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Abstract

Consider the problem of estimating the expected number of
distinct eligible voters among the authors of a set of electronic
signatures gathered for a petition (or citizen initiative) that
has to pass legally required thresholds.
We formalize this problem and propose an extension to the
Pretty Good Privacy Web Of Trust, a mechanism for recip-
rocally certifying identities between peers. The extension (a)
enables agents to certify additional relevant statements about
others, and (b) gives agents opportunities for negative authen-
tication statements (e.g., on ineligibility of an identity).
A Bayesian Network model enables inferences on the data
provided by the proposed PGP extension. Simulations and an
agent-based platform are used to validate the concepts.

Introduction

Activists that strive to prove popular support for a petition
(or citizen initiative) face the challenge of ensuring that the
gathered signatures come from eligible persons, i.e. peo-
ple whose right to vote on the raised issue is recognized
by the authority targeted by the petition. Such authorities
have the possibility to verify signatures (by having access to
databases and technology that are not public), and they com-
monly verify the signatures after they are gathered. That is
too late for the committees investing the effort of gathering
the signatures, who do no longer have time to gather remain-
ing support needed to pass legally required thresholds.

Furthermore, early assesment of the real support can help
petition committees better estimate their chances of success
and better manage their resources. It can save them money
if they find when additional campaigning is not needed due
to the reach of sufficient support, or that the petition drive
has to be completely abandoned due to a steady opposition.

In this article we describe how this problem can be
formalized and addressed in a principled way by using
Bayesian Networks as an extension of Pretty Good Privacy
(PGP). The introduced framework defines the expected valid
petition support problem. Simulations, as well as a real plat-
form (Figure 1), are used for its validation with agents that
can submit and disseminate petitions and signatures using a
peer-to-peer architecture (Silaghi et al. 2013). Each agent
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Figure 1: Eligibility Inferences during Petition Drives

evaluates the eligibility of the authors for known signatures
based on the available information that signers submit about
each-other. The large size of the local databases is addressed
by employing approximate inference techniques.

While the described inference is Bayesian, an agent’s nu-
meric computation can be sped up with ad-hoc techniques.
Here, agents that trust each-other collaborate by exchanging
and combining partial computations on their samples. This
part is not backed by a belief network model, but the dissem-
ination of false contributions by attackers can be countered
using influence inhibition heuristics, such as amortization at
each hop, and bound on the weight of external contributions.

Background

Countries ranging from India to EU provide citizens with
opportunities to convey opinions to their representatives.
Often the proposed approaches are ad-hoc, ranging from
counting SMS messages (in India) to various forums with-
out authentication. The relatively more tested traditional
method of gathering signatures on paper has few equivalent
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electronic solutions. This is due to the fact that verifiable
electronic signature identities are not yet widely available to
the population or have prohibitive costs. The most reach-
able technique, Pretty Good Privacy (PGP), has not seen a
sufficiently wide acceptance, likely due to limitations in the
usability of available tools and of a limited expressive power
for the transitivity of the trust (Ferguson and Schneier 2003).

PGP (Zimmermann 1995) is a mechanism whereby peo-
ple can certify each other’s electronic identities based on
visually inspecting each other’s government issued identity
documents. Key Signing Party events are organized to pro-
vide opportunities to potential users to verify each other’s
documents and issue PGP certifications. A remote agent
is trusted in PGP if one finds a chain of identities leading
to it, where each node of the chain certifies the identity of
the next node and is manually flagged as trusted by the user
(or if two nodes flagged as partially trusted certify the next
node). PGP has no mechanism to provide negative certifica-
tion, denying that a given peer is eligible (aka legitimate).

In (Douceur 2002), methods are classified into direct val-
idation and indirect validation approaches. The former sug-
gests that an entity only accepts identities that it has directly
validated by some means (Garfinkel 2003). The latter sug-
gests that an entity accepts identities that are vouched for by
already accepted identities, as in PGP and X509 certifica-
tion. Our approach for validation of identities is related to
these, but we elicit and exploit both positive validations and
negative certificates for each identity, as well as for other
kinds of statements.

