
Utilitarian Approach to Privacy in Distributed Constraint Optimization Problems
Julien Savaux and Julien Vion and Sylvain Piechowiak and René Mandiau

LAMIH UMR CNRS 8201, University of Valenciennes, France

Toshihiro Matsui
Nagoya Institute of Technology, Japan

Katsutoshi Hirayama
Kobe University, Japan

Makoto Yokoo
Kyushu University, Japan

Shakre Elmane and Marius Silaghi
Florida Institute of Technology, USA

Abstract

Privacy has been a major motivation for distributed problem
optimization. However, even though several methods have
been proposed to evaluate it, none of them is widely used.
The Distributed Constraint Optimization Problem (DCOP) is
a fundamental model used to approach various families of
distributed problems. Here we approach the problem by let-
ting both the optimized costs found in DCOPs and the pri-
vacy requirements guide the agents’ exploration of the search
space. We introduce Utilitarian Distributed Constraint Opti-
mization Problem (UDCOP) where the costs and the privacy
requirements are used as parameters to a heuristic modifying
the search process. Common stochastic algorithms for decen-
tralized constraint optimization problems are evaluated here
according to how well they preserve privacy.

1 Introduction
In artificial intelligence, cognition for the purposes of ma-
chines remains an open problem (Dessimoz 2016), and Dis-
tributed Constraint Optimization Problems (DCOPs) have
been a standard and efficient way of modeling an agent’s
knowledge representation. In this work, we focus on prob-
lems modeled as such. In DCOPs, agents have to find values
to a set of shared variables while optimizing a cost function.
To find such assignments, agents exchange messages (fre-
quently assumed to have unspecified privacy implications)
to explore the search space until an optimal solution is found
or a termination condition is met, causing privacy to be a
major concern in DCOPs.

In this context, the assumption for search optimization
problems is that agents designed for utility estimation are
able to associate each state with a utility value (Russell et
al. 2003). As such, the utility of each action is given by
the difference between the utilities of initial and final states.
If a user is concerned about privacy, then such a user can
associate a utility value with the privacy of each piece of in-
formation in the definition of his local problem. If a user
is interested in solving the problem, he must be also able
to quantify the utility he draws from finding the solution.
In a maximization DCOP we assume that the utility a user
obtains from an assignment is represented by the values of
the local constraints for that assignment. Alternatively, with

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a minimization DCOP, the constraints would represent the
costs. These utilities can be modeled as a component in a
multi-criteria DCOP (Bowring, Tambe, and Yokoo 2005).

We evaluate how much privacy is lost by the agents dur-
ing the problem solving process, by the total utility of the
secrecy of each information that was revealed. For exam-
ple, proposing an assignment with a value assigned to a vari-
able has a privacy cost quantifying the desire of the agent to
maintain that value’s existence private. We propose a DCOP
framework for utility-based agents, where the cost of privacy
as well as the reward of each solution is explicitly expressed.
The framework is called Utilitarian Distributed Constraint
Optimization Problem (UDCOP). Simple extensions to stan-
dard stochastic algorithms are studied to verify the impact of
this interpretation of privacy. We then evaluate and compare
several stochastic algorithms according to how well they
preserve privacy. To do so, we generate distributed meet-
ing scheduling (DMS) problems (Maheswaran et al. 2004;
Gershman et al. 2008).

This paper is organized as follows: Section 2 discusses
existing solvers and approaches to privacy for DCOPs. Sec-
tion 3 defines the concepts involved in UDCOPs and exten-
sions to common stochastic DCOP solvers that modify the
search process to preserve privacy. Section 4 discusses the
differences between our approach and existing ones. Sec-
tion 5 presents experimental results. Conclusion and per-
spectives are presented in Section 6.

2 Background

Distributed Constraint Optimization Problems (DCOPs)
have been extensively studied as a fundamental way of mod-
eling combinatorial optimization problems in multi-agent
systems. These problems have been addressed with a vari-
ety of algorithms, both stochastic and deterministic. In this
paper, we focus on stochastic algorithms. Let us first review
the most relevant literature concerning frameworks, stochas-
tic algorithms, and approaches to privacy for DCOPs.

