
Fundamenta Informaticae 158 (2018) 63–91 63

DOI 10.3233/FI-2018-1642

IOS Press

Leximin Multiple Objective DCOPs on Factor Graphs
for Preferences of Agents

Toshihiro Matsui∗

Nagoya Institute of Technology
Gokiso-cho Showa-ku Nagoya 466-8555, Japan
matsui.t@nitech.ac.jp

Marius Silaghi
Florida Institute of Technology
Melbourne FL 32901, United States of America
msilaghi@fit.edu

Tenda Okimoto
Kobe University
5-1-1 Fukaeminami-machi Higashinada-ku Kobe
658-0022, Japan
tenda@maritime.kobe-u.ac.jp

Katsutoshi Hirayama
Kobe University
5-1-1 Fukaeminami-machi Higashinada-ku Kobe
658-0022, Japan
hirayama@maritime.kobe-u.ac.jp

Makoto Yokoo
Kyushu University
744 Motooka Nishi-ku Fukuoka 819-0395, Japan
yokoo@is.kyushu-u.ac.jp

Hiroshi Matsuo
Nagoya Institute of Technology
Gokiso-cho Showa-ku Nagoya 466-8555, Japan
matsuo@nitech.ac.jp

Abstract. Distributed Constraint Optimization Problem (DCOP) has been studied as a funda-
mental component of multiagent systems. With DCOPs, various applications on multiagent sys-
tems are formalized as constraint optimization problems where variables and functions are dis-
tributed among agents. Leximin AMODCOP has been proposed as a class of Multiple Objective
DCOPs, where multiple objectives for individual agents are optimized based on the leximin oper-
ator. This problem also relates to Asymmetric DCOPs based on its the criteria of fairness among
agents. Previous studies explore only Leximin AMODCOPs on constraint graphs limited to func-
tions with unary or binary scopes. We address the Leximin AMODCOPs on factor graphs that
directly represent n-ary functions. A dynamic programming method on factor graphs is investi-
gated as an exact solution method. In addition, for relatively dense problems, we also investigate
several approximate/inexact algorithms.

Keywords: distributed constraint optimization, asymmetric, multiple objectives, leximin, egali-
tarian

∗Address for correspondence: Nagoya Institute of Technology, Gokiso-cho Showa-ku Nagoya 466-8555, Japan

64 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

1. Introduction

1.1. Distributed Constraint Optimization Problem and preferences of agents

The Distributed Constraint Optimization Problem (DCOP) [1, 2, 3, 4] has been studied as a funda-
mental component of multiagent systems. With DCOPs, various applications on multiagent systems,
including sensor network, power smart grid, and disaster response, are formalized as constraint opti-
mization problems where variables and functions are distributed among agents [5, 4, 6]. The agents
cooperatively solve these problems in a decentralized manner. While the goal of the original DCOP
is the optimization on the summation of all functions, that traditional criterion does not capture the
preferences of agents. In practical resource allocation tasks, the individual preference of each agent is
a natural requirement. Such problems are considered here as a class of multiple objective problems on
the preferences of agents. Moreover, to manage the preferences among agents, fairness (or inequality)
is an important criterion.

The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) [7, 8] has been
studied as an extension to DCOPs. With MODCOPs, agents cooperatively solve multiple objective
problems. While the original MODCOP addresses a few objectives that are shared among all agents,
the concept of the multiple objectives is generalized into the preferences of individual agents. The
preferences of agents also relate to Asymmetric DCOPs [9, 10] where each agent differently evaluates
asymmetric functions. The concept of the Asymmetric DCOP is also extended with MODCOPs where
each agent differently evaluates its own local problem that represents the preference of the agent.
Such MODCOPs can be optimized with several criteria including fairness or inequality. Recently,
several existing studies focused on these classes of problems [11, 12]. The fairness among agents is
an important requirement in practical resource allocation tasks [13, 14, 11, 12].

