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Abstract. This work proposes an asynchronous algorithm
for solving Distributed Constraint Optimization problems
(DCOPs) using a generalized kind of nogoods, called valued
nogoods. The proposed technique is an extension of the asyn-
chronous distributed optimization (ADOPT) where valued
nogoods enable more flexible reasoning, leading to important
speed-up. Valued nogoods are an extension of classic nogoods
that associates each nogood with a threshold and optionally
with a set of references to culprit constraints.

ADOPT has the property of maintaining the initial distri-
bution of the problem. ADOPT needs a preprocessing step
consisting of computing a depth first search (DFS) tree on
the agent graph. We show that besides bringing significant
speed-up, valued nogoods allow for automatically detecting
and exploiting DFS trees compatible with the current or-
dering since independent subproblems are now dynamically
detected and exploited (DFS trees do not need to be speci-
fied /computed explicitly). However, not all possible orderings
on variables are compatible with good DFS trees, and we find
that on randomly ordered problems ADOPT-ng runs orders
of magnitude slower than on orderings that are known to be
compatible with short DFS trees.

Being an extension of ABT, ADOPT-ng can also profit
of the dynamic ordering heuristics enabled by Asynchronous
Backtracking with Reordering (ABTR). However, our exper-
iments imply that efficient dynamic ordering heuristics for
ADOPT-ng will have to maintain compatibility with some
DFS tree (e.g., to be decided by rebuilding DFS trees based
on current search state).

Experiments comparing ADOPT-ng with Valued Dynamic
Backtracking show that ADOPT-ng also brings significant im-
provements over the old valued nogood-based algorithm.

1 Introduction

Distributed Constraint Optimization (DCOP) is a formal-
ism that can model naturally distributed problems. These are
problems where agents try to find assignments to a set of vari-
ables subject to constraints. The natural distribution comes
from the assumption that only a subset of the agents has
knowledge of each given constraint. Nevertheless, in DCOPs
it is assumed that agents try to maximize their cumulated sat-
isfaction by the chosen solution. This is different from other
related formalisms where agents try to maximize the satisfac-
tion of the least satisfied among them [27].

Several synchronous and asynchronous distributed algo-
rithms have been proposed for distributedly solving DCOPs.
Since a DCOP can be viewed as a distributed version of the
common centralized Valued Constraint Satisfaction Problems
(VCSPs), it is normal that successful techniques for VCSPs
were ported to DCOPs. However the effectiveness of such
techniques has to be evaluated from a different perspective
(and different measures) as imposed by the new requirements.
Typically research has focused on techniques in which reluc-
tance is manifested towards modifications to the distribution
of the problem (modification accepted only when some rea-
soning infers it is unavoidable for guaranteeing to reach so-
lutions). This criteria is largely believed valuable and adapt-
able for large, open, and/or dynamic distributed problems.
It is also perceived as an alternative approach for addressing
privacy requirements [18, 26, 30, 20].

A synchronous algorithm, synchronous branch and bound,
was the first known distributed algorithm for solving
DCOPs [9]. Stochastic versions have also been proposed [31].
From the point of view of efficiency, a distributed algorithm
for solving DCOPs is typically evaluated with regard to ap-
plications to agents on the Internet, namely where latency
in communication is significantly higher than local computa-
tions. A measure representing this assumption well is given
by the number of cycles of a simulator that lets each agent
in turn process all the messages that it receives [28]. Within
the mentioned assumption, this measure is equivalent for real
solvers to the longest causal chain of sequential messages (i.e.,
logic time), as used in [22].

From the point of view of this measure, a very efficient
currently existing DCOP solver is DPOP [14, 13], which is
linear in the number of variables. However, in general that
algorithm has message sizes and local computation costs that
are exponential in the induced width of a chosen depth-first
search tree of the constraint graph of the problem, clearly
invalidating the assumptions that lead to the acceptance of
the number of cycles as efficiency measure.

