
Planning One-Eye-in-Arm Robot for Object Localization

Srinivasa Venkatesh
Department of Computer Sciences

Florida Institute of Technology

Melbourne, Florida 32901

svenkatesh2010@my.fit.edu

Marius Silaghi
Department of Computer Sciences

Florida Institute of Technology

Melbourne, Florida 32901

msilaghi@fit.edu

ABSTRACT

Locating known objects is an important task for robots.
When a robot has a single camera located in its arm, the
robot can use it to get pictures from multiple points of
view. These pictures can be used for locating in 3D a
desired object, when the object is found on the floor within
a bounded distance from the robot.

Here we propose a technique for planning a sequence of
arm positions to be used for capturing the camera snapshots
that can locate the object with given precision. Heuristics
are used to reduce the number of steps (i.e., camera snapshot
taking operations) performed by the robot following the
obtained contingency plan.

Keywords: Object Localization, Eye-in-hand

1. Introduction

In common industrial applications the robotic hand is
supposed to known precisely where to find the object that it
has to manipulate. However, errors and unexpected events
may place the target object in unexpected positions and
locations.

A stereo vision system surveying the whole operational
environment can locate the target object and let the robot
update its working plan accordingly. However, such a setup
can encounter problems if the view of the target object is
obstructed by some features of the environment.

Furthermore, when the robotic hand is placed on a mobile
platform, the environment of the robot may be too large to
be efficiently covered by an external stereo vision system.

It has been therefore considered relevant to address the
problem of locating target objects using cameras found in
the arm of the robot. Such a setup gives the robot significant
flexibility in searching for objects in complex environments.

While one can place a stereo vision system in the arm
of the robot, a single camera can also be sufficient, since
the mobility of the arm enables the robot to dynamically
construct its stereo vision with images taken from multiple
points of view.

Compared to a stereo vision system located in the arm, the
limited precision of the arm movement, combined with other
errors in stabilizing the robot support, may lead to higher
errors in the 3D location inferred from two given images
captured using a single camera. However, the robotic arm
can take an unlimited number of pictures from a multitude of
points of view, compensating for these errors at the expense
of a set of extra movements.

Besides the problem of computing the exact location of
the object from stereo vision, a planning technique needs
to be designed for an initial search of the object in the
environment of the robot. We propose to identify the object
using a combination of features, namely using a Bayesian
Network to fuse separate detectors based on color, shape
and texture of the object.

In this work we assume that the object is placed within
a bounded distance from the trunk of the robotic arm. We
report experiments with a ST12 robotic arm equipped with
a Sentech ST-MC33 camera in its hand and which looks for
a green box within a circle of one meter, centered in its base.

2. Related Work

Gradient based features are included in our analysis because
they can be used to detect local changes in color, texture,
and brightness. Here, we use the computational architecture
of gradient features in [7].

Contour based representations have a long history in
object recognition and computer vision. Even though
previous approaches had some success, it is clear that finding
contours exactly belonging to the shape of an object is a
hard problem. This insight has given rise to an emphasis on
local texture descriptors [8], the dominant approach today.
These appearance based descriptors summarize local texture
information in the form of histograms of gradients [5], shape
context [1], and geometric blur [2]. While prominent edges
are roughly encoded, exact shape location has been replaced
by a representation of texture. Curvature of contours and
junctions provide crucial shape information.

Object Recognition. Object recognition techniques have
been the focus of a large amount of literature because of their
direct application to real-world problems. The problem of
object recognition in the presence of high uncertainty led to
the development of systems that perform recognition using
a sequence of observations from different points of view.
The performance of an object recognition system depends
on two major components: an inference component which
fuses the evidence accumulated from successive observations,
and an observation selection component which chooses the
parameter settings for the next observation. In this work,
probabilistic inference is employed as it is a particularly
effective method for evidence fusion.