1.2. Motivating domains

For example, in a distributed sensor network, which consists of multiple sensors and multiple obser-
vation areas (or targets), the sensors are separately allocated to their neighboring observation areas to
cover the areas cooperatively [4]. When an observation area is modeled as an agent (several sensor
nodes may perform as such agents), the agent requires some sensor resources to obtain its necessary
observation quality. In this case, fairness among observation areas are important to assure a baseline
observation quality over the whole system.

As another example, in a micro smart grid with distributed power sources, a power transformer
station or a small group of buildings can be considered as an agent who provides or consumes power
resources [5]. Assume that they have to share the limited power resources with other agents connected
by power lines. This resource allocation can be formalized as a distributed optimization problem.
In general, agents have different resource requirements. These may be represented by individual
preference values so that the requirements can be compared with each other. In this case, the fairness
among preference values of agents should be optimized.

In a representation of Coalition Structure Generation (CSG) problems [15], agents generate several
groups in a distributed manner. In this problem, each agent determines whether it belongs to one of the
groups or it does not belong to any groups. When an agent belongs to a group, it should collaborate

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 65

with other agents in the group, and it obtains a utility based on an interaction of the agents. Otherwise,
the agent does not collaborate with any agents, and obtains a different utility. These can be considered
as task allocation problems or team generation problems. In this case, it is natural that each agent
desires to improve its own utility individually1.

In the above problems, the agents evaluate their own objectives. Therefore, an asymmetric repre-
sentation is necessary for the individual objectives. In addition, a criterion, which is different from the
conventional summation, is necessary to aggregate/compare the objectives considering fairness.

1.3. Asymmetric problem with leximin and extension on factor graphs

As a class of MODCOPs, Leximin AMODCOP, where multiple objectives for individual agents are
optimized based on the leximin operator, has been proposed [16]. This problem is also a class of
Asymmetric DCOPs. Leximin is a well-known egalitarian social welfare that represents the fair-
ness/inequality among agents. Since the maximization on leximin ordering improves equality among
agents, the Leximin AMODCOP is considered as a fundamental class of DCOPs. While the lex-
imin is defined on vectors of objectives, the optimization on leximin can be decomposed using a dy-
namic programming approach for DCOPs [16, 2]. The previous study [16] has proposed the Leximin
AMODCOP on constraint graphs for binary and unary functions. Constraint graphs of Asymmetric
DCOPs are represented as directed arc graphs where nodes and directed arcs/edges stand for variables
and functions, respectively [9, 13]. Therefore, the direction of edges should be handled in solution
methods.

On the other hand, this class of problems is well represented with factor graphs. In factor graphs,
nodes stand for variables or functions, while non-directed edges stand for scopes of functions. Since
a function is separately treated as a node in factor graphs, the function node is owned by an agent,
where the function represents the preferences of the agent. Therefore, there are no directions of edges
that represent ownership of the functions. Namely, asymmetric functions are naturally represented as
factor graphs without any modifications. In addition, factor graphs directly represent n-ary functions.

For the Asymmetric DCOPs, the n-ary function can be considered as a general representation,
since an agent is interested in its own objective values which are aggregated for the agent. Even if
an n-ary asymmetric objective function can be originally defined by multiple asymmetric binary func-
tions, the agent firstly aggregates the functions to evaluate the true objective values, in the case of
solution methods without dedicated pruning technics. Moreover, the n-ary function generally repre-
sents preferences of decisions among three or more agents including preferences partially depending
on the number of agents or complicated friendships.

1.4. Our contributions

In this paper, we propose several solution methods for Leximin AMODCOPs on factor graphs. First
we present a complete solution method based on a dynamic programming on factor graphs. Then
several approximation methods and a local search are proposed to address the issue of combinational
explosion in the complete solution method. The effects and influences of the proposed methods are

1Here we do not address the solution concepts such as the Shapley value or the nucleolus.