Two other algorithms competing as efficient solvers
of DCOPs, are the asynchronous distributed optimiza-
tion (ADOPT) and the distributed asynchronous overlay
(DisAO) [11]. DisAO works by incrementally joining the sub-
problems owned by agents found in conflict. ADOPT imple-
ments a parallel version of A* [19]. While DisAO is typically
criticized for its extensive abandon of the maintenance of the
natural distributedness of the problem at the first conflict



(and expensive local computations invalidating the above as-
sumptions like DPOP [6, 10, 1]), ADOPT can be criticized for
its strict message pattern that only provides reduced reason-
ing opportunities. ADOPT also works only on special order-
ings on agents, namely dictated by some Depth First Search
tree on the constraint graph.

It is easy to construct huge problems whose constraint
graphs are forests and that are easily solved by DPOP (in lin-
ear time), but unsolvable with the other known algorithms.
It is also easy to construct relatively small problems whose
constraint graph is full and therefore require unacceptable
(exponential) space with DPOP, while being easily solvable
with algorithms like ADOPT, e.g. for the trivial case where
all tuples are optimal with cost zero.

In this work we address the aforementioned critiques of
ADOPT showing that it is possible to define a message scheme
based on a general type of nogoods, called valued nogoods [5],
that not only virtually eliminates the need of knowing a DFS
tree of the constraint graph, but also leads to significant im-
provement in efficiency. Nogoods are at the basis of much flex-
ibility in asynchronous algorithms. A nogood specifies a set of
assignments that conflict constraints [25]. A basic version of
the valued nogoods consists in associating each nogood to a
threshold, namely a cost limit violated due to the assignments
of the nogood. It is significant to note that the valued nogoods
lead to efficiency improvements even if used in conjunction
with a DFS tree, instead of the less semantically explicit cost
messages of ADOPT. Each of these incremental concepts and
improvements is described in the following sections.

2 DFS-trees

Figure 1. For a DCOP with primal graph depicted in (a), two
possible DF'S trees (pseudotrees) are (b) and (c). Interrupted lines
show constraint graph neighboring relations not in the DFS tree.

The primal graph of a DCOP is the graph having the vari-
ables as nodes and having an arc for each pair of variables
linked by a constraint [7]. A Depth First Search (DFS) tree
associated to a DCOP is a spanning tree generated by the arcs
used for entering each node during some depth first traversal
of its primal graph. DFS trees were first successfully used for
distributed constraint problems in [3]. The property exploited
there is that separate branches of the DFS-tree are completely
independent once the assignments of common ancestors are
decided. Two examples of DFS trees for a DCOP primal graph
are shown in Figure 1.

Nodes directly connected to a node in a primal graph are
said to be its meighbors. In Figure 1.a, the neighbors of x3
are {:tcl7 s, x4}. The ancestors of a node are the nodes on the

path between it and the root of the DFS tree, inclusively. In
Figure 1.b, {x5, 23} are ancestors of z2. x3 has no ancestors.

3 ADOPT

ADOPT [12] is an asynchronous complete DCOP solver,
which is guaranteed to find an optimal solution. Here, we only
show a brief description of ADOPT. Please consult [12] for
the detail. First, ADOPT organizes agents into a Depth-First
Search (DFS) tree, in which constraints are allowed between
a variable and any of its ancestors or descendants, but not
between variables in separate sub-trees.

ADOPT uses three kinds of messages: VALUE, COST, and
THRESHOLD. A VALUE message communicates the assign-
ment of a variable from ancestors to descendants who share
constraints with the sender. When the algorithm starts, each
agent takes a random value for its variable and sends ap-
propriate VALUE messages. A COST message is sent from a
child to its parent, which indicates the estimated lower-bound
of the cost of the subtree rooted at the child. Since com-
munication is asynchronous, a cost message contains a con-
text, i.e., a list of the value assignments of the ancestors. The
THRESHOLD message is introduced to improve the search
efficiency. An agent tries to assign its value so that the esti-
mated cost is lower than the given threshold communicated
by the THRESHOLD message from its parent. Initially, the
threshold is 0. When the estimated cost is higher than the
given threshold, the agent opportunistically switches its value
assignment to another value that has the smallest estimated
cost. Initially, the estimated cost is 0. Therefore, an unex-
plored assignment has an estimated cost 0. A cost message
also contains the information of the upper-bound of the cost
of the subtree, i.e., the actual cost of the subtree. When the
upper-bound and the lower-bound meet at the root agent,
then a globally optimal solution has been found and the al-
gorithm is terminated.