Bayesian Recognition. Consider a set of objects oi, i ∈
{1, ..., n} and a camera facing an object whose class and

2015 Florida Conference on Recent Advances in Robotics, FCRAR 2015 Melbourne, Florida, May 14 - 15, 2015

pose are to be identified. Let the camera measurement be
parameterized by a feature vector d, which depends on the
identity oi of the object, its pose θ and the viewing position
v. Under uncertainty, this relationship can be represented
through a probability density function

p (d | oi, θ, v) , i = 1, ..., n; θ ∈ S2, v ∈ V

(where S2 is the surface of a unit sphere and v denotes
the set of possible camera viewpoints) whose parameters
are assumed to be learned or modeled off-line through some
training procedure [6].

The processing and understanding objects by robots is
a process designed to produce information based on visual
systems and software. In our experiment we use the Open
Source Computer Vision Library (OpenCV) for detection
and understanding the objects captured by the camera of
the R12 robot.

Bayesian Networks. The Bayesian network is a knowledge
representation technique for modeling uncertainty. A
Bayesian network is a directed acyclic graph, where each
node is associated with a condition probability table (CPT).
The nodes in a Bayesian network represent random variables
in a domain, and the arcs between nodes represent the
conditional dependency relationships among the variables.
The CPT of a node gives the conditional probability
distribution of its variable given evidence about the value
of variables in the parent nodes.

A directed graph G can be defined as an ordered pair that
consists of a finite set V of nodes and an irreflexive adjacency
relation E on V . The graph G is denoted as (V,E). For each
(x, y) ∈ E say that there is an arc (directed edge) from node
x to node y. In the graph, this is denoted by an arrow from
x to y, and x and y are called the start point and the end
point of the arrow respectively. We also say that node x and
node y are adjacent or x and y are neighbors of each other.
x is also called a parent of y and y is called a child of x. By
using the concepts of parent and child recursively, we can
also define the concept of ancestor and descendant. We also
call a node that does not have any parent a root node. By
irreflexive adjacency relation we mean that for any x ∈ V ,
(x, x) 6∈ E, i.e., an arc cannot have a node as both its start
point and end point.

We use a Bayesian network to determine the probability
of detecting the object. The Bayesian network can be used
to model a world and to answer probabilistic queries about
the random variables that describe this world. For example,
the network can be used to update the knowledge about
the state of a subset of variables when other variables (the
evidence variables) are observed. This process of computing
the posterior distribution of variables given evidence is called
probabilistic inference. The posterior helps choose values
for a subset of variables to minimize some expected loss
function, for instance the probability of decision error [4].

3. Problem Formalization

The problem we address is the use of a robotic arm equipped
with a camera in its hand to determine the position of an
object (green box) of known dimensions. This object can be
placed at any location and with any orientation within the
robot work-space.

The problem can be formalized as a contingency search
problem (S,A,M,G) over a set of beliefs:

• S: a set of states S = {si}i (a state si =<
ri, {σk, pk}k > is an arm position ri and a belief map
associating a set of areas σk covering the search space,
with occurence probabilities pk)

• A: a set of actions (e.g., move arm, capture image to
analyze an area), each of them having a certain cost
(e.g., time, energy). The sum of all actions over the
whole plan should be minimized.

• M: a set of transitions probabilities {Mat
i,j}i,j,k (from

each belief map si to each new belief map sj , given an
action at)

• G: a goal state (belief map with a FOUND state or all
REJECT/UNKNOWN states)

The set of transition probabilities M is approximated in
our technique to assume that Mat

i,j is maximal for raising pk
to 1 whenever the action at consists of analyzing σk.

Given the whole search space has been explored, the
algorithm finds the location with the highest probability for
matching the target object. It declares the object to be
FOUND when the probability surpases a high threshold.

Viewpoint Selection. The object recognition problem can
be defined as that of finding the viewpoint selection strategy
that minimizes the number of observations required to
perform recognition of an unknown object with a particular
level of confidence. This strategy is dependent on the
relationship between camera observations, object class,
object pose and camera parameters (i.e. viewing position).

In order to determine an object’s position in space from
the image captured by camera, the focal point of the camera
must be known. If the focal point of the camera is not known
in advance, it can be experimentally determined. In our
case this was done by taking advantage of the symmetry of
the angles between the lens and field of view and the angle
between the lens and the focal point as seen in Figure 1.