66 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

x
0

f
0

x
2

x
1

f
1

0 1

2

agent x
0

f
0

f
2

x
1

f
2

f
1

x
2

(a) factor graph/AMODCOP (b) pseudo tree

tree edge
back edge

x
0

f
0

f
2

x
1

f
1

x
2

(c) separators

x
2

x
1 x

0
, x

1

x
0
, x

1

x
0

x
0

x
2

x
1

agent

(d) constraint graph/AMODCOP

f
1

f
0

f
2

0 1

2

x
0

x
1

x
2

a
0

a
1

a
2

a a a 1 2 1

a a b 1 2 2

a b a 2 1 3

a b b 2 1 4

b a a 3 2 1

b a b 3 2 2

b b a 4 1 3

b b b 4 1 4

x
0

x
1

f
0

a a 1

a b 2

b a 3

b b 4

x
1

f
1

a 2

b 1

x
0

x
1

x
2

f
2

a a a 1

a a b 2

a b a 3

a b b 4

b a a 1

b a b 2

b b a 3

b b b 4

(d) asymmetric function (e) individual functions

Figure 1. AMODCOP on factor graph

experimentally evaluated. Our contributions are as follows. (1) With factor graphs, we generalized
the representation of Leximin AMODCOPs and a solution method based on dynamic programming.
(2) To reduce the size of partial problems in the dynamic programming based solution method, two
approximation methods are introduced. These methods employ a heuristic to eliminate assignments to
variables, and a mini-buckets approach. (3) A local search method is applied to Leximin AMODCOPs
on factor graphs. (4) We experimentally evaluate the effect of optimization based on leximin criterion
in several classes of problems. (5) For the approximation approaches and inexact solution methods,
we also experimentally show several influences on solution quality.

This paper is an extended work of the previous study [17]. We refined several descriptions and
experimental results including new evaluations on a structured problem domain. In addition, a new
solution method that employs the mini-buckets approach is introduced.

The paper is organized as follows. In the next section, we present several preliminaries of our study
including DCOPs, factor graphs and Leximin AMODCOPs. Then we present several solution methods
for LeximinAMODCOPs on factor graphs in Section 3. The proposed methods are experimentally
evaluated in Section 4. We address related works and discussions in Section 5 and conclude our study
in Section 6.

2. Preliminaries

In the following, we present preliminaries of our study. Several definitions and notations are inherited
from previous literature [16, 18].

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 67

2.1. DCOP

A distributed constraint optimization problem (DCOP) is defined as follows.

Definition 2.1. (DCOP)
A DCOP is defined by (A,X,D, F), where A is a set of agents, X is a set of variables, D is a
set of domains of variables, and F is a set of objective functions. The variables and functions are
distributed to the agents in A. A variable xn ∈ X takes values from its domain defined by the discrete
finite set Dn ∈ D. A function fm ∈ F is an objective function defining valuations of a constraint
among several variables. Here fm represents utility values that are maximized. We also call the utility
values of fm, objective values. Xm ⊂ X defines the set of variables that are included in the scope
of fm. Fn ⊂ F similarly defines a set of functions that include xn in its scope. fm is defined as
fm(xm0, · · · , xmk) : Dm0 × · · · ×Dmk → N0, where {xm0, · · · , xmk} = Xm. fm(xm0, · · · , xmk)
is also simply denoted by fm(Xm). The aggregation F (X) of all the objective functions is defined as
follows: F (X) =

∑
m s.t. fm∈F,Xm⊆X fm(Xm). The goal is to find a globally optimal assignment

that maximizes the value of F (X).

Each agent locally knows its own variables and related functions. A distributed optimization
algorithm is performed to compute the globally optimal solution.

2.2. Factor graph, Max-Sum algorithm and bounded Max-Sum algorithm

The factor graph [3] is a representation of DCOPs, and is a bipartite graph consisting of variable
nodes, function nodes and edges. An edge represents a relationship between a variable and a function.
Figure 1(a) shows a factor graph consisting of three variable nodes and three function nodes. As shown
in the case of a ternary function f2, the factor graph directly represents n-ary functions.

