—f ///

5000
4000
3000
2000

1000

o 3

— 1-leader 20%-density
—— 1-leader 30%-density

4

10 X 12 14 16
Variables

Fig. 1. Total cost (privacy+weight) with 1 leader.

Experimental Result®Result quality, averaged over random 25 minimization DPE€OP
at each size with the baseline 1-leader algorithm are redant Figure 1, as total cost



Algo|DPCORSizegPrefiCostCyclegTime)
HP| STM | 4| 2| 3 14 (1.47
BL| STM | 4 | 2 |257| 9.6 |0.85
BL | RPSM| 4 | 2 {249| 8.8 |0.56
BL | RPSX| 4 | 2 [310| 27.6 |0.82

Table 1.Benchmarks.

(to be subtracted from the result reward). Results for thiedders variant were also
obtained on the same problems and found to lead to 10% higkefar small problems,
4-6 variables, while being similar at larger problems (Whie explained by the random
nature of the problems).

We also show evaluations based on benchmark problems []r&%ults are given
in Table 1. RPSX and STM based on soft constraints, and RPS¥dban hard con-
straints, Results are given for the baseline algorithm wita leader (BL), and for cryp-
tographic algorithm (HP) in [14]. The cryptographic algbm leaks only the secrets
implied by the fact that the solution satisfies the publicatmaints

Some cryptographic solvers are guaranteed to find optimatisns for DPCOPs,
at the expense of efficiency [17, 16]. Assuming that no twaégexchange information
about peers, there exist partially cryptographic solveet aire quite efficient but may
rarely leak information due to solution vulnerabilitieg.[5

8 Conclusion

This is the first approach where privacy loss and weight ofstramts in DCOPs are
measured with the same unit (utility) and integrated intm@ue optimization criteria.

We define the framework of Distributed Private Constrainti@jzation to model
problems with complex privacy requirements. We also prexddjenerator for random
DPCOPs with additive or agent-independent privacy fumgio

Baseline algorithms are evaluated for problems in the naméwork. All exist-
ing DCOP solvers apply to DPCOPs. Some cryptographic selvevide the optimal
solution, at the expense of efficiency.
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