Existing Frameworks

This section presents existing frameworks used to model dis-
tributed combinatorial problems.

Distributed Constraint Optimization Problems (DCOP)
is the formalism commonly used to model combinatorial
problems distributed between several agents.

Definition 1. A DCOP is a tuple 〈A, V,D,C〉 where:

• A = 〈A1, ..., An〉 is a vector of n agents
• V = 〈x1, ..., xn〉 is a vector of n variables. Each agent
Ai controls the variable xi.

• D = 〈D1, ..., Dn〉 is a vector of domains where Di is
the domain for the variable xi, known only by Ai, and a
subset of {1, ..., d}.

• C = 〈c1, ..., cm〉 is a vector of weighted constraints, each
one defining a cost for each tuple of a relation between
variables in V .

The objective is to find an assignment for each variable
that minimizes the total cost.

Multi-Objective DCOP A Multi-Objective Distributed
Constraint Optimization Problem (MO-DCOP) is an exten-
sion of the standard mono-objective DCOPs. An MO-DCOP
is defined with a set of agents A, a set of variables X ,
multi-objective constraints C = {C1, ..., Cm}, i.e., a set
of sets of constraint relations, and multi-objective functions
O = {O1, ..., Om}, i.e., a set of sets of objective func-
tions. For an objective l(1 ≤ l ≤ m), a cost function
f l

i,j : Di×Dj → R, and a value assignment to all variables
X , let us denote:

Rl(X) =
∑

(i,j)∈Cl,{(xi,di),(xj ,dj)}⊆A

f l
i,j(di, dj), (1)

where di ∈ Di and dj ∈ Dj

Then, the sum of the values of all cost functions for m
objectives is defined by a cost vector, denoted R(A) =
(R1(A), ..., Rm(A)). Finding an assignment that minimizes
all objective functions simultaneously is ideal. However, in
general, since trade-offs exist among objectives, there does
not exist such an ideal assignment. Thus, the optimal solu-
tion of an MO-DCOP is characterized by using the concept
of Pareto optimality. Because of this possible trade-off be-
tween objectives, the size of the Pareto front is exponential
in the number of agents, i.e., in the worst case, every possi-
ble assignment can be a Pareto solution.

Example 1. Suppose a problem concerning scheduling a
meeting between three students. They all consider to agree
on a place to meet on a given time, to choose between Lon-
don, Madrid and Rome. For simplicity, in the next sections,
we will refer to these possible values by their identifiers: 1,
2 and 3. Student A1 lives in Paris, and it will cost him $70,
$230 and $270 to attend the meeting in London, Madrid
and Rome respectively. Student A2 lives in Berlin, and it
will cost him $120, $400 and $190 to attend the meeting in
London, Madrid and Rome respectively. Student A3 lives in
Brussels, and it will cost him $40, $280 and $230 to attend
the meeting in London, Madrid and Rome respectively. The
objective is to find the meeting location that minimizes the
total cost students have to pay in order to attend.

The privacy costs for revealing her cost for locations 1, 2,
and 3 for Student A1 are $80, $20, $40. The privacy cost for
locations 1, 2 and 3 are $100, $30, $10 for Student A2 and
$80, $30, $10 for Student A3. There exist various reasons
for privacy. For example, students may want to keep their
cost for each location private, since it can be used to infer
their initial location, and they would pay an additional (pri-
vacy) price rather than revealing the said travel cost. For
example, Student A1 associates $80 privacy cost to the rev-
elation of the travel cost of $70 for meeting in London.

DCOP The DCOP framework models this problem with:

• A = {A1, A2 A3}
• V = {x1, x2, x3}
• D = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
• C = {
{(x1 = 1), 70}, {(x1 = 2), 230}, {(x1 = 3), 270},
{(x2 = 1), 120}, {(x2 = 2), 400}, {(x2 = 3), 190},
{(x3 = 1), 40}, {(x3 = 2), 280}, {(x3 = 3), 230},
{¬(x1 = x2 = x3),∞}}

where each constraint is described with the notation {p, c}
stating that if the predicate p holds then the cost c is payed,
and the notation (x = a) is a predicate stating that a variable
x is assigned a value a.