Bayesian Networks for evaluation of peer properties
have been studied in different domains, such as web ser-
vices (Nguyen, Zhao, and Yang 2010) and anonymous inter-
action experience in specific contexts (Quercia, Hailes, and
Capra 2006; Orman 2013). Research concerning Bayesian
network study of groups in file exchanges (Wang and Vas-
sileva 2003) can be seen as an analogy to our witnessing on
neighborhoods. The connectivity is suggested by the small
world paradigm (Milgram 1967).

Formalized Problem

To enable the estimation of the expected number of valid
supporting signatures among the digital signatures gathered
for a petiton, we extend PGP with a mechanism:
(a) enabling agents to certify additional relevant statements
about others, besides eligibility (aka legitimacy),
(b) giving agents opportunities for negative authentication
statements (e.g., claiming falsity of an identity), and
(c) supporting the evaluation of the probability of someone’s
eligibility by Bayesian inference.

Authorities require petitions to be supported by a prede-
fined number of valid signatures in order to qualify for fur-
ther consideration (Obama 2014; Phillips 2014). Signatures
are collected together with data identifying their authors, in
a signature-identity pair. The identity information has to
uniquely identify the person. It can contain the information
typically found in a phone book, and an email. To illustrate
what can be an identity, an example is:

Example 1 John Doe; jdoe@ddp2p.net; main residence:

1024 6th St., Cambridge MA 02139

Email addresses alone may be considered insufficient since
people can easily have multiple of them, making it difficult
to detect repeated signatures. The email can be provided
to enable remote peer certification of known people without
having to attend a PGP key signing party (Garfinkel 2003).
While some kind of address is expected for uniquely iden-
tifying an identity, it does not have to be the postal address
of the main residence. The identity could also be structured
according to different classification hierarchy, such as place
and date of birth, or unique identification numbers in coun-
tries where these are not considered private. The identity can
also contain a public key for digital signatures.

The signature can consist of any digital signature of a sup-
port statement (Kattamuri et al. 2005) for the petition with
a key certified to belong to the associated identity. Here we
do not cover text processing (Rozenknop and Silaghi 2001).

Definition 1 (Validity) A signature-identity pair for a given
petition is valid (aka legitimate) if:

1. the author’s identity corresponds to a person whose right
to vote on the petition (aka eligibility) is recognized by the
authority targeted by the petition

2. the author’s identity signs this petition only once
3. the declared author’s identity corresponds to the actual

author of the signature

Definition 2 (EVPSP) The Expected Valid Petition Sup-
port Problem for a petition, is defined by a tuple
〈I,Σ,W,Ω,Γ, B〉, where I = {C1, ..., Cn} is a set con-
taining n identities, Σ is the subset of m identities signing
the petition, W is a set of w certificates, Ω is a set of proper-
ties, and Γ is an identity that is fully trusted (the identity of
the observer) or ⊥ (for none). B is a belief network defining
the relation between each probability Ψ(Ck), Ck ∈ Σ, that
Ck’s signature is valid, as a function of W and Γ. Each cer-
tificate is of the type (a, b, P ) specifying that the identity Ca

certifies the set of statements P concerning the identity Cb.
P is an assignment of the properties in Ω with values from
their domain, or ⊥ if unknown.

The problem is to find the expected number E of valid
gathered digital signatures, defined as the sum over all sig-
natures in Σ for the probabilities that the signature is valid.

E[[valid(Σ)]] =
∑

i

(i×P (|valid(Σ)|=i)) =
∑

(s∈Σ)

Ψ(s))

Here valid(Σ) gives the subset of Σ submitting valid sig-
natures. The relation results from Jensen’s inequality. The
trust of observer Γ in its own statements inherits the ultimate
trust concept of PGP. A belief network B is shown later.

Agent Framework

In this section we introduce in detail the definitions of the
items exchanged by the decentralized petitions platform.