4 Distributed Valued CSPs

Constraint Satisfaction Problems (CSPs) are described by a
set X of variables and a set of constraints on the possible
combinations of assignments to these variables with values
from their domains.

Definition 1 (DCOP) A distributed constraint optimiza-
tion problem (DCOP), aka distributed valued CSP, is de-
fined by a set of agents Ai, Az, ..., A, a set X of vari-
ables, x1,x2,...,Tn, and a set of functions fi, fo,...fi,.cos fr,
fi: Xi = R, X; C X, where only A; knows f;.

The problem is to find argminy " | fi(zx,). We assume

that z; can only take values from a domain D; = {1, ...,d}.
For simplification and without loss of generality one typi-
cally assumes that X; C {z1,...,z:}

Our idea can be easily applied to general valued CSPs.

5 Cost of nogoods

A generalization of the nogoods concept to the case of valued
CSPs was first proposed in [5]. Here we reintroduce the main
definitions in the versions appearing in [24].



Definition 2 (Valued Global Nogood) A walued global
nogood has the form [c, N|, and specifies that the (global) prob-
lem has cost at least ¢, given the set of assignments, N, for
distinct variables.

Given a valued global nogood [c, ({(x1,v1), ..., (¢, v¢))], one
can infer a global cost assessment (GCA) for the value
v from the domain of z; given the assignments S =
(x1,v1), .y (Tt—1,v¢—1). This GCA is denoted (v¢,c,S), and
is semantically equivalent to an applied global value nogood,
(i.e. the inference):

((@1,v1),s o, (@e—1,0ve—1)) — ((x¢,v¢) has cost c).

If_N = ((z1,v1), ..., (x+,v¢)) where v; G_Di, then we denote
by N the set of variables assigned in N, N = {z1,..., 2+ }.

Proposition 1 (min-resolution) From a set {(v,cy,Sy)}
containing exactly one GCA for each value v in the domain
of variable x; and Vk,j, assignments for S_kﬂS_J are identical
in both Sy and S; of a minimization VCSP, one can resolve
a new valued global nogood: [min, ¢y, Uy Sy].

Definition 3 (Valued Nogood) A walued nogood has the
form [SRC,c, N] where SRC is a set of references to con-
straints having cost at least ¢, given a set of assignments, N,
for distinct variables.

Definition 4 (Cost Assessment (CA)) A cost assess-
ment of variable x; has the form (SRC,v,c, N) where SRC
is a set of references to constraints having cost with lower
bound c, given a set of assignments, N, for distinct variables,
and the assignment of x; to some value v.

Proposition 2 (sum-inference) A set of cost assessments
for the value v of some variable, (SRC;,v,c;i, N;) where Vi, j
i #j = SRC; N SRC; = 0, and the assignment of any vari-
able xi, is identical in any N; where i, is present, can be com-
bined into a mew cost assessment. The obtained cost assess-
ment is (SRC,v, ¢, N) such that SRC=U;SRC;, c=3_.(c:),
and N=U; N;.

Proposition 3 (min-resolution) A set of cost assessments
for x;, (SRCi,vi,ci, N;) where U;{v;} covers the whole do-
main of x; and Vk,j, assignments for Ny NN, are identi-
cal in both Ni and Nj;, can be combined into a new valued
nogood. The obtained valued nogood is [SRC,c, N| such that
SRC=U;SRCj, c=min;(¢;) and N=U;Nj;.