One could attempt to model the privacy requirements by
aggregating the solution quality, called solutionCost and
the privacyCosts into a unique cost. However, this is not
possible. Indeed, in a DCOP, agents explore the search space
to find a better solution, and only pay the corresponding so-
lution cost when the search is over and the solution is ac-
cepted. This means that the solution cost decreases with
time. However, privacy costs are cumulative and are paid
during the search process itself (each time a solution is pro-
posed), no matter what solution is accepted at the end of the
computation. This means that the total privacy loss increases
with time. Aggregating the solution costs and privacy costs
or using a multi-criteria DCOP would not consider the pri-
vacy cost of the solutions that are proposed but not kept as
final. Also, a given solution may imply different privacy
losses depending on the algorithm used to reach it.

Stochastic Algorithms
The main stochastic algorithms for solving DCOPs are the
distributed breakout algorithm and the distributed stochastic
algorithm. In these algorithms, a flawed solution violating
some constraints is revised until all constraints are satisfied.

Distributed Breakout (DBO) (Yokoo and Hirayama
1996) is an iterative improvement algorithm, originally pro-
posed for DCOPs with hard constraints (distributed con-
straint satisfaction problems). In DBO, a weight starting at 1
is defined for each pair of assignments that does not satisfy
some constraints. The evaluation of a given solution is the
summation of the weights of all constraints for the involved
assignment. With hard constraints, the summation is equal

to the number of constraint violations. In the breakout al-
gorithm, an assignment is changed to decrease the solution
value. If the evaluation of the solution cannot be decreased
by changing the value of any variable, the current state may
be a local minimum. When trapped in a local minimum, the
breakout algorithm increases the weights of constraint vio-
lation pairs in the current state by 1 so that the evaluation of
the current state becomes higher than the neighboring states.
Thus the algorithm can escape from a local minimum.

Distributed Stochastic Algorithms (DSA) (Zhang,
Wang, and Wittenburg 2002) make agents start by randomly
selecting an initial value. Agents then enter a loop, where
they first send their new assigned values (if changed) to
their neighbors and collect any new values assigned by
those neighbors. Agents select the next candidate value
based on the values received from other agents, and usually,
based also on maximizing some utility function. There
exists several variations of the DSA algorithm with slightly
different properties.

Privacy
Privacy is an important problem in a lot of applications, in-
trinsic to the main motivation, in addition to the usual effi-
ciency/optimality trade-offs. The cost of privacy lost in the
process of reaching a solution needs to be considered. For
example, in distributed scheduling problems, problems of
confidentiality happen when information is exchanged be-
tween agents. Such coordinated decisions are in conflict
with the need to keep constraints private (Faltings, Léauté,
and Petcu 2008).

Sample Cryptographic Technique As an example of
cryptographic technique, the approach described in (Yokoo,
Suzuki, and Hirayama 2002), achieves a high level of pri-
vacy using encryption, giving more importance to privacy
than to the efficiency of the resolution. It consists of us-
ing randomizable public key encryption scheme. In this al-
gorithm, three servers receive encrypted information from
agents and cooperate to find an encrypted solution. Rele-
vant parts of the solution are then sent to each agent. While
ensuring privacy (Hirt, Maurer, and Przydatek 2000), cryp-
tographic techniques are usually slower, and sometimes re-
quire the use of external servers or computationally intensive
secure function evaluation techniques that may not always
be available or justifiable for their benefits. DCOP prob-
lems have also been addressed with fully cryptographic pro-
tocols (Silaghi, Faltings, and Petcu 2006).

DPOP with Secret Sharing Distributed Pseudo-tree Opti-
mization Procedure (DPOP) (Petcu and Faltings 2005) con-
sists in creating a Depth-First Search (DFS) tree, where
agents sharing constraints are on the same branch, Propa-
gating UTIL messages up the tree, starting with the leaves,
and determining the optimal values for variables by the root
agent. DPOP with Secret Sharing SSDPOP (Greenstadt,
Grosz, and Smith 2007) modifies DPOP to protect leaves
in the DFS tree. The tree can be viewed as a simple chain.