Items used in this work are referenced using global iden-
tifiers (GIDs), built in a way that avoids intended and unin-
tended collisions between different items (typically by gen-
erating them either as a public key, or as the secure digest of
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the item data, alternative to KeyID in PGP). The secure di-
gest function is denoted with HASH(d) where d is the data
whose digest is computed. Given a public key P , we refer
to its secret key as SK(P ). The digital signature for data d
using secret key S is computed by SIGN(S, d). Identities
are validated with regard to a verifying authority, represent-
ing an organization, and identified by the a global identifier.
Organizations (Orman 2011) where the support is estimated
using the proposed decentralized technique are also referred
as grassroot organizations (e.g., a city, a county, a state).

Constituents The people with right to cast votes that have
a predefined weight in an organization form its constituency.
A constituent is defined by a tuple 〈C,O, i, d, r, s〉 where C
is its GID, O is the GID of the relevant organization, i is the
set of identity details, and d is the date and time when i was
declared. C is specified as a public key, r is the revocation
status of C used as per the PGP framework, and the con-
stituent data is signed with s = SIGN(SK(C), 〈O, i, r〉).

Neighborhood For ease of accounting, constituents can
be organized in tree structures with nodes (called neigh-
borhoods) corresponding to localities, cities, counties, states
and countries. They can also be a hierarchy of subdivisions
in an organization: university, college, department, center,
lab. The leaf of the tree of neighborhoods is the smallest
cell of the identity management, and can be configured to
correspond to a block, a street or an area/unit small enough
(relatively to the population density) such that members can
learn and easily verify residency of their neighbors.

Formally a neighborhood is a tuple 〈N , n, t, P, c〉, where
N = HASH(n, t, P, c) is the GID of the neighborhood, n
is the name of the neighborhood, t is its type/level (e.g., city,
block, unit), P is the GID of the parent neighborhood (⊥ for
a top neighborhood), and c is the list of expected types of
descendant levels under this neighborhood.

Example 2 A sample neighborhood item is:

N = 0x4e1fea12c4... // the hash
n = Lilliput
t = country
P = ⊥
c = “[county/city/street/block]”

The purpose of the c term is to enable automatic hints for
new constituents concerning the type of address fields that
they are expected to provide. Note that a child neighbor-
hood can overwrite the expected descendants c suggested by
its parent neighborhood, thereby enabling the heterogeneity
of addressing scheme existing in the real world (e.g., where
some countries have states and other do not). A neighbor-
hood item is of interest only if it is supported (witnessed)
by some constituent. Next we give the definition of witness
items and their extension to witnessing on neighborhoods.

Witness Constituents in a grassroot organization can sup-
port or oppose the other constituent items’ eligibility for

signing petitions. We say that they perform favorable or
unfavorable witness stances for those identities. A witness
stance can be associated with a set of semantic statements
(as epistemological commitments associated to ontological
commitments from a set Ω), such as:
• existence versus nonexistence of constituent name-

address pair,
• constituent public key (GID) belongs or not to the con-

stituent with declared name-address pair (e.g., checked
using WebFinger for a well known email address),

• favored versus disfavored version of a multiply occurring
constituent (e.g., at the current residence versus an old
residence, or with a correct versus a misspelled name),

• eligibility versus ineligibility of constituent,
• correctness versus inaccuracy of details in identity,
• reliability versus sloppiness of witness.
For example, when a constituent A declares constituent B
to be a sloppy witness, then A believes that B does not care-
fully verify all the constituents that it witnesses, unlike a
reliable witness.

Such a witnessing stance is defined by a tuple
〈W,O, S, T,m, e, d, σ〉 where O is an organization identi-
fier, S is the constituent identifier of the witnessing con-
stituent, T is the constituent identifier of the target con-
stituent item and e is an human readable explanation. The
set of semantic statements of the witnessing, where each of
them can be either favorable or unfavorable, is captured in
m. The parameter d represents the creation time of this wit-
nessing stance. The signature is generated as:

σ = SIGN(SK(S), 〈O, T,m, e, d〉).
The GID of the witness stance is generated as:

W = HASH(O, S, T,m).

Constituents can also witness about the legitimacy of a
whole neighborhood. For example, they can state that no lo-
cality called Mildendo exists in their county, or that no street
called 21st Street exists in their city. Such a witness stance
is represented by a tuple 〈W,O, S,N ,m, e, d, σ〉 where the
only difference with witness stances for constituent items is
that a GID of a neighborhood N is specified instead of the
GID of a target constituent T . Semantic statements for such
witness stances can be of type:
• favored versus disfavored version of a multiply occurring

neighborhood (e.g., New York vs New-York city)
• existing vs nonexistent neighborhood
Example 3 A sample witness stance for neighborhoods is:

W = 0x3e5fa // the hash
O = 0xe4273f5a6b... // Lilliput’s GID
S = 0xfe13ca6... // IDC6 PK
N = 0x4e1fea12c4... // IDC7
m = “existance=favorable; favored=favorable”
e = “Visited recently”
d = 20130406112015.012Z
σ = 0a1e6f7a8bc98e7b9a9e...
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Decentralized Petitioning Concepts
Now let us introduce concepts involved in the decentralized
petition drive processes.

Citizen Interactions A citizen-driven petition requires
participation of individual citizens for actions such as res-
idence declaration and witnessing. As residence declara-
tions, each individual voluntarily provides identity data not
only about herself but also about her neighbors. The neigh-
borhood where a citizen resides is part of its identity details.

Witness Graph A graph defined by the witness relations
between constituents can be generated in the following way:
• A node is generated for each constituent.
• A directed edge from node A to node B is generated for

each semantic statement that A witnesses for B.
• Each edge has a color (from a set Ω), given by the type of

statement that generated it (ontological commitment).
• An edge has weight 1 if generated for a favorable stance

and weight 0 if generated for an unfavorable stance (epis-
temological commitment).

This graph can be used to reason about the eligibility of the
declared identities and implicitly about the petition support.

Techniques
Here we present techniques used to address the challenge of
inferring the expectation of the count of legitimate signers
among the gathered digital signatures for a petition, given
a witness graph for a grassroot organization. Let us further
refine some of the used concepts.

Eligibility Although anyone can participate in the debates
of a petition drive of a grassroot organization, not everyone
is eligible to submit valid support signatures. In a grassroot
organization, which is the context of this study, the defini-
tion of eligibility can be a function of the constituent (either
due to the fact that the decision of the authority is not know,
or because it is contested). When the eligibility for a con-
stituent is based on a subjective view, the petition support
evaluation result is relevant only to the user (or users) shar-
ing this view. Hence, we define the eligibility as a proba-
bilistic function of several parameters:
• Someone’s interpretation of the witness graph, MS
• Someone’s own definition of the eligibility, O(Γ)

Definition 3 The reference user is the user Γ who currently
computes the support estimation.
Definition 4 (Eligible and Ψ) A constituent item C is
eligible for an organization if it is eligible and new
(never counted elsewhere). The Γ’s confidence value in
whether C is eligible is denoted Ψ(C).
Definition 5 (Witness Reliability and Φ) A constituent
item C is a reliable witness if Γ trusts all the witness stances
that C issues as she trusts her own. Γ may not fully trust the
stances of another constituent C, but only with a confidence
value Φ(C).

Based on the EVPSP parameters, one can infer a value Ψ for
the confidence that observer Γ can have on whether a given
constituent item C corresponds to an eligible user, and a
value Φ for its confidence on whether C is witness reliable.

Random variables are used to represent the eligible
property of each constituent, the reliable witness property,
and the witnessing stances between each pair of constituents
for each quality. All these random variables are Boolean.
For each pair of constituents A and B we get the random
variables and Bayesian Network in Figure 2. Note that each
pair of constituents requires the introduction of 2|Ω| random
variables for |Ω| qualities. With the two considered qualities
in Figure 2, Φ and Ψ, a constituent (e.g., A) is associated
with two hidden random variables: eligible (CSA) and
reliable witness (RWA). Each pair of constituents items
(e.g., A and B) is associated with four evidence (grayed)
random variables: A witnesses for B being a reliable witness
(WABΦ), A witnesses for B being eligible (WABΨ), B
witnesses for A being a reliable witness (WBAΦ), B wit-
nesses for A being eligible (WBAΨ).

Figure 2: A Bayesian Network that models the EVPSP with
two constituent items witnessing each other and themselves.
The Bayesian Network of larger communities is similarly
built for any configuration of witnessing stances by replicat-
ing the corresponding nodes and arcs.

Property 1 The number of random variables (all Boolean)
in a Bayesian Network modeling a EVPSP is linear in the
size of the input.

Proof. Given n constituent items C1, ..., Cn, we get at most
n2|Ω| random variables:

• n|Ω| hidden variables modeling the real qualities of each
constituent item, and

• n(n−1)|Ω| modeling the evidence variables about all |Ω|
possible witness stances between each of the n(n − 1)
possible directed pairs of constituents.

Note that we do not need to model with random variable the
nonexistent witness stances. Therefore the actual network
size is linear in the size of the input, being proportional to the
number w of input semantic statements in witness stances
(w + n)|Ω|.

For average sized networks one can perform queries of
values for the random variables CSCi , modeling Ψ(Ci) of
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ith constituent item, using techniques such as Markov Chain
Monte Carlo (MCMC).

Scalability The approximate inference technique, does
not require to simultaneously load in memory the entire
Bayesian Network defined by all signatures and identities
available to an agent. It is sufficient to load a node (to be re-
estimated) and its Markov blanket, at a time. In fact, we load
as many such node-Markov blanket pairs as made possible
by the available resources of the agent.

The community-focused heuristic we use for loading such
pairs is to have each of the nodes loaded for re-evaluation,
selected to be part of the Markov blanket of many other
loaded nodes (identities that witness on each-other). Ref-
erence counters are used with each node to only release the
memory it takes when all Markov blankets sharing the node
are discarded. Multiple re-evaluation rounds are performed
on the loaded nodes before loading different communities.

Efficiency Peers that trust each other collaborate by ex-
changing counts obtained for the nodes that they evaluate.
This helps new agents to faster converge to good approxi-
mations of the probabilities. Data exchanged this way can
be used by attackers to influence the authentication results,
and therefore received counts are bound to not exceed the
weight of the locally obtained counts, as soon as local counts
exceed a user-defined threshold. Also, counts received are
passed further only after reduction with a further amortiza-
tion factor, reducing fast the potential influence of the attack-
ers. Past a second threshold, incoming counts are discarded
in favor of the result from local computations.

Experiments

Figure 3: Inference of Ψ(C1) and Ψ(C2)

With the Bayesian network built following the pattern in
Figure 2 and rough manually prepared CPTs we use MCMC

to perform queries of values for the random variable CSCi

which models the Ψ(Ci) of the ith constituents. Conver-
gence for a few constituents is shown in Figures 3 (a), (b),
(c), (d). The reference (red line) is computed with an exact
inference by enumeration. For an external observer the ex-
act inference by enumeration is expected to take 33 days on
a computer and is not shown.

We have performed extensive experiments with simulated
data. Most of them will not be described here for lack
of space. The result of a set of 5 experiments estimat-
ing the impact of the percentage k of honest active con-
stituents (HACs) in the global population on the eligible
properties of the constituents is shown in Figure 4. The
true positive rate (TPR) gives the percentage of correctly
counted constituents out of the total number of eligible con-
stituents. The false positive rate (FPR) gives the percent-
age of wrongly counted constituents with respect to the total
number of eligible constituents. A robust verification pro-
cess has a high TPR and a low FPR. The semantic state-
ments for witness stances are only about the eligibility qual-
ity. In this experiment, a constituent item (n, a) is eligible
if there is someone whose name is n and lives at address
a. We simulate attackers that declare a number of ineligi-
ble constituent items and perform favorable witness stances
for a percentage of h ineligible constituent items in their leaf
neighborhoods. We assume that witness stances represent all
semantic statements. The plotted points are for h of 100%,
93.75%, 87.5%, 75%, 50%, 25%, 12.5%, 6.25%, 0% respec-
tively. The values of k are (0.9, 0.8, 0.7, 0.5 and 0.3).
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Figure 4: The effects of the percentage of honest active con-
stituent (k value) in global population, for varying h.

There are several common parameters for the plotted
curves. The total number of eligible constituents is 9300000.
The HACs witness percentage is 50% out of their leaf neigh-
borhoods. HACs witness percentage is the percentage of
constituent items that an HAC witnesses honestly (A favor-
able witness stance is performed if an item is eligible and an
unfavorable witness stance is performed if an item is ineli-
gible). The number of attackers is 300000. The number of
ineligible constituent items declared by each attacker is 4.

Since we see in Figure 4 that the curve with parameter
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Figure 5: ROC: 1000 MCMC rounds and 1000 constituents

k=0.9 is higher than the curve with parameter k= 0.8, the
curve with parameter k=0.8 is higher than the curve with
parameter k=0.7, the curve with parameter k=0.7 is higher
than the curve with parameter k=0.5 and the curve with pa-
rameter k=0.5 is higher than the curve with parameter k=0.3,
we conclude that the k value will affect the robustness of the
system positively. That is, the bigger the k value is, the more
accurate the system will be.

Figure 5 illustrates the ROC curve for an unstructured ex-
periment (without neighborhoods) based on 1000 real con-
stituents and 1000 MCMC rounds. Each attacker creates n
fake identities into the global population (n ∈ {1, 2}) and
has a favorable witness stance on each of the fake identities.
Percentages of HACs and attackers out of all constituents
are both 50%. Each HAC has a correct witness on 1% of
all identities (real and false). Constituent C is counted here
when Ψ(C) is greater than a threshold t (varying between 0
and 1). The ROC curves has a low false positives rate and
high true positives rate which indicates a robust system for
this configuration of parameters. A second observation is
that the curve for more attackers is only slightly below the
other one, which is consistent with graceful degradation. We
hope to extend this study to many additional configurations.

Conclusions

To enable an estimation of expected gathered support for de-
centralized petitions, we extend Pretty Good Privacy (PGP)
with additional flexibility to certify properties about peers
besides legitimacy, as well as to enable negative certifica-
tion. Constituents can witness (vote) on each other’s quali-
ties, such as: eligibility and witnessing reliability.

The concept of neighborhood is introduced and formal-
ized in order to simplify peer verification. Neighborhoods
group constituent addresses in a tree structure. For large or-
ganizations, the constituency is organized in a tree of neigh-
borhoods to help evaluating the gathered support for peti-
tions. Eligibility can be verified separately for each neigh-
borhood and it is reasonable to expect most users to be able
to verify the existence of the immediate child neighborhoods
of all the nodes on the path from their own address to the
root. This enables a distributed verification of the existence
of declared neighborhoods (and thereby of addresses).

Items for these concepts are identified by global iden-
tifiers guaranteed to be unique and that are disseminated
among peers based on multi-agent protocols (current exper-
iments being based on the currently implemented platform).

A peer is an user acting under one name and public key via
multiple agents (e.g., one agent per device that she uses).

We have also proposed and analyzed theoretically and
empirically a probabilistic model based on Bayesian Net-
works that can be used to address the expected valid petition
support problem in a principled way. Markov Chain Monte
Carlo inferences are found to converge within few seconds
for reasonable sized neighborhoods, and scale linearly with
the input size. The outputs are probabilities that can be used
to compute expected support for petitions/initiatives. Exper-
iments with simulated data show that robustness to attackers
is possible with a kernel of honest active constituents.
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