Remark 1 Given a valued nogood [SRC, ¢, N|, one can infer
the CA (SRC,v, ¢, N)) for any value v from the domain of any
variable x, where x is not assigned in N, i.e., © & N.

E.g., if Ag knows the valued nogood
[{C4,7},10,{(z2,y), (x4,7)}], then it can infer for the
value b of xg the CA ({Ca,7},b,10,{(z2,y), (xa,7)}).

6 ADOPT with nogoods

We will now present a distributed optimization algorithm us-
ing valued nogoods, to maximize the efficiency of reasoning
by exploiting increased flexibility. The algorithm can be seen
as an extension of both ADOPT and ABT, and will be de-
noted Asynchronous Distributed OPTimization with valued
nogoods (ADOPT-ng).

Like in ABT, agents communicate with ok? messages
proposing new assignments of sender’s variable, nogood mes-
sages announcing a nogood, and add-link messages announc-
ing interest in a variable. Like in ADOPT, agents can also use
threshold messages, but their content can be included in ok?
messages.

For simplicity we assume in this algorithm that the commu-
nication channels are FIFO. Addition of counters to proposed
assignments and nogoods can help to remove this requirement
with minimal additional changes (i.e., older assignments and
older nogoods for the currently proposed value are discarded).

6.1 Data Structures

Each agent A; stores its agent view (received assignments),
and its outgoing links (agents of lower priority than A; and
having constraints on z;). Instantiations may be tagged with
counters. To manage nogoods and CAs, A; uses matrices
[[1.d], h[1.d], ca[l..d][i+1.n], lvn[l..4][i.n], lr[i+1l..n] and
lastSent[1..i-1] where d is the domain size for z;. crt_val is
the current value A; proposes for x;.

e [[k] stores a CA for z; = k, that is inferred solely from the
(local) constraints between x; and prior variables.

e ca[k][j] stores a CA for z; = k, that is obtained from valued
nogoods received from A;.

e [vn[k][j] stores the last valued nogood for variables with
higher and equal priority than k and that is received from
Aj, j>1. lun[K][i] stores nogoods coming via threshold/ok?
messages.

e [r[k] stores the last valued nogood received from Ay.

e h[k] stores a CA for z;=k that is inferred from calk]j],
Ir[t], lunlt][j], and [[k], for all j and t. Before inference, the
valued nogoods in lvn[t][j] need to be first translated into
CAs as described in Remark 1.

e lastSent[k] stores the last valued nogood sent to Ay.

6.2 ADOPT with valued nogoods

The pseudocode for ADOPT-ng is given in Algorithm 1. To
extract the cost of a CA we introduce the function cost(),
cost((SRC, T, c,v)) returns c¢. The min_resolution(j) func-
tion applies min-resolution over all values of the current agent,
but using only CAs having no assignment from agents with
lower priority than A; (e.g., not using lvn[t][k] for ¢t > j).
The sum_inference() function used in Algorithm 1 applies
sum-inference on its parameters whenever this is possible (de-
tects disjoint SRCs), otherwise selects the nogood with high-
est threshold or whose lowest priority assignment has the
highest priority (this has been previously used in [2, 23]).
Function vn2ca(vn,i) transforms a valued nogood vn in a
cost assesment for z;. Its inverse is function ca2vn(). Func-
tion target(N) gives the index of the lowest priority variable
present in the nogood N. Like with file expansion, “*” in an
index of a matrix means the set obtained for all possible values
of that index (e.g., lvn[*][t] stands for {lvn[k][t] | Vk}).

An agent A; stores several nogoods (CAs) coming from the
same source A; and applicable to the same value v, namely
the one at calv][t], all those at lvn[k|[t] for any k, and Ir[t]
(when v is crt_val). Notation Irft],, stands for vn2ca(lr[t])
when Ir[t]’s value for z; is v, and @ otherwise.