SSDPOP uses secret sharing (Shamir 1979) to aggregate the
results of a given solution, without revealing the correspond-
ing individual valuations. The aggregated values for this so-
lution are then passed to the agent at the bottom of the chain,
who aggregates this information with his own valuations and
sends the aggregate up the chain.

Privacy-Preserving Synchronous Branch and Bound
Synchronous Branch and Bound (SyncBB) (Hirayama and
Yokoo 1997) was one of the first distributed algorithms for
solving DCOPs. Privacy-Preserving Synchronous Branch
and Bound (P-SyncBB) (Grinshpoun and Tassa 2014) is a
privacy-preserving version of SyncBB for solving DCOPs
while respecting constraint privacy. P-SyncBB preserves
the private constraint information by computing the costs of
CPAs (current partial assignments) and comparing them to
the current upper bound, using secure multi-party protocols.

3 Utilitarian Approach
In this section we present our utilitarian frameworks and al-
gorithms for privacy in DCOPs. A similar approach was
used to extend Distributed Satisfaction Problems in (Savaux
et al. 2016).

Utilitarian DCOP We propose to ground the theory of
DCOP in the well-principled theory of utility-based agen-
try. We introduce the Utilitarian Distributed Constraint Opti-
mization Problem (UDCOP). Unlike previous DCOP frame-
works, besides results, we are also interested in the search
process, as it incurs privacy leak.
Definition 2. A UDCOP is a tuple 〈A, V,D,C, U〉 where:
• 〈A, V,D,C〉 is a DCOP
• U is a vector of privacy costs for each agent, each one

defining the set of costs in showing the loses of an agent
for the revelation of the values in his variable.

The state of agent Ai includes the subset of Di that it has
revealed, as well as its cost. The problem is to search for
an assignment of the variables such that the total utility is
maximized, meaning that the cost is minimized.
Example 2. The DCOP in the Example 1 is extended to a
UDCOP by specifying the additional parameter U :
U = 〈{u1,1 = 80, u1,2 = 20, u1,3 = 40},

{u2,1 = 100, u2,2 = 30, u2,3 = 10},
{u3,1 = 80, u3,2 = 30, u3,3 = 10}〉

where ui,j is the privacy cost for A1 to reveal the assignment
(xi = j).

Now we discuss how the standard DBO and DSA al-
gorithms are adjusted to UDCOPs. The state of an agent
includes the agentView. After each state change, each
agent computes the estimated utility of the state reached by
each possible action, and selects randomly one of the ac-
tions leading to the state with the maximum expected utility.
In our algorithms, agents use the risk of one of their assign-
ments not being a part of the final solution, to estimate the
utilities. Each risk of rejection is estimated by Equation 2:

agreementProb =
1

|Di|
(2)

Before proposing a new value, agents estimate the util-
ity that will be reached in the next state. This value is the
summation of the costs of revealed agentViews (weighted
by their probability of being the final solution) in the state
reached, and of the corresponding privacy costs. The agent
proposes the next value only if this estimatedCost is lower
than the estimation of the current state.

The Distributed Breakout with Utility (DBOU) algorithm
is obtained from DBO by adding 9 lines to the original al-
gorithm (lines 2 to 10 in Algorithm1 displayed beside text).
Line 2, the maximal improvement is initialized at 0. Line 3,
the next value is initialized at the current value. Line 4, the
possible next value is set to the value that gives the maximal
improvement. Line 5, the set of revealed values is the union
of the already revealed values and the new value Line 6, we
estimate the cost reached after the next value is proposed.
Line 7, the cost of the current state is estimated. Line 8,
if the next cost is lower than the current cost, the maximal
improvement and next value are updated.

Similarly the algorithm Distributed Stochastic Algorithm
with Utility (DSAU) is obtained from DSA by adding the
lines 6 to 10 in Algorithm 2. In both these extensions, other
lines remain the same as in the initial algorithms.

