
Hiding absence of solution for a Distributed Constraint Satisfaction Problem

Marius-Călin Silaghi
Florida Institute of Technology

Abstract

A distributed constraint satisfaction problem (DisCSP) is de-
fined by a set of agents, trying to find assignments for a
set of variables with known domains and subject to secret
constraints. They can model applications like auctions, dis-
tributed team-making, scheduling, and configuration.
Secure multiparty computations (MPC) can pick and reveal
randomly one of the solutions of any distributed constraint
satisfaction and optimization problem. Our previous algo-
rithms are based on an arithmetic circuit for selecting a ran-
dom element out of the elements with a given value in a secret
array (Silaghi 2004a). Here we show an improvement based
on a very simple and elegant (optimized) version of the in-
volved functions and on the usage of CSP solvers to exploit
public constraints. The technique can hide the absence of so-
lutions.

The algorithm proposed here is called MPC-DisCSP4.
Compared to previous techniques, MPC-DisCSP4 is faster
and can hide the absence of solutions.

Definition 1 A Distributed CSP is defined by five sets
(A,X,D,C,O). A={A1, ..., An} is a set of agents. X =
{x1, ..., xm} is a set of variables and D = {D1, ..., Dm}
is a set of domains such that xi can take values only from
Di = {vi1, ..., vidi}. C = φ0 ∪ {φ1, ..., φc} is a set of con-
straints. φi involves an ordered subset Xi = {xi1 , ..., xiki}
of the variables in X , Xi⊆X , and constrains the legality
of each combination of assignments to the variables in Xi.
An assignment is a pair 〈xi, vik〉 meaning that variable xi is
assigned the value vik. Each constraint φi, i > 0, is known
only by one agent, being the secret of that agent. There may
exist c0 public constraints in C, φ0={φ1

0, ..., φ
c0
0 }.

A tuple is an ordered set. The projection of a tuple ε of
assignments over a tuple of variables Xi is denoted ε|Xi . A
solution of a DisCSP (X ,D,C) is a tuple of assignments ε
with one assignment for each variable in X such that each
φi∈C is satisfied by ε|Xi (written φi(ε|Xi)).

MPC-DisCSP4. Figure 1 gives an overview of MPC-
DisCSP4, also shown in Algorithm 1. MPC-DisCSP4 is
composed of a CSP solver, a mix-net, and a set of functions

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

10987654321

0110011101

1101001110

0001000000

0000000100

0101111100

Choice ID:
Satisfaction

Shuffling by participant 1:

Shuffling by participants…i:
…………………………

…………………………………………………………………..

……………………………………………………………………….
Result vector after shuffling by participant n:

Selection of first solution (2)

10987654321

……………………………………………………………………….
Un-shuffling by each participant:

……………………………………………………………………….

Result: 7 0001000000

shared

optional

Figure 1: Pictorial view for MPC-DisCSP4. The reconstruc-
tions of secrets at the end is optional, as it will not be per-
formed when the solver is integrated in other techniques (op-
timization, auctions). Dark gray show shared secrets.

(arithmetic circuits) that are much more elegant and simple
than those used in previous versions.

MPC-DisCSP4 starts by sharing the encoded constraints
with the Shamir secret sharing scheme. A complete CSP
solver (e.g., backtracking) is used to generate the vector:
S′′ = {ε|φ0(ε)}. I.e. S′′ contains all tuples ε that satisfy
φ0. Each tuple of assignments candidating as solution to the
input problem is refered by an index (e.g. see the first ar-
ray in Figure 1, with elements from 1 to 10). The agents
share the secret values of their constraints. Let εk denote
the kth tuple in the lexicographic order. They compute for
each such tuple εk, a shared secret whose unknown value is
1 when the tuple satisfies all agents and 0 otherwise. This
is done by using (Ben-Or, Goldwasser, & Widgerson 1988)
to securely simulate the evaluation of the arithmetic circuit:
p(εk) =

∏c
i=1 φi(εk). The results form the second array of

the figure, S′, S′[i] = p(S′′[i]) (each participant obtains a
distinct vector with a share for each element of S ′). S′ is
now shuffled and the shares are randomized with a mix-net
whose details are given later. We define:

h1(P) = 1

hi(P) = hi−1(P) ∗ (1− S′[i− 1])

The lexicographically first solution can be isolated:

S[i] = S′[i] ∗ hi(P) (1)

A vector, S, is computed with Equation 1. It is then de-
coded by traversing the mix-net in the inverse direction and

procedure MPC-DisCSP4 do
1. Shares the {0,1} encoded secret constraints.
2. Compute all tuples ε returned by the CSP solver for
φ0. Place the results lexicographically in vector S ′′.
3. Compute a vector S ′, S′[k] = p(S′′[k]).
4. The mix-net shuffles the vectors of shares, S ′, ran-
domizing the shares at each permutation (by adding
shares of 0) exploiting homomorphic encryption.
5. Compute vector S with Equation (1).
6. The mix-net decodes S randomizing the shares and
inversing permutations of Step 5.
7. Compute Equations 2.
8. Reveal assignments to the interested agents.

Algorithm 1: MPC-DisCSP4

with the inverse permutations, randomizing the shares as at
shuffling. The solution is the tuple of S ′′ situated at the same
index as the only element of S that is different from 0.