Remark 2 The order of combining CAs matters. To com-
pute h[v]:

1. a) When maintaining DFS trees, for a value v, CAs are
combined for each DFS subtree s:
tmp[v][s]=sum-inferenceics (cafv][t]);

b) Else, CAs coming from each agent A: are considered:
tmp o] ft]=cafo)[t);

2. CAs from step 1 (a or b) are combined:
h[v]=sum-inference(tmp[v][*]); for (b), start with t=i+1

3. Add l[v]: hjv]=sum-inference(hfv], I[v]);

4. Add threshold: hfv]=sum-inference(hfv], luon[*][i])

In ADOPT-ng agents are totally ordered, A; having the
highest priority and A, the lowest priority. Each agent
A; starts by calling the init() procedure, which initializes
its | with valued nogoods infered from local (unary) con-
straints. It assigns x; to a value with minimal local cost,
crt_val, announcing the assignment to lower priority agents
in outgoing-links. The agents answer any received mes-
sage with the correponding procedure: “when receive ok?”,
“when receive nogood”, and “when receive add-link”.

When a new assignment is learned from ok? or nogood
messages, valued nogoods based on older assignments for the
same variables are discarded and the [ vector is updated. Re-
ceived nogoods are stored in matrices ca, Ir and lvn. The
vector h is updated on any modification of I, lvn, or ca. A; al-
ways sets its crt_val to the index with the lowest CA threshold
in vector h (on ties preferring the previous assignment). On
each change to the vector h, its values are combined by min-
resolution to generate new nogoods for each higher priority
agent (or ancestor, in versions using DFS trees). The gener-
ation and use of multiple nogoods at once is already shown
useful for the constraint satisfaction case in [29].

The threshold valued nogood tvn delivered with ok? mes-
sages sets a common cost on all values of the receiver (see Re-
mark 1), effectively setting a threshold on costs below which
the receiver does not change its value. This achieves the effect
of THRESHOLD messages in ADOPT.

Intuitively, the convergence of ADOPT-ng can be noticed
from the fact that valued nogoods can only monotonically in-
crease valuation for each subset of the search space, and this
has to terminate since such valuations can be covered by a
finite number of values. If agents A;, j<i no longer change
their assignments, valued nogoods can only monotonically in-
crease at A; for each value in D;: changes to ca are accepted
only when nogoods’ thresholds increase.

Lemma 1 ADOPT-ng terminates in finite time.

Proof.

Given the list of agents A1, ..., Ay, define the suffix of length
m of this list as the last m agents. Then the result follows
immediately by induction for an increasingly growing suffix
(increasing m), assuming the other agents reach quiescence.

The first step of the induction (for the last agent) follows
from the fact that the last agent terminates in one step if the
previous agents do not change their assignments.

Assuming that the previous induction assertion is true for
any suffix of k agents. Let us prove that it is also true for a
suffix of k+1 agents: For each assignment of the agent A,,_,
the remaining k£ agents will reach quiescence, according to

procedure init do
h[v] := l[v]:=initialize CAs from unary constraints;
crt_val=argmin, (cost(h[v]));

| send ok?((xz;, crt_val),0) to all agents in outgoing-links;

when receive ok? ((z;,v;), tvn) do
integrate((z;, v;));
if (tvn no-null and has no old assignment) then
k:=target(tvn); // threshold tvn as common cost;
lun[k][i]:=sum-inference(tvn,lvn[k][i]);
| check-agent-view();
when receive add-link ((z;,v;)),A; do
add A; to outgoing-links;
| if ({z;,v;)) is old, send new assignment to Aj;
when receive nogood (rvn, t) from A; do
foreach new assignment a of a linked variable x; in ron
do
| integrate(a); // counters show newer assignment;

if (an assignment in rvn is outdated) then
if (some new assignment was integrated now) then
| check-agent-view();

return;

foreach assignment a of a non-linked variable x; in ron
do
| send add-link(a) to Aj;

if ((j := target(rvn)) # i) then
lunlj][t]:=rvn; values = D;;
vn2ca(rvn,i) — CA rca for any value of z;;
else

vn2ca(rvn,i) — CA rca for a value p of zj;
| values = {u};lr(t]:=rca;
foreach (value v in values) do
if v == crt_val then
either: ca[v][t]:=sum-inference(rca,calv][t]);

or calv][t]:=rca;

optional: // used in our experiments
update h[v][t] and retract changes if h[v][t]’s cost
decreases;
else
optional: // used in our experiments
ca[v][t]:=sum-inference(rca,ca[v][t]);
update h[v][t] and retract changes if h[v][t]’s cost
decreases;

| check-agent-view();