Example 3. Continuing with Example 2, at the beginning
of the computation with the DSAU solver, the participants
select a random value. The resulting agentView of each
agent is x1 = 1, x2 = 1, x3 = 3. The utilities of the reached
state are:
c1,1 + u1,1 = 70 + 80 = 150,
c2,1 + u2,1 = 120 + 100 = 220,
c3,3 + u3,3 = 230 + 10 = 240
for Students A1, A2, and A3 respectively. The participants
then inform each others of their value. They then consider
changing their value to a new randomly selected one. The
considered agentView is x1 = 2, x2 = 3, x3 = 1. If the
participants change their value, the utilities of the reached
states would be:
(c1,1 + c1,2)/2 + u1,1 + u1,2 = 250,
(c2,1 + c2,3)/2 + u2,1 + u2,3 = 265,
(c3,3 + c3,1)/2 + u3,3 + u3,1 = 225,
for Students A1, A2, and A3 respectively. Student A1 and
Student A2 do not propose the new value as it would in-
crease their utility. However, Student A3 chooses to change
its value from 2 to 1 which lowers its utility from 240 to 225.
In the next step, the agentView is x1 = 1, x2 = 1, x3 = 1.
Participants then do not change their value anymore, as
all other options would not decrease the utility. At the
final step, the previous agentView is therefore the op-
timal solution. With DSAU, the reached utilities are
70 + 80 = 150, 120 + 100 = 220, 40 + 10 + 80 = 130 for
Student A1, Student A2, and Student A3 respectively. With
standard DSA, the final utilities are:
(c1,1 + u1,1 + u1,2 + u1,3) = 230,
(c2,1 + u2,1 + u2,2 + u2,3) = 260,
(c3,1 + u3,2 + u3,1 + u3,3) = 160,
for Students A1, A2, and A3 respectively. Therefore, using
DSAU instead of DSA reduces the utility by 80, 40, 30.

Algorithm 1: sendImprove DBOU
Input: ∅
Output: ∅

1 eval← evaluation value of currentValue;
2 myImprove← 0 ; newValue← currentValue;
3 possibleValue← value giving maximal improvement;
4 possibleRevealedConstraints← revealedConstraints ∪

constraints containing possibleValue ;
5 nextCost← estimateCost(utilities, domain,

nextRevealedV alues);
6 currentCost← estimateCost(utilities, domain,

revealedV alues);
7 if (nextCost < currentCost) then
8 myImprove← possible max improvement;
9 newValue← value giving maximal improvement;

10 if (eval == 0) then consistent← true;
11 else consistent← false; terminationCounter← 0;
12 if (myImprove > 0) then
13 canMove← true; quasiLocalMin← false;
14 else canMove← false; quasiLocalMin← true;
15 send (improve, xi, myImprove, eval,

terminationCounter) to neighbors;

Algorithm 2: DSAU
Input: ∅
Output: ∅

1 Randomly choose a value;
2 while (no termination condition is met) do
3 if (a new value is assigned) then
4 send the value to neighbors;
5 collect neighbors’ new values, if any;
6 temp← randomly chosen value;
7 add constraints with temp to revealedConstraints;
8 costTemp← estimateCost(utilities, domain,

nextRevealedV alues);
9 cost← estimateCost(utilities, domain,

revealedV alues);
10 if (costTemp < cost) then assign temp ;

Algorithm 3: estimateCost
Input: agreementProb, D, probD
Output: cost

1 if (only one value is left in the domain) then
2 return marginalCost(value) × probD;
3 else
4 v ← D[0]; costRound← estimateCost

(agreementProb, {v}, probD);
5 costTemp← estimateCost (1− agreementProb,

D \ {v}, (1− agreementProb) × probD);
6 estimatedCost← costRound+ costTemp;
7 return estimatedCost;

4 Discussion
To further clarify why Multi-Objective DCOPs (MO-
DCOPs) cannot integrate our concept of privacy as one of
the criteria they aggregate, we give an example of what
would be achieved with MO-DCOPs, as opposite to the re-
sults using the proposed UDCOPs. In the following example
we show a comparative trace based on one of the potential
techniques in MO-DCOPs, to show why MO-DCOPs cannot
aggregate privacy lost during execution in the same way as
UDCOP. In this example, the privacy value of each assign-
ment and its constraint cost are two elements of an ordered
pair defining the weight of the MO-DCOP. For illustration,
in this example pairs of weights are compared lexicographi-
cally with the privacy having priority.

Table 1: Comparative trace of two rounds with UDCOP
DSAU vs. MO-DCOP DSA with lexicographical compar-
ison on vectors, privacy costs (privacyC) before solution
costs (solutionC). Candidate values are marked with ∗ if they
are better than old values, and will be adopted.

Framework UDCOP MO-DCOP

Agent A1 A2 A3 A1 A2 A3

current state

value0 1 1 3 1 1 3
solutionC 70 120 230 70 120 230
privacyC 80 100 10 80 100 10
situation 150 220 240 [80,70] [100,120][10,230]

believed next state

considered 2 3 1 2 3 1
solutionC 150 155 135 230 190 40
privacyC 100 110 90 20 10 80
situation 250 265 225* [20,230]*[10,190]*[80,40]

achieved next state

value1 1 1 1 2 3 3
solutionC 70 120 40 230 190 230
privacyC 80 100 90 100 110 10
situation 150 220 130 [100,230][110,190][10,230]

Example 4. Suppose we now want to model the Example 2
with a MO-DCOP. As also illustrated in the trace in Ta-
ble 1, at the beginning of the computation with the DSA
solver, the participants select a random value. The resulting
agentView is x1 = 1, x2 = 1, x3 = 3. The participants
then inform each others of their value. They then consider
changing their value to a new randomly selected one. The
considered agentView is x1 = 2, x2 = 3, x3 = 1. Like
with UDCOPs, Student A1 does not propose the new value
as it would increase their cost, and Student A3 chooses to
change its variable’s value from 2 to 1. However, with MO-
DCOPs Student A2 changes its value to 3, which is not
the case with UDCOPs, which implies privacy loss. The
agentView is now x1 = 1, x2 = 3, x3 = 1. As we see,
with the MO-DCOP model, Student A2 reveals more values

and loses more privacy (a difference of (110-100)=10 units
of privacy) than with UDCOPs.

5 Experimental Results

We evaluate our framework and algorithms on randomly
generated instances of distributed meeting scheduling prob-
lems (DMS). Previous work (Wallace and Freuder 2005)
in distributed constraint satisfaction problems has already
addressed the question of privacy in distributed meeting
scheduling by considering as private the information on
whether an agent can attend a meeting. They evaluate the
privacy loss brought by an action as the difference between
the cardinalities of the final set and of the initial set of pos-
sible availabilities for a participant.

The problems are parametrized as follows: 10 agents, 10
possible values, the cost for the constraints is a random num-
ber between 0 and 9, and the cost of a revelation is a random
number between 0 and 9. Each set of experiments is an av-
erage estimation over 50 instances with the different algo-
rithms (DBO, DBOU, DSA, DSAU). The experiments are
carried out on a computer under Windows 7, using a 1 core
2.16GHz CPU and 4 GByte of RAM. The implementation
is done in Java, using the JADE framework.

Figure 1 shows the total amount of privacy lost by all
agents, averaged over 50 problems, function of the density
of unary constraints (proportion of unary constraints assign-
ments with a non null cost). We observe that both of our
extensions (DBOU and DSAU) reduce the loss of privacy
compared to the initial algorithms (DBO and DSA, respec-
tively). Also, DSA/DSAU imply more privacy loss than
DBO/DBOU, likely due to the high number of message ex-
changed involved in DSA/DSAU.

0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

Problem Density

Pr
iv

ac
y

L
os

s
pe

rA
ge

nt

DBO DBOU DSA DSAU

Figure 1: Evaluation of privacy loss in DCOPs

6 Conclusion
While privacy has been addressed in distributed constraint
optimization problems, none of the existing techniques is
widely used, likely due to the difficulty in modeling com-
mon problems. As privacy cannot be interpreted as a crite-
ria of a standard DCOP, we propose in this article a frame-
work called Utilitarian Distributed Constraint Optimization
Problem (UDCOP). It models the privacy loss for the revela-
tion of an agent’s costs for violating constraints. We present
algorithms that let agents use information about privacy to
modify their behavior and guide their search process, by
proposing values that reduce the amount of privacy loss. We
then show how adapted stochastic algorithms (DBOU and
DSAU) behave and compare them with standard techniques
on distributed meeting scheduling problems. The experi-
ments show that explicit modeling and reasoning with the
utility of privacy allows for significant savings in privacy.