The Max-Sum algorithm [3] is a method for solving a DCOP by exploiting its factor graph. Each
node of the factor graph corresponds to an ‘agent’ referred to as variable node or function node.
Each such node communicates with neighborhood nodes using messages to compute globally optimal
solutions. A message represents an evaluation function for a variable. A node computes/sends a
message for each variable that corresponds to a neighborhood node. Here the nodes of functions in Fn

are called the neighborhood function nodes of variable node xn. Similarly, the nodes of variables in
Xm are called the neighborhood variable nodes of function node fm. A message payload qxn→fm(xn)
that is sent from variable node xn to function node fm is represented as follows.

qxn→fm(xn) =

 0 if Fn = {fm}∑
fm′∈Fn\{fm}

rfm′→xn(xn) otherwise (1)

A message payload rfm→xn(xn) that is sent from function node fm to variable node xn is represented
as follows.

rfm→xn(xn) = max
ε∈DXm\{xn}

(
fm(ε, xn) +

∑
xn′∈Xm\{xn}

qxn′→fm(ε‖xn′)

)
(2)

68 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

Here maxε∈DXm\{xn}
denotes the maximization for all assignments of variables in Xm\ {xn}.

A variable node xn computes a marginal function that is represented as zn(xn) =∑
m s.t. fm∈Fn

rfm→xn(xn). Since zn(xn) corresponds to global objective values for variable xn,
the variable node of xn chooses the value of xn that maximizes zn(xn) as its solution. See [3] for the
details of the algorithm.

In the cases where a factor graph contains cycles, the Max-Sum algorithm is an inexact
method that may not converge, since the computation on different paths cannot be separated. In
Bounded Max-Sum algorithm [19], a cyclic factor graph is approximated to a maximum span-
ning tree (MST) using a preprocessing that eliminates the cycles. For the computation of MST,
the impact of edge eij between function fi and variable xj is evaluated as weight value wij =
maxXi\{xj}

(
maxxj fi(Xi)−minxj fi(Xi)

)
. When a set of variables Xc

i ∈ Xi is eliminated from
the scope of function fi, the function is approximated to f̃i = minXc

i
fi(Xi). Then, the Max-Sum

algorithm is applied to the spanning tree as an exact solution method. In this computation, a couple of
bottom-up and top-down processing steps based on a rooted tree are performed similarly to DPOP [2].

2.3. Asymmetric DCOP

Asymmetric DCOP (ADCOP) [9, 10] is an extended class of DCOPs, where different objective func-
tions are asymmetrically defined for a set of agents. Based on the definition of DCOP shown in
Definition 2.1, an ADCOP is generally defined as follows.

Definition 2.2. (Asymmetric DCOP)
An Asymmetric DCOP is defined by (A,X,D, F), where A, X and D are similarly defined as the
original DCOP. For a set of agents Am ⊆ A, a function fAm ∈ F is defined as fAm(xAm,0 , · · · ,
xAm,k

) : DAm,0 × · · · ×DAm,k
→ N|Am|

0 , where each dimension of N|Am|
0 corresponds to an agent in

Am. For each agent i ∈ Am, function fAm is also redefined as fAm,i(xAm,0 , · · · , xAm,k
) : DAm,0 ×

· · · × DAm,k
→ N0. fAm(xAm,0 , · · · , xAm,k

) and fAm,i(xAm,0 , · · · , xAm,k
) are also simply denoted

by fAm(XAm) and fAm,i(XAm). The aggregation F (X) of all the objective functions is defined
as follows: F (X) =

∑
Am s.t. fAm∈F,XAm⊆X

fAm(XAm). The goal is to find a globally optimal
assignment that maximizes the value of F (X).

Here each objective function fAm,i(XAm) represents the valuation for one of the agents. The goal of
the problem is to optimize the summation of objective values. In the previous studies on ADCOPs,
solution methods for binary asymmetric functions on pairs of agents are presented [9, 10]. In the case
of binary asymmetric functions, two different functions fi(xa, xb) and fj(xa, xb) are defined for a pair
of variables xa and xb in different agents i and j.

2.4. Multiple objective DCOP for preferences of agents

2.4.1. Multiple objective DCOPs

Multiple objective DCOP [7] (MODCOP) is a generalization of the DCOP framework. With MOD-
COPs, multiple objective functions are defined over the variables. The objective functions are si-

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 69

multaneously optimized based on appropriate criteria. The tuple with the values of all the objective
functions for a given assignment is called the objective vector.

Definition 2.3. (Objective vector)
An objective vector v is defined as [v0, · · · , vK], where vj is an objective value. The vector F(X) of
objective functions is defined as [F 0(X0), · · · , FK(XK)] , where Xj is the subset of X on which F j

is defined. F j(Xj) is an objective function for objective j. For assignment A, the vector F(A) of the
functions returns an objective vector [v0, · · · , vK]. Here vj = F j(Aj).

Since there is a trade-off among objectives, objective vectors are compared based on Pareto domi-
nance [20, 21]. In the case of maximization problems, the dominance between two objective vectors,
and Pareto optimality on the assignments are defined as follows.

Definition 2.4. (Pareto dominance)
A vector v dominates v′ if and only if v ≥ v′, and vk > v′k for at least one objective k.

Definition 2.5. (Pareto optimality)
Assignment A∗ is Pareto optimal if and only if there is no other assignment A, such that F(A) ≥
F(A∗), and F k(Ak) > F k(A∗k) for at least one objective k.

Multiple objective problems generally have a set of Pareto optimal solutions that form a Pareto front.

2.4.2. Social welfare

With a social welfare that defines an order on objective vectors, traditional solution methods for sin-
gle objective problems can be applied to choose a Pareto optimal solution. There are several criteria
of social welfare [20] and scalarization methods [21]. A traditional social welfare is defined as the
summation

∑K
j=0 F

j(Aj) of objectives. The maximization of this summation ensures Pareto optimal-
ity. However, it does not capture the equality on these objectives. Maximin maximizes the minimum
objective value. While maximin improves the worst case, it is not Pareto optimal. Maximin is also
improved with summation that breaks ties of maximin ordering. See literatures [20, 21] for the de-
tails of above criteria. The study in [13] addresses a multiple objective Asymmetric DCOP whose
social welfare is based on Theil index. This social welfare also represents inequality/fairness among
agents. However, a local search algorithm is employed to solve the problem, since the social welfare
is non-monotonic.

Another social welfare, called leximin, is defined with a lexicographic order on objective vectors
whose values are sorted in ascending order.

Definition 2.6. (Sorted vector)
A sorted vector based on vector v is the vector, where all the values of v are sorted in ascending order.

Definition 2.7. (Leximin)
Let v and v′ denote vectors of the same length K + 1. Let [v0, · · · , vK] and [v′0, · · · , v′K] denote
sorted vectors of v and v′, respectively. Also, let ≺leximin denote the relation of the leximin ordering.
v ≺leximin v′ if and only if ∃t,∀t′ < t, vt′ = v′t′ ∧ vt < v′t.

70 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

The maximization on the leximin ordering ensures Pareto optimality. The leximin is an ‘egalitarian’
criterion, since it reduces the inequality on objectives.

2.4.3. Leximin Asymmetric MODCOP on preferences of agents

Leximin Asymmetric MODCOP (Leximin AMODCOP) [16] is a class of MODCOP, where each
objective stands for a preference of an agent. This problem also relates to extended Asymmetric
DCOPs with fairness or envy among agents [14, 13, 11, 12, 9]. Here each agent individually has its
set of objective functions whose aggregated value represents the preference of the agent. On the other
hand, several agents relate each other, since the subsets of their variables are contained in the scope of
the same function. A Leximin AMODCOP is defined as follows [16].

Definition 2.8. (Leximin AMODCOP)
A Leximin AMODCOP is defined by (A,X,D, F), where A, X and D are similarly defined as for
the DCOP in Definition 2.1. Agent i ∈ A has its local problem defined on Xi ⊆ X . ∃(i, j) s.t. i 6=
j,Xi ∩ Xj 6= ∅. F is a set of objective functions fi(Xi) for all i ∈ A. The function fi(Xi) :
Di0 × · · · × Dik → N0 represents the objective value for agent i based on the variables in Xi =
{xi0 , · · · , xik}. For an assignment A of variables, the global objective function F(A) is defined as
[f0(A0), · · · , f|A|−1(A|A|−1)]. HereAi denotes the projection of the assignmentA onXi. The goal is
to find the assignmentA∗ that maximizes the global objective function based on the leximin ordering.

In general cases, Leximin AMODCOPs are NP-hard, similar to DCOPs.
The operations in the solution methods for DCOPs are extended for the leximin. The evaluation

values are replaced by the sorted objective vectors, and the comparison on objective values is ex-
tended with the leximin operator. Also, the addition of objective values is extended as a concatenation
operation of objective values. The ‘addition’ of sorted vectors is defined as follows [16].

Definition 2.9. (Addition on vectors)
Let v and v′ denote vectors [v0, · · · , vK] and [v′0, · · · , v′K′]. The addition v ⊕ v′ of the two vectors
gives a vector v′′ = [v′′0 , · · · v′′K+K′+1] where each value in v′′ is a distinct value in v or v′. Namely,
v′′ consists of all values in v and v′. As a normalization, the values in v′′ are sorted in ascending
order.

In Bounded Max-Sum algorithm and our proposed method, partial solutions and related evaluation
values are aggregated in a bottom up manner on a tree structure. This aggregation can be naturally
extended for the leximin based on the similar operation whose correctness has been proven in [16].

Figure 1(a) shows a factor graph of the (Leximin) AMODCOP, where each agent i has a variable xi
and a function fi. Since factor graphs directly represent n-ary functions, any asymmetric problems are
well figured using this graph structure. Note that scope Xi of fi should contain xi. On the other hand,
Figure 1(d) shows the constraint graph of the same problem. It requires directed arcs to represent the
ownership of the functions. Solution methods for such constraint graphs have to handle the direction
of edges. Moreover, a hyper-edge is necessary to represent an n-ray (ternary) function f2.

With the form of asymmetric functions shown in Definition 2.2, an asymmetric ternary function
for three agents in Fig. 1(a) is depicted as in Fig. 1(d). Here ai denotes agent i. We assume that

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 71

each variable takes a value from {a, b}. The asymmetric function is also redefined via the individual
functions shown in Fig. 1(e). Since agents 0 and 1 are only interested in {x0, x1} and {x1}, binary
and unary functions represent the objective values of those agents.

For cyclic factor graphs, the traditional Max-Sum algorithm is inexact. Namely, an objective value
is redundantly aggregated via different paths [3, 22]. A possible approach to avoid the redundant ag-
gregation is the computation based on a spanning tree of the factor graph, similar to the Bounded
Max-Sum algorithm [19]. However, this approximation is not very promising, since it eliminates sev-
eral relationships between functions and variables. That may decrease the actual minimum objective
value and the solution quality on leximin ordering.We therefore employ different types of algorithms.

3. Solution methods for Leximin AMODCOPs on factor graphs

As an exact solution method for Leximin AMODCOPs, we introduce a dynamic programming algo-
rithm based on pseudo trees of factor graphs. Then, we also introduce an approximation method and
a local search algorithm. Here we assume that there are communication channels between any pairs
of agents.

3.1. Dynamic programming based on pseudo tree

Several solution methods employ pseudo trees [1, 2] to decompose problems on constraint graphs. On
the other hand, there are a few similar studies for factor graphs [18]. We employ a solution method
based on pseudo trees on factor graphs 2.

3.1.1. Pseudo trees on factor graphs

A pseudo tree on a factor graph is constructed in a preprocessing of the main optimization method.
Here we employ a DFS tree for a factor graph. The DFS graph traversal is initiated from a variable
node and performed for all nodes ignoring their types. Edges of the original factor graph are catego-
rized into tree edges and back edges based on the DFS tree. Figure 1(b) shows a pseudo tree for the
factor graph of Fig. 1(a). Based on the factor graph and DFS tree, several related nodes are defined for
each variable/function node i as follows.

• Nbri: the set of i’s neighborhood nodes.