Figure 1. Focal point relationship.

The angle was determined by photographing an object of
known dimensions at a known vertical distance away as seen
in Figure 2.

2015 Florida Conference on Recent Advances in Robotics, FCRAR 2015 Melbourne, Florida, May 14 - 15, 2015

Figure 2. Angle Calibration.

4. Planning Technique

We use the following variables to detect the object in the
work-space.

1. Object’s Color match score

2. Object’s Shape match score

3. Object’s Texture match score

Object’s Color match score. To detect and segment
an object from an image one can use its color. The
colors in the object and the background should have a
significant difference in order to provide information for the
segmentation. With this method, initially one needs to
determine which colors to find and how to separate object
from background colors.

Various linear or non-linear filtering operations are
available for 2D images. It means that for each pixel location
(x, y) in the source image, its neighborhood is considered
and used to compute the response. In case of a linear
filter, this is a weighted sum of pixel values. In case of
morphological operations, the filter exploits the minimum or
maximum values. The computed response is stored in the
destination image at the same location (x, y). The output
image is of the same size as the input image. Normally, the
functions support multi-channel arrays, in which case every
channel is processed independently. Therefore, the output
image will also have the same number of channels as the
input one.

In this case we transform the RGB image to HSV (Hue
Saturation Value) image format. We use a filter function
to specify lower and upper bound parameters for the color
threshold and they are scalars. Color thresholds can be
learned automatically by comparing images of the known
target object with images of the background, and can be
trained using support verctor machines (SVMs). In our
experiments the threshold value filter applies for the Green
color.

Object’s Shape match score. To segment the shape, we
convert the color image to GRAY. Then we find the contour
using the algorithm in [9].

In the contour template match algorithm, we load the
created contour image file and the template contour image
file. We use the OpenCV keypoint detector. Keypoints

are computed both for the template and for the candidate
images. The Hamming distance between the keypoints of a
candidate and a template is evaluated, and the score of the
match is assumed to be the percentage of the matching.

Object’s Texture match score. In this method, we have
a set of template images for the object. There are five
template points/images which are considered:

1. Bottom right corner of the object

2. Bottom left corner of the object

3. Top right corner of the object

4. Top left corner of the object

5. Top view of the object

We compare a template image against overlapped
image regions using the square differences method
(CV TM SQDIFF in OpenCV). The min and max are
calculated over the sub-array, and then this sub-array is
normalized. The global minimum and maximum are used to
determine how close the object matching is. The template-
based score of the match based on the comparison of the
templates is evaluated as the ratio between range and an
upper bound.

If the object detection score in an area is lower than
the minimum threshold value then the area status will be
updated as Rejected. If the object detection score is greater
than or equal to the minimum threshold value and is less
than or equal to the minimum good value, then the object
status will be updated as Unlikely. If the object detection
score value is greater than or equal to the Maximum Good
Value and is less than the Maximum Threshold Value, then
the object status will be updated as Likely.

If the object detection score value is greater than or equal
to the Minimum Good Value and is less than or equal
to Maximum Good Value, then the object status will be
updated as Found as it scores high score compared to other
scenarios.

These scores are used to infer a posterior probability of
the occurence of the object in an area, using the Bayesian
Network described later. The Figure 3 shows the Search
splitting algorithm model used to explore the search space.

Figure 3. Search splitting algorithm model.

Algorithms used. To find the object in a given work-space
of the robot, we have followed the logic and procedure
which are described in Algorithms 1 and 2. Algorithm 1
splits the work-space received as parameter into sub-areas,
hierarchically, and passes them on to Algorithm 2. This 2nd

2015 Florida Conference on Recent Advances in Robotics, FCRAR 2015 Melbourne, Florida, May 14 - 15, 2015

Algorithm 1: Find the object by scanning the Robot’s
work-space

1 function FindObjectBySearch(SearchSpace)
2 (status, location, probability) ←

FindObject(SearchSpace);
3 if (status = FOUND) OR (status = REJECT)) then
4 return (status, location);
5 end
6 add(RegionsQueue, (SearchSpace, probability));
7 forever do
8 if empty(RegionsQueue) then break;

first region← extractHead(RegionsQueue);
9 (crt region, rest region)← split(first region);