Algorithm 1: Procedures of A; for receiving messages in
ADOPT-ng. Subroutines are described in Algorithm 2.

the assumption of the induction step, or the assignment’s CA
threshold increases. By construction, thresholds for CAs as-
sociated to the values of A,,_ can only grow. After values are
proposed in turn and the smallest threshold reaches its high-
est estimate, agent A, _x selects the best value and reaches
quiescence. The other agents reach quiescence according to
the induction step. o

Lemma 2 The last valued nogood sent by each agent addi-
tively integrates the non-zero costs of the constraints of all of
1ts successors.



procedure check-agent-view() do
for every(v € D;) update [[v] and recompute h[v];
for every A; with higher priority than A; (respectively
ancestor in the DF'S tree, when one is maintained) do
if (h has non-null cost CA for all values of D;) then
vn:=min_resolution(j);
if (vn # lastSent[j]) then
| send nogood(vn,i) to Aj;;

crtval=argmin, (cost(h[v]));
if (crt_wal changed) then
send ok?({x;, crtval),
ca2vn(sum-inference(lvn[*|[k],ca[ert_val][k]))
to each Aj in outgoing_links;

procedure integrate((z;,v;)) do

discard CAs and nogoods in ca, lvn, and Ir that are
based on other values for z;;

use Irft], and lvn to replace discarded ca;

store (x;,v;) in agent view;

Algorithm 2: Procedures of A; in ADOPT-ng

Proof. At quiescence, each agent Ay has received the valued
nogoods describing the costs of each of its successors, in the
list given by the used ordering on agents (or descendants in
the DFS tree when a DFS tree is maintained).

The lemma results by induction for an increasingly growing
suffix of the list of agents (in the order used by the algorithm):
It is trivial for the last agent.

Assuming that it is true for the agent Ay, it follows that it is
also true for agent Ax_; since adding Ax_1’s local cost to the
cost received from Ay will be higher (or equal when removing
zero costs) to the result of adding Ax_1’s local cost to one
from any successor of Ay. Respecting the order in Remark 2
guarantees this value is obtained. Therefore the sum between
the local cost and the last valued nogood coming from Aj
defines the last valued nogood sent by Aj_. mi

Theorem 4 ADOPT-ng returns an optimal solution.

Proof. We prove by induction on an increasingly growing
suffix of the list of agents that this suffix converges to a solu-
tion that is optimal for their subproblem.

The induction step is immediate for the suffix composed
of the agent A, alone. Assume now that it is true for the
suffix starting with Ax. Following the previous two lemmas,
one can conclude that at quiescence Ai_1 knows exactly the
cumulated cost of the problems of its successors for its cho-
sen assignment, and therefore knows that this cumulated cost
cannot be better for any of its other values.

Since Ax_1 has selected the value leading to the best sum
of costs (between his own local cost and the costs of all subse-
quent agents), it follows that the suffix of agents starting with
Aj_1 converged to an optimal solution for their subproblem.
o

The space complexity is basically the same as for ADOPT.
The SRCs do not change the space complexity of the valued
nogood.