The solution can also be transformed into a set of indexes
of values of the variables by the following method. Assume
the value of the uth variable in the tth tuple of the search
space is denoted ηu(t). The values in the solution are com-
puted with the arithmetic circuits in Equation (2).

fi(P) =

|S′′|∑

t=1

(ηi(t) + 1) ∗ S′[t−1] (2)

Each variable xi is assigned in the solution to the value in
Di at index given by the functions fi, and can be revealed.

MPC-DisCSP4’s mix-net for reordering vectors of
shared secrets. Each agent Ai chooses a random secret
permutation πi, picked with a uniform distribution over the
set of possible permutations: πi : [1..|S′′|] → [1..|S′′|].
Each agent chooses a pair of keys for a (+,×)-homomorphic
public encryption scheme and publishes the public key. The
secret shares, of the values computed in the vector S’, are
encrypted by each Ai with her public key and are serialized.
The serialized encrypted vectors are sent to A1. A1 shuffles
the serialized vectors according to her permutation π1, then
passes them to A2 which applies π2, etc., until the agent An
which applies πn. An sends each vector to its owner.

To avoid that agents get a chance to learn the final per-
mutation by matching final shares with the ones that they
encrypted, a randomization step is also applied at each shuf-
fling. Each agent applies a randomization step on the set
of shares for each element of S ′, by adding corresponding
shares of zero. Since operands are encrypted, to perform
this summation we exploit the (+,×)-homomorphic prop-
erty. For each secret in S ′, a new set of 0’s Shamir shares are
generated, and ∀i, i≤n, the 0′s ith share is encrypted with
the public key of Ai, then it is multiplied to the correspond-
ing Ai’s encrypted share of the secret (resulting in resharing
the secret). This assumes µ>ν(n+1), for the decryption to
be correct in ZZν . (ZZµ,+) is the group with possible plain-
texts for the homomorphic encryption. (ZZν ,+,×) is the
field in which that arithmetic circuits are evaluated.
Example 1 Let us see an example of how MPC-DisCSP4 is
applied to the Example 2. p(P,W) is not computed (φ0).

p(P, T)=1, p(Q, T)=0, p(Q,W)=1.
S”=((P,T),(Q,T),(Q,W)) S’=(1,0,1)
Shuffle (1,0,1), (assume it remains unchanged)
h1(P)=1, h2(P)=0, h3(P)=0.
With Equation 1 we get vector S={1,0,0}.
Unshuffle S=(1,0,0): S=(1,0,0)
Using Equation 2: η1(1)=0, η1(2)=1, η1(3)=1. η2(1)=0,
η2(2)=0, η2(3)=1. f1(P)=1, f2(P)=1.
Therefore the chosen solution is x1=Paris, x2=Tuesday.

Besides the mixnet, the most expensive operation — re-
quiring exchanges of messages — is the muliplication of two
shared secrets. MPC-DisCSP4 has 2(|S ′′|−1) such multi-
plications. |S′′|−1 multiplications to compute the h series,
and |S′′|−1 multiplications to obtain S. The number of such
multiplications in MPC-DisCSP3 is 5(|S ′′|−1). This corre-
sponds to a 2.5 times improvement. Preparing the vectors
S′ has a cost proportional to c|S ′′|.

In contrast to previous techniques, the most expensive
computation in MPC-DisCSP4 is due to the mix-nets. Their
efficiency was improved by the use of the CSP solver to
prune tuples that are inconsistent with public constraints.

Hiding the (in)existance of a solution. To hide the fact
that a solution does not exist for a problem, the participants
may prefer to miss an existing solution with some probabil-
ity p. Then, the fact that no solution is found does not prove
that no solution exist, and certain leaks of secrets induced
by the lack of a solution are avoided. This can be achieved
by generating unknown shared number(s) K that with prob-
ability p equal 0, and otherwise equal 1 (Silaghi 2004b).

Now, each of the secret elements of the vector S (or all
the secret values returned by fi) are multiplied with such a
number K, losing the solution with probability p.

Conclusions. MPC-DisCSP4 can offer a privacy that is
stronger than what is offered by the previous methods for
DisCSPs. The solution is picked randomly over the set of ex-
isting solutions, hiding statistical information about whether
other tuples are solutions or not. If needed, one may choose
to hide the information about whether a solution exists at all,
by probabilistically discarding the solution.

The computation cost on shuffled problems is 2.5 times
faster with the new technique than with MPC-DisCSP3,
which has the closest performance in privacy. As with MPC-
DisCSP3, by taking advantage of public constraints, the effi-
ciency of the most expensive operations (public key encryp-
tions), is reduced proportionally with their tightness.

References
Ben-Or, M.; Goldwasser, S.; and Widgerson, A.
1988. Completeness theorems for non-cryptographic fault-
tolerant distributed computating. In STOC, 1–10.
Silaghi, M.-C. 2004a. Meeting scheduling system guaran-
teeing n/2-privacy and resistant to statistical analysis (ap-
plicable to any DisCSP). In IC on Web Intel., 711–715.
Silaghi, M. C. 2004b. Secure multi-party computation
for selecting a solution according to a uniform distribu-
tion over all solutions of a general combinatorial problem.
Cryptology e-print Archive 2004/333.