10 (status, location, probability) ←
FindObject(crt region);

11 if (status = FOUND) OR (status = REJECT)
then

12 return (status, location);
13 end
14 if scanDepth(crt region) == MAXDEPTH then
15 updateBestFound(probability,location)
16 else
17 add(RegionsQueue, (crt region, probability));
18 end
19 if (not empty(rest region)) then
20 (status, location, probability) ←

FindObject(rest region);
21 if (status = FOUND) OR (status = REJECT)

then
22 return (status, location);
23 end
24 if scanDepth(rest region) == MAXDEPTH

then
25 updateBestFound(probability,location);
26 else
27 add(RegionsQueue, (rest region, probability));

28 end

29 end

30 end
31 return (UNKNOWN, bestFound);

Algorithm 2: Find the object in a given current space

1 function FindObject(crt space)
2 Locate Robot camera to capture crt space;
3 Capture image;
4 Calculate probability value and assign them ;
5 ColorProbV al← Get probability value;
6 ShapeProbV al← Get probability value;
7 TextureProbV al← Get probability value;
8 ImgProbV alue =

BN(ColorProbV al, ShapeProbV al, TextureProbV al);

9 if current Scan Depth == MAXDEPTH then
10 return (UNKNOWN, ImgProbValue);
11 end
12 if (ImgProbV alue≥MaxProbV alue) then
13 return (FOUND, location, ImgProbV alue);
14 end
15 if (ImgProbV alue<MinProbV alue) then
16 return (REJECT, location, ImgProbV alue);
17 end
18 return (LIKELY, location, ImgProbV alue);

algorithm captures the image and calculates the probability
of the occurrence of the target object based on Bayesian
Network inference. It decides whether the object is present,
absent, or if more search is needed, based on the obtained
probability value. The conclusion is returned to Algorithm 1
in a tuple containing a status, location and probability
value for the image. Based on the data which is received,
Algorithm 1 would check whether the object is found and if
the condition is met, it would return the status and location
of the object to the user. Otherwise, if more search is
found needed, it adds the studied area and the probability
of the occurrence value into the Regions priority queue.
A priority queue is a data structure which helps extracting
efficiently the area with the highest probability value on each
query.

The techniques loops continuously while the Regions

queue is not empty. It retrieves the most promising
region (with the highest probability of occurrence for the
object) from the queue and breaks it into current-region

and rest-region by using the split function. First the
current-region is analyzed by Algorithm 2 to extract the
status of the detection, the location of the object and its
probability value. If more search is found needed, one checks
whether the scan depth reached the maximum depth value.
If it is reached, then the obtained probability and location
is used to update the current best found hypothesis for the
object location (if the occurrence probability is higher then
previously found ones). If the scan depth has not reached the
maximum depth, then Algorithm 1 would add the current
region and the probability to Regions priority queue.

4.1 Bayesian Network

Figure 4 shows the Bayesian Network Model used in our
experiments. We use the Equation 1 to calculate the
probability for the given image.

p (O | CST) =
p (C | O) p (S | O) p (T | O) p (O)

p (CST)
(1)

2015 Florida Conference on Recent Advances in Robotics, FCRAR 2015 Melbourne, Florida, May 14 - 15, 2015

Figure 4. Bayesian Network Model.

p (CST) =
∑
o

p (C | o) p (S | o) p (T | o) p (o) (2)

Figure 5 shows the flow diagram for the object detection
process.

Figure 5. Flow diagram for the object detection process.

4.2 Bayesian Network Design

We build a Bayesian Network modeling the relation between
the real presence of an object in an image and the
quality of the hypothesised matches proposed by various
techniques/sensors (color match, shape match, texture

match). In our experiments we use three different techniques
to find the object.