6.3 Optimizing valued nogoods

Both for the version of ADOPT-ng using DFS trees, as well as
for the version that does not use such trees preprocessing, if
valued nogoods are used for managing cost inferences, then a
lot of effort can be saved at context switching by not discard-
ing nogoods that remain valid [8]. The amount of saved effort
is higher if the nogoods are carefully selected (to minimize
their dependence on changes in often switched low priority
variables). Computing valued nogoods by minimizing the in-
dex of the least priority variable involved in the context is
shown by our experiments to perform well in this case. This
is done by computing the valued nogoods using incremen-
tally lower priority variables, and keeping the valued nogoods
with lower priority agents only if they have better thresholds.
Nogoods optimized in similar manner were used in several
previous DisCSP techniques [2, 23].

6.4 Exploiting DFS trees

Note that while our versions of ADOPT work better than
the original DFS-tree based version, they can also create hy-
brids by using an existing DFS tree. We have identified two
ways of exploiting such an existing structure. The first way is
by having each agent send its valued nogood only to its par-
ent in the tree (less efficient in length of longest causal chain
of messages but more efficient in number of total messages),
roughly equivalent to the original ADOPT. The other way
is by sending valued nogood to all the ancestors. This later
hybrid can be seen as a certain fulfillment of a direction of
research suggested in [12], namely communication of costs to
higher priority parents.

An extension proposed to this work consists in integrating
consistency maintenance in nogood-based optimization. This
can be done with the introduction of valued consistency no-
goods, as described in [15, 16].

6.5 Dynamic Ordering of agents/variables

ADOPT-ng can be seen as an extension of ABT. The ex-
tension of ABT called ABTR [21, 17] proposes a way to ex-
tend ABT-based algorithms to allow for dynamic ordering
on agents variables. ABTR was defined as a simple family of
algorithms that can be parametrized with any complex dy-
namic ordering heuristic that respects certain simple guide-
lines. Aheuristic in ABTR is defined by a very general frame-
work described by a tuple (K,S,M,P,H):

K: a knowledge domain of interest for the heuristic (e.g., cur-
rent domain sizes, existence of a current domain wipe-out,
positions of agents).

S: a set of integers. Only its intersection with [0..(n—2)] is
relevant.

M: apolicy dynamically mapping a set of counters, {C7, |k € S},

to the n agents as function of K (e.g., the counter Cj; goes
to the agent on position k).

P: an ordering policy for each agent that holds a counter C},. It
proposes a given ordering of the last n—k agents as function
of K. This reordering (new K), when projected through M,
should impact only the mapping of counters {Cj |i > k}.



H: a set of rules specifying when an agent that holds a counter
C}, may use (or be told) new data from K for proposing a
new order.

In ABTR, the counters Cj}, counts the reordering proposals
for the last n—k agents (made by the agent holding it) and
all messages are tagged with the current order and with the
(signature) vector clock induced by the value of the coun-
ters known to the sender. ABTR’s proof guarantees that any
heuristic that can be described with this general framework
leads to a sound, complete and terminating asynchronous dis-
tributed algorithm if it respects the additional constraint on
H that the delay between the moment the last ok? message
was sent by agents A® k<i, (or from start) and any subse-
quent reordering request sent by the owner of C], must be
finite. Such heuristics are called ABTR compliant.

Our experiments imply that most efficient dynamic order-
ing heuristics for ADOPT-ng will have to maintain compat-
ibility with short DFS trees. For example, one can define a
heuristic dynamic-DF'S that rebuilds DFS sub-trees of the cur-
rent node with a greedy approach where the next neighbor is
selected using the current state of the search (domain sizes
after enforcing weighted arc-consistency (WAC*)). Finding
good heuristics was shown to be a difficult problem [23, 32].

7 Experiments

We implemented several versions of ADOPT-ng, differing by
how the agents picks the targets of their nogoods. In the im-
plementation ADOPT-pon, valued global nogoods are sent
only to the parent of the current agent in the DFS tree. In
ADOPT-don, the valued global nogoods are sent to all the
ancestors of the current agent in the DFS tree. ADOPT-aon
is a version where the DF'S tree is reduced to the linear list of
agents (each having the predecessor as parent). ADOPT-pos,
ADOPT-dos, and ADOPT-aos are the corresponding versions
with valued nogoods rather than valued global nogoods. These
are early versions that do not yet exploit threshold nogoods
in ok? messages.

The algorithms were compared on the set of problems
posted together with ADOPT, which are the same problems
that are used to report ADOPT’s performance in [12]. To cor-
rectly compare our techniques with the original ADOPT we
have used the same order (or DFS trees) on agents for each
problem. The set of problems distributed with ADOPT and
used here contain 25 problems for each problem size. It con-
tains problems with 8, 10, 12, 14, 16, 18, 20, 25, 30, and 40
agents, and for each of these numbers of agents it contains test
sets with density .2 and with density .3. Results are averaged
on the 25 problems with the same parameters.

The number of cycles, i.e., longest causal (sequential) chain
of messages, for problems with density .2 is given in Figure 2.
Results for problems with density .3 are given in Figure 3. The
original ADOPT for 20 and 25 agents and density .3 required
more than 2 weeks for solving one of the problems, and it was
therefore evaluated using only the remaining 24 problems at
those problem sizes.

We can note that the use of valued nogoods brought up to
10 times improvement on problems of density 0.2, and up to
5 times improvement on the problems of density .3.

Another interesting remark is that sending nogoods only to
the parent node is significantly worse (in number of cycles),
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Figure 2. Longest causal chain of messages (cycles) used to
solve versions of ADOPT using CAs, on problems with density .2.
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Figure 3. Longest causal chain of messages (cycles) used to
solve versions of ADOPT using CAs, on problems with density .3.

than sending nogoods to all ancestors. Versions using DFS
trees require less parallel/total messages, being more network
friendly, as seen in Figure 4.

Figure 3 shows that, with respect to the number of cycles,
the use of SRCs practically replaces the need of knowing the
DFS tree since ADOPT-aos is one of the best solvers, only
slightly worse than ADOPT-dos. SRCs bring improvements
over versions with valued global nogoods, since SRCs allow
detection of dynamically obtained independences.

We do not perform any runtime comparison since our ver-
sions of ADOPT are implemented in C++, while the original
ADOPT is in Java (which obviously leads to all our versions
being an irrelevant order of magnitude faster).

It is visible from Figure 3 that the highest improvement
in number of cycles is brought by sending valued nogoods
to other ancestors besides the parent. The next factor for
improvement with difficult problems (density .3) was the use
of SRCs. The use of the structures of the DF'S tree bring slight
improvements in number of cycles (when nogoods reach all
ancestors) and large improvements in total message exchange.

Additional experiments were executed where we compared
the performance of ADOPT-ng on randomly ordered prob-
lems versus the performace when the static ordering of the
variables was chosen to be compatible with a precomputed
DFS tree. Results show 15 times improvements for the case
where compatibility with a DF'S tree order was enforced. Also,
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Figure 4. Total number of messages used by versions of
ADOPT-ng using CAs to solve problems with density .3.

according to experimental results, the improvements brought
by threshold nogoods are minor in ADOPT-ng (approx 1prob-
ably because the stored nogoods of the agent already maintain
much of that information. Experiments were also run compar-
ing ADOPT-ng with Valued Dynamic Backtracking [4], and
ADOPT-ng is shown to be several times better. Due to lack
of space, detailed graphs with all results will be given only in
an extended version.

8 Conclusions

We propose a generalization of the ADOPT algorithm, de-
noted ADOPT-ng, based on valued nogoods. References to
culprit constraints (SRCs) allow detection and exploitation
of dynamically created independences between subproblems
(that are due to some assignments).

Besides that elegance brought by valued nogoods to the de-
scription and implementation of ADOPT in ADOPT-ng, use
of SRCs to dynamically detect and exploit independences, as
well as generalized communication of nogoods to several an-
cestors, brings experimental improvements of an order of mag-
nitude. The compatibility of the current order on variables
with a good (short) DFS tree is shown important and this
provides significant hints towards promising ABTR-compliant
dynamic heuristics to be explored in the extension of ADOPT-
ng with the reordering of ABTR.
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