References
Bowring, E.; Tambe, M.; and Yokoo, M. 2005. Distributed
multi-criteria coordination: Privacy vs. efficiency. In Nine-
teenth International Joint Conference on Artificial Intel-
ligence (IJCAI-2005)-Workshop on Distributed Constraint
Reasoning-DCR05, Edinburgh, Scotland. Citeseer.
Dessimoz, J.-D. 2016. Cognition, cognitics, and team
action—overview, foundations, and five theses for a better
world. Robotics and Autonomous Systems 85:73–82.
Faltings, B.; Léauté, T.; and Petcu, A. 2008. Privacy guar-
antees through distributed constraint satisfaction. In Web
Intelligence and Intelligent Agent Technology, 2008. WI-
IAT’08. IEEE/WIC/ACM International Conference on, vol-
ume 2, 350–358. IEEE.
Gershman, A.; Grubshtein, A.; Meisels, A.; Rokach, L.; and
Zivan, R. 2008. Scheduling meetings by agents. In Proc.
7th Intern. Conf. on Pract. & Theo. Automated Timetabling
(PATAT 2008), Montreal (August 2008).
Greenstadt, R.; Grosz, B.; and Smith, M. D. 2007. Ssd-
pop: improving the privacy of dcop with secret sharing. In
Proceedings of the 6th international joint conference on Au-
tonomous agents and multiagent systems, 171. ACM.
Grinshpoun, T., and Tassa, T. 2014. A privacy-preserving al-
gorithm for distributed constraint optimization. In Proceed-
ings of the 2014 international conference on Autonomous
agents and multi-agent systems, 909–916. International
Foundation for Autonomous Agents and Multiagent Sys-
tems.
Hirayama, K., and Yokoo, M. 1997. Distributed partial con-
straint satisfaction problem. In International Conference on
Principles and Practice of Constraint Programming, 222–
236. Springer.
Hirt, M.; Maurer, U.; and Przydatek, B. 2000. Efficient se-
cure multi-party computation. In International Conference
on the Theory and Application of Cryptology and Informa-
tion Security, 143–161. Springer.
Maheswaran, R. T.; Tambe, M.; Bowring, E.; Pearce, J. P.;
and Varakantham, P. 2004. Taking dcop to the real

world: Efficient complete solutions for distributed multi-
event scheduling. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent
Systems-Volume 1, 310–317. IEEE Computer Society.
Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. Technical report.
Russell, S. J.; Norvig, P.; Canny, J. F.; Malik, J. M.; and
Edwards, D. D. 2003. Artificial intelligence: a modern
approach, volume 2. Prentice hall Upper Saddle River.
Savaux, J.; Vion, J.; Piechowiak, S.; Mandiau, R.; Matsui,
T.; Hirayama, K.; Yokoo, M.; Elmane, S.; and Silaghi, M.
2016. Discsps with privacy recast as planning problems for
self-interested agents. 359–366.
Shamir, A. 1979. How to share a secret. Communications
of the ACM 22(11):612–613.
Silaghi, M.-C.; Faltings, B.; and Petcu, A. 2006. Secure
multiparty constraint optimization simulating dfs tree-based
variable elimination.
Wallace, R. J., and Freuder, E. C. 2005. Constraint-
based reasoning and privacy/efficiency tradeoffs in multi-
agent problem solving. Artificial Intelligence 161(1):209–
227.
Yokoo, M., and Hirayama, K. 1996. Distributed breakout al-
gorithm for solving distributed constraint satisfaction prob-
lems. In Proceedings of the Second International Confer-
ence on Multi-Agent Systems, 401–408.
Yokoo, M.; Suzuki, K.; and Hirayama, K. 2002. Secure dis-
tributed constraint satisfaction: Reaching agreement with-
out revealing private information. In International Con-
ference on Principles and Practice of Constraint Program-
ming, 387–401. Springer.
Zhang, W.; Wang, G.; and Wittenburg, L. 2002. Distributed
stochastic search for constraint satisfaction and optimiza-
tion: Parallelism, phase transitions and performance. In Pro-
ceedings of AAAI Workshop on Probabilistic Approaches in
Search.