• Nbrhi/Nbrli: the set of i’s neighborhood nodes in higher/lower depths. Here the depth is based
on the DFS tree so that the root node is the highest node.

• prnti: the parent node of i.

• Chldi: the set of i’s child nodes.

2While the previous study employs cross-edge pseudo trees and a search algorithm [18], we employ DFS trees and dynamic
programming methods for the sake of simplicity. The pseudo trees based on DFS trees have no cross-edges and do not need
a dedicated technique in [18].

72 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

• Sepi the set of separators: i.e., the variables related both to the subtree rooted at i and to i’s
ancestor nodes.

• Sepi: the set of non-separator variables. In the dynamic programming, each agent i computes a
function table for separator variables in Sepi by maximizing a function aggregated for variables
in Sepi ∪ Sepi.

• Sephij : the set of function nodes that are higher neighborhood nodes of variable node j. Here j
is contained in Sepi.

The separators and non-separators are defined for variable node i as follows.

Sepi =

{
{ } if i is the root node
{i} ∪

⋃
j∈Chldi

Sepj otherwise
(3)

Sepi =

{
{i} if i is the root node
{ } otherwise

(4)

Sephii =

{
{ } if i is the root node
Nbrhi otherwise

(5)

Sephik =
⋃

j∈Chldi

Sephjk, where k ∈ Sepi ∧ k 6= i ∧ (i is non-root node). (6)

The set of separators Sepi is empty in the root node, while other nodes aggregate their own variable
and separators of child nodes (Eq. (3)). Only root node i has non-separator i (Eq. (4)). Non-root nodes
set their own Sephii as Nbrhi (Eq. (5)). For other nodes k in separators Sepi, node i sets Sephik
aggregating Sephjk of child nodes j (Eq. (6)).

For function node i, the separators and non-separators are defined as follows.

Sepi =

Nbrhi ∪ ⋃
j∈Chldi

Sepj

 \ Sepi (7)

Sepi = {l | l ∈ Nbrli, Seph′il = { }} (8)

Seph′ik =

(⋃

j∈Chldi,k∈Sepj
Sephjk

)
\ {i} if k ∈ Nbrli⋃

j∈Chldi,k∈Sepj
Sephjk otherwise

(9)

Sephik = Seph′ik , where k ∈ Sepi. (10)

Each node sets separators Sepi aggregating Nbrhi and separators of child nodes. Then, non-
separators Sepi are eliminated from Sepi (Eq. (7)). Here non-separators in Sepi are the variable

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 73

nodes whose topmost neighborhood function node is i (Eq. (8) and (9)). For child nodes j and nodes
k in separators Sepj , node i aggregates Sephjk. Then, i is eliminated if k is i’s neighborhood variable
(Eq. (9)). After Sepi is set, Seph′ik is also used to set Sephik for k in Sepi (Eq. (10)). In above equa-
tions, if function node i is the highest neighborhood node of variable node k, then k is not included
in Sepi. This computation is performed in a bottom-up manner from leaf nodes to the root node. It
is possible to integrate the computation into the backtracking of the DFS traversal for the pseudo tree.
Figure 1(c) illustrates separators of the pseudo tree shown in Fig. 1(b). For i = f1, Sepf1 = { },
Sepf1 = {x1} and Sephf1x1 = { }. For i = x2, Sepx2 = {x2}, Sepx2 = { } and Sephx2

x2
= {f2}. For

i = f2, Seph′f2x2 = { }, Sepf2 = {x2}, Sepf2 = {x0, x1}, Sephf2x0 = { } and Sephf2x1 = { }. For
i = x1, Sepx1 = {x0, x1}, Sepx1 = { }, Sephx1

x1
= {f0} and Sephx1

x0
= { }. Similar computations

are performed for the other nodes.

3.1.2. Dynamic programming

Exploiting the pseudo tree on a factor graph, a dynamic programming method consisting of two phases
is performed. The computation of the first phase is represented as follows.

g∗i (Sepi) = maxleximin
Sepi

gi(Sepi ