
A logic for making hard decisions

Roussi Roussev and Marius Silaghi
Florida Institute of Technology

Abstract

We tackle the problem of providing engineering deci-
sion makers with relevant information extracted from
data obtained via a process model based on delibera-
tion and voting. We list examples of potential applica-
tions from the area of bug-fix scheduling for software,
as well as space-vehicles “go”-“no-go” decision making.
In such application domains, important decisions have
to be made hastily and therefore the decision factors
have to be informed timely of the main issues discov-
ered by the teams. A logic is proposed for reasoning
with comments available in such deliberations. Search
based algorithms are proposed which recommend the
best justifications for a decision and retain the vot-
ing decisions for interested parties to tally. We have
developed a Bayesian network for generating data by
simulation based on probabilistic models that we can
train from collected deliberation databases. The data
generated in this way was used for evaluating the pro-
posed search algorithm, showing how it can provide
better than random recommendations of arguments to
decision makers.

Introduction
Voting is an important research topic and as such it is
heavily studied in the computing and social literature.
It enables groups of people to reach a decision. The
voting process starts with enumeration of eligible sets
of decision makers through a process called census. It
continues with discussion, presentation and agreement
on the questions asked and the choices offered. After
discussions of the merits of each choice, the actual votes
are cast. The process finishes with a tally, verification
and dissemination of the results.
It can be argued that at least as important as voting
itself is the process of establishing the alternatives on
the ballot, namely of how alternatives on the ballot are

Copyright c© 2015, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

decided. This paper proposes solutions that help vot-
ers make educated choices. Voters are often provided
with a choice from a set of pre-selected answers and
they (hopefully) take the time to study them before
important decisions are made. Voters pose a question
for discussion, request and tally feedback.
To illustrate the importance of discussing alternatives,
we provide interesting examples from common every
day decisions familiar to us, computer scientists and
engineers. One such important decision is whether to
include a particular fix as part of a release. It is an
important question that often confronts the manage-
ment teams against the engineers, and the future suc-
cess and reputation of the individuals and their orga-
nization (whose level of democracy may vary) is often
at stake. When preparing to vote, a skilled decision
maker organizes the set of prior justifications that she
could find into supporting or opposing groups for each
choice. If none of the existing justifications seem fit,
she can create a new one. Presenting the justifications
is where relevance comes into play.
There is a wide body of research in AI on ”argu-
mentation frameworks”, starting with Dung’s paper,
which tries to reach conclusions based on logic with no
special consideration to the internal structure of the
arguments (Dung 1995). (Leite and Martins 2011)
extends Dung’s framework with votes on arguments.
(Eğilmez, Martins, and Leite 2013) further extend it
with votes on attacks. (Hunter 2013) takes into ac-
count the probabilistic nature of the arguments and
extends the framework as appropriate. (Kaci and
van der Torre 2008) present frameworks that handle
preferences among arguments.
Argumentation methods has been applied to several
engineering fields. (Baroni et al. 2015) present an ar-
gumentation framework as applied to three engineer-
ing decisions: a civil engineer’s choice of foundation
for a multi-story building, a water engineer’s choice of
wastewater treatment technologies, and a medical engi-
neer’s choices when designing a reusable precise-dosage

syringe.
We argue that it is human nature to be sometimes irra-
tional, incorrect, (un)intentionally inconsistent or even
deceptive. We introduce a very basic algorithm for
scoring justifications based on bipartite graphs of user
defined relationships between those justifications.

Example
In this section, we provide examples of non-trivial engi-
neering decisions. It is indisputable that the productiv-
ity tools widely used by engineers (such as bug track-
ing databases like JIRA and Bugzilla) do a good job at
recording decisions. For open source projects, they do
a good job at making them publicly available. At the
same time, they provide only limited decision support-
ing functionality, often only in the context of voting
on whether an issue should be addressed or not. They
do not provide functionality for tracking votes against.
They do not provide voting on individual comments.
Some allow limited threading to bring basic structure
to the debate. Almost all are organized chronologi-
cally by creation timestamp and there is hardly any
relevance computation. A decision-maker often has
to sift through hundreds and potentially thousands
of comments before she has the full context (Mozilla
bug178993). One is often subscribed to changes made
to issues of interest, and while some of the notifications
received are indeed insightful, others are just checking
for status, corrections to a previous comment or just
automated responses. An average decision-maker has
to juggle from as little as a few items a day (for a junior
engineer) to tens or even hundreds issues per day (for
management and cross-domain experts).
This section presents an example of reaching a ”go”-
”no-go” decision on whether to go ahead with the
launch of a space vehicle. It is based on the Chal-
lenger decision to go ahead with the launch despite
concerns from engineers (most notably from Bob Ebel-
ing and Roger Boisjoly) that in the winter morning
of the planned launch date, the temperature was fore-
casted to fall below the tested limits of some of the com-
ponents (Bergin 2007). Engineers argued the launch
should be postponed given the lack of testing data
on the performance of the rubber O-rings during low
temperature conditions, i.e. it was suspected that un-
der freezing temperatures the rings may not sufficiently
seal and cause catastrophic failure.
Both sides of the go-nogo decision had valid set of ar-
guments. Arguments *for* continuing with the launch
included multiple previous delays (AF1), the existence
of secondary O-rings that would have provided backup
(AF2), poor presentation of the technical arguments
against (AF3), the next launch window would be as

far as three months in the future (AF4), a safe temper-
ature range was not provided by the engineers (AF5),
lack of historical failures with the current design (AF6),
redesign was already in progress that was hoped to
be completed before any major failure was observed
(AF7). Arguments *against* the launch included lack
of test data for the O-ring performance at low temper-
atures (AA1), lack of failover testing ensuring that the
secondary O-rings would prevent catastrophic failure
in event of primary O-ring failure (AA2), O-rings were
critical components (criticality 1) and a backup should
not be relied upon (AA3), all launches should be post-
poned until an O-ring redesign already well under way
was completed and the criticality of the O-rings down-
graded (AA4).
The actual NASA justification is presumed to have con-
tained a subset of the arguments for launch. The O-
ring manufacturer’s original justification is presumed
to have contained a subset of the arguments against
launch. It should be noted that, the O-ring manufac-
turer has subsequently changed the decision and voted
for the launch with no well documented justification.
It is not clear if NASA has released its own justifica-
tion for proceeding with the launch and the level with
which engineers agreed with it.
Another example of a non-trivial decision is whether to
quickly address a security vulnerability if only complex,
and thus risky, fixes are proposed. Engineers and man-
agers are aware of the risks of not fixing the issue, e.g.
watching their system being exploited in the wild. At
the same time they need sufficient time to understand
the impact, evaluate alternatives, ”bake” the changes
(get them properly reviewed, tested and deployed) and
are afraid of causing regressions in quality due to the
complexity involved. Everyone gets together (usually
in a live triage meeting), presents their arguments for
and against, and formally accepts risk through voting.
In most engineering organizations, such triage happens
on a daily or weekly basis.

Relations
For the context of this paper, a justification contains
a set of arguments. It can be classified based on the
type of signature that it accompanies (e.g. support,
opposition, abstention). While we consider abstention
important, in this paper we propose solutions with only
two types of justifications: supporting justifications and
opposing justifications. Two justifications are of the
same type if both accompany the same type of signa-
ture (support or opposition).

Relations between justifications. Unlike clas-
sical argumentation where relations are extracted from

formal arguments, we assume that certain relations are
explicitly offered by associating them with opaque ar-
guments in the form of an opaque justification. This
is commonly done in existing fora, where relations are
provided via a threading model (e.g., each comment
responds to another comment). While a formal logi-
cal argumentation could be used as support for much
more complex mechanisms, the mechanism of opaque
arguments we use can be seen as a basic case, where ar-
guments in each provided justification form the premise
of the associated vote (support or opposition):

arguments→ petition

arguments→ ¬petition

Another class of relations we support is refutes, where
a justification is presented as an answer to a different
justification that it corrects or enhances.

A third class of relations that we discuss is subsumes,
claiming that a justification includes all arguments of
another justification. It should be noted that refutes
and subsumes are claims explicitly introduced by a
voter and that may or may not be automatically veri-
fiable or logically correct.

The last type of relation is more recent which orders
the justifications by submission date.

justification claimed refutes justification

justification claimed subsumes justification

justification more recent justification

Given that those relations are provided by the voter,
there is a varying degree of trust in them. For exam-
ple, while voting systems try to guarantee the property
of non-repudiation, it is still a best effort guarantee.
The more recent relation is stronger in a centralized
system where there is a centralized time-keeper, and
weaker in decentralized systems where clock skew is
more prevalent. As one solution to the different lev-
els of trust, we incorporate weights which is discussed
further.

Closures

Under the assumption that each voter selects the most
complete justification fitting a choice, a transitivity for
the relation claimed refutes can be defined as fol-

lows:

p claimed refutes n′

n′ claimed refutes p′

p′ claimed refutes n
→ p claimed refutes n

Another type of transitive closure is based on the
claimed subsumes relation to define a subsume clo-
sure with the goal of finding a small set of justifications
subsuming most other relevant justifications. The def-
inition of claimed subsumes is simpler than the one
of claimed refutes:

p claimed subsumes p′

p′ claimed subsumes p′′

→ p claimed subsumes p′′

Figure 1 shows an example refute-subsume graph based
on the arguments from the Challenger example de-
scribed earlier. Justification J2 containing arguments
{AF2, AF5} is claimed to have refuted a justification
J1 containing argument AA1. A more complete jus-
tification J4 containing {AF2, AF5, AF7} is claimed
to have subsumed justification J2. A justification J5
containing {AA1, AA2, AA3, AA4} is claimed to have
refuted a J2. It is also claimed to have subsumed a jus-
tification J3 containing {AA1, AA2}. A justification J6
containing {AF1, AF2, AF3, AF4, AF5, AF6, AF7} is
claimed to have refuted a justification J3 and J5. It also
claimedsubsumed J4. By the refute transitivity above,
since J2 claimedrefutes J1 and J5 claimedrefutes J2
and J6 claimedrefutes J5, then J6 claimedrefutes J1.
Similarly for subsumes, since J4 claimedsubsumes J2
and J6 claimedsubsumes J4, then J6 claimedsubsumes
J2.
Using these special transitivities, one can search for
the justifications that (within a limited depth) refute
the largest number of justifications of the other type or
subsume the largest number of the same type.

Figure 1: Justification graph for the Challenger exam-
ple

Problem definition
Definition 1 (Answer to a voter) A justification
is said to answer to a voter if either it is associated
with the signature of that voter, or if it was created
with a specification that it claimed refutes or
claimed subsumes the justification selected by that
voter.

Definition 2 (Representative Arguments Problem)
The Representative Arguments Problem (RAP) for a
given petition M consists of a tuple 〈N,P, V,R, S,K〉.
Here N = {n1,, nmn} is a set consisting of mn

opposing justifications of M , and P = {p1, ..., pmp} is
a set of mp supporting justifications for M .
Each justification j is associated with a number of vj

signatures, as per the set V = {(j, vj) | j ∈ N ∪
P, vj = signatures(j)}. The relation R ⊂ (N × N ×
P)

⋃
(P × N ×N) associates a weight to each pair be-

tween an opposing justification ni and supporting justi-
fication pj, and to each pair between a supporting jus-
tification pi and an opposing justification nj, by the
claimed refutes relation. The function S : P ∪ S →
P(P∪S) where S |P : P → P(P) and S |N : N → P(N),
associates each justification j to a set of justifications
of the same type that it claimed subsumes.

ni

vni−−→ ¬M
pi

vpi−−→ M

pi

w
p
i,j

claimed refutes nj

ni

wn
i,j

claimed refutes pj

j
wi,j

claimed subsumes k, ∀k ∈ S(j)

The RAP problem is to find a set of at most K support-
ing justifications that answer to a maximum number
of signatories (both supporting and opposing M), and
a set of at most K opposing justifications that answer
to a maximum number of signatories given the defined
weights and relations.

Algorithms
From the perspective of graph theory, the problem of
finding the best supporting and opposing justifications
can be solved by searching a bipartite graph containing
the relations. The algorithm looks similar to mini-max
in that it traverses the search tree down to a certain
depth. More exactly, in the basic case, one starts with
the given justification and in subsequent steps one can
apply kind of transitivity of the relation.
The algorithm pseudo-code for computing the most en-
compassing justifications via only the subsume relation
is shown in Algorithm 1, which is then extended to take
into account the refute relations in Algorithm 2 .

Algorithm 1: Algorithm to find subsuming argu-
ments

1 function subsumes (j, level)
2 for any i s.t. j claimed subsumes i do
3 add i to S1

4 for k=1;k≤ level; k + +do
5 Sk = {i | u ∈ Sk−1, u claimed subsumes i}
6 return

⋃level
k=0 Sk;

Algorithm 2: Algorithm to find counter-arguments
1 function refutes (j, level)
2 for any i s.t. j claimed refutes i do
3 add i to R1;
4 add subsumes(i,level-1) to R1;
5 for k=1;k≤ level; k + +do
6 Rk = {subsumes(i, level − k) |
7 u ∈ Rk−1,∃t, v, u claimed refutes t ∧

v claimed refutes i,
8 v ∈ subsumes(t, level − k) ∪ t}
9 return

⋃level
k=0 Rk;

This function can be applied to all justifications (for
some level), and then one can compute the cardinality
of the results to estimate the justifications containing
the most arguments.

Jlevel := max
j
| refutes(j, level) |

One can integrate the votes on justifications and rela-

tions as weights to arguments, recognizing the differ-
ence in importance. They can further be discounted
with a factor γ <= 1 to consider their depth in the
tree:

level∑
k=0

γk ∗ votes(k)

where votes(k) integrate the number of signatures
for all justifications at level k as well as for the
claimed refutes and claimed subsumes relations
in the directions used for the transitivity: votes(k) =
votesj(k) + α ∗ votes→(k).
To implement the weighted algorithm, one can substi-
tute the union operation (line 6 of algorithm 1 and line
9 of algorithm 2) with the sum on the total scores of
the justifications at each level and use a priority queue
to keep the top justifications. It should be noted that
the cardinality-based algorithm is a special case of the
weighed one, when gamma is set to one and alpha is
set to zero.

Experimental results
We have built a Bayesian network to generate argu-
ments, justifications based on those arguments and re-
lationships between justifications. In such a network
corresponding to an instance of a problem, there are
three nodes, Aj , Rj and Sj for each justification j.
Each justification is introduced in the network in the
order defined by the more recent relation. The do-
main of Aj is the power set of AM , P(AM). The do-
main of Rj is the set of possible justifications (that
are less recent than j), and specifies a justification of
a different type that j claimed refutes. Similarly,
Sj specifies a justification of the same type that j

claimed subsumes.
We used that Bayesian network to generate 1000 jus-
tifications over 100 arguments. Each justification con-
tains a uniform random subset of arguments from the
power set of all arguments. Given empirical data that
people are more likely to respond if they disagree than
when they agree (Agrawal et al. 2003), we select our
parameters to refute a justification 85 percent of the
time and subsume 15 percent of the time. To limit
the size of our network, we allow a justification to re-
fute at most 10 other justifications and to subsume at
most 3 ones. The votes are distributed proportionally
with the total number of decision makers, the num-
ber of arguments a justification contains and how old
a justification is under the assumption that the better
a justification is, the more times it will be chosen, and
the older it is the more opportunity it has had to get
votes. As justifications are inserted into the network
with increasing timestamp during data generation, we
make sure that a justification refutes/subsumes only

an earlier one and with distribution proportional to
the number of arguments that it contains. We exe-
cuted one hundred runs of the cardinality-based and
weighted search algorithms on freshly generated data
for the run. The algorithms find the best justifica-
tions 64 percent of the time which is improvement over
chronological or random order. Of those, the cardi-
nality based algorithm (which is a degenerate case of
the weighted algorithm with gamma set to one and al-
pha set to zero, as described earlier) found the best
justification 47-52 percent of the times when the best
justifications were found. We also computed the best
sets of values for gamma and alpha which are specific to
each instance of the Bayesian network. We have found
that the best justifications are usually in the top five
levels, hence we limit the depth of the search to eight
levels.

Conclusion
We believe that the methods that we describe are a
small step towards enabling decision makers to reach
better supported and agreed upon decisions. This is
achieved by presenting the best possible justifications
for each choice based on a set of user-annotated rela-
tions (claimed refutes and claimed subsumes) and
metadata generated by the system (more recent).
While at present we take those relations for granted,
using natural language processing to extract them is
an area of future research for us.

References
[Agrawal et al. 2003] Agrawal, R.; Rajagopalan, S.;
Srikant, R.; and Xu, Y. 2003. Mining newsgroups using
networks arising from social behavior. In Proceedings of
the 12th International Conference on World Wide Web,
WWW ’03, 529–535. New York, NY, USA: ACM.

[Baroni et al. 2015] Baroni, P.; Romano, M.; Toni, F.;
Aurisicchio, M.; and Bertanza, G. 2015. Automatic
evaluation of design alternatives with quantitative ar-
gumentation. Argument and Computation.

[Bergin 2007] Bergin, C. 2007. Remembering the mis-
takes of challenger. NASASpaceFlight.com.

[Dung 1995] Dung, P. M. 1995. On the acceptability of
arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Ar-
tificial intelligence 77(2):321–357.

[Eğilmez, Martins, and Leite 2013] Eğilmez, S.; Mar-
tins, J.; and Leite, J. 2013. Extending social abstract
argumentation with votes on attacks. In Theory and
Applications of Formal Argumentation. Springer. 16–
31.

[Hunter 2013] Hunter, A. 2013. A probabilistic ap-
proach to modelling uncertain logical arguments. Inter-

national Journal of Approximate Reasoning 54(1):47–
81.

[Kaci and van der Torre 2008] Kaci, S., and van der
Torre, L. 2008. Preference-based argumentation: Argu-
ments supporting multiple values. International Jour-
nal of Approximate Reasoning 48(3):730–751.

[Leite and Martins 2011] Leite, J., and Martins, J.
2011. Social abstract argumentation. In IJCAI, vol-
ume 11, 2287–2292. Citeseer.

[Mozilla bug178993] Mozilla bug178993. https:

//bugzilla.mozilla.org/show_bug.cgi?id=

178993.

https://bugzilla.mozilla.org/show_bug.cgi?id=178993
https://bugzilla.mozilla.org/show_bug.cgi?id=178993
https://bugzilla.mozilla.org/show_bug.cgi?id=178993

	Introduction
	Example
	Relations
	Closures
	Problem definition
	Algorithms
	Experimental results
	Conclusion