4.3 Bayesian Network Training

We train the Bayesian Network, inferring the posteriors in its
conditional probability tables. When we process the image
with our three different techniques (like Color, Shape, and
Texture), each computes a matching score for the object.
The Bayesian Network is trained to merge these scores into
a probability of the match.

Table 1 shows an example of the CPT for Color as it
is populated during the training algorithm (prior to its
normalization). We perform supervised training, namely
where each image is tagged as either containing or not
containing the target object. Originally all entries are 0.
For each image analyzed, we obtain the classification for the
current detector (e.g., Color), and we increment the entry
in the corresponding table. After all training images are
analyzed, the table is normalized such that the sum of the
numbers on each row is 1.

Table 1. Training phase of CPT for Color.

Object C Rejected C Unlikely C Likely C Found

F 394 5 1 0
T 2 3 7 538

5. Experiments

A Bayesian Network was trained using 1000 images taken of
the search-space from different positions and with different
environment luminosities.

We run 100 experiments using the aforementioned
algorithm. The object was detected in 99 experiments with
an average of 6 snapshots for a maximum detection error of
the position of approximately 1 cm.

The Table 2 shows how the detection quality varies with
the detection thresholds.

Table 2. Object detection results table.

Reject Unlikely Likely Found Total % Found

1 2 5 992 1000 99.20

6. Conclusion and Future Work

We addressed the problem of locating a known object within
a bounded distance from a robotic arm equipped with
one camera in its arm. A planning technique is proposed
based on heuristics for reducing the number of snapshot-
capturing steps. This heuristic is based on a low-to-high
resolution search, where the environment is first scanned
at low resolution before exploring with increased resolution
the areas where the target object is located with the highest
probability.

The original search space is segmented into a set of areas
based on the maximum view range of the camera. After
a low resolution image is taken of an area, a probability

2015 Florida Conference on Recent Advances in Robotics, FCRAR 2015 Melbourne, Florida, May 14 - 15, 2015

of occurrence is assigned to it. Further, a binary search
is used to explore the areas with the highest probability
of occurrence for the target object, until a threshold of
detection is passed, or the search space is exhausted.

The contingency plan searches an initial location of the
target object using a detector that fuses the decision of three
sensors: color, shape, and texture. Once a first location of
the object is hypothesized, the 3D position in refined using
a sequence of snapshots captured on a path that the arm is
following in approaching the target object.

In our experiments with a ST12 robot using a ST-MC33
camera, the target object (a green box) was detected in
average after less than 6 snapshots.

References
[1] S. Belongie, J. Malik, and J. Puzicha. Matching shapes.

In Computer Vision, 2001. ICCV 2001. Proceedings.
Eighth IEEE International Conference on, volume 1,
pages 454–461 vol.1, 2001.

[2] A. Berg and J. Malik. Geometric blur for template
matching. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pages I–607–
I–614 vol.1, 2001.

[3] T. Bui and K.-S. Hong. Supervised learning of a
color-based active basis model for object recognition.
In Knowledge and Systems Engineering (KSE), 2010
Second International Conference on, pages 69–74, 2010.

[4] J. Cheng, D. A. Bell, and W. Liu. Learning bayesian
networks from data: An efficient approach based on
information theory. Technical report, University of
Alberta, 1998.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients
for human detection. In Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886–893 vol. 1, June
2005.

[6] C. Laporte, R. Brooks, and T. Arbel. A fast
discriminant approach to active object recognition and
pose estimation. In Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference
on, volume 3, pages 91–94 Vol.3, 2004.

[7] D. Martin, C. Fowlkes, and J. Malik. Learning to
detect natural image boundaries using local brightness,
color, and texture cues. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(5):530–549, May
2004.

[8] J. Schlecht and B. Ommer. Contour-based object
detection. In Proc. BMVC, pages 50.1–50.9, 2011.
http://dx.doi.org/10.5244/C.25.50.

[9] S. Suzuki and K. Abe. Topological structural analysis
of digitized binary images by border following. CVGIP,
30(1):32–46, 1985.

2015 Florida Conference on Recent Advances in Robotics, FCRAR 2015 Melbourne, Florida, May 14 - 15, 2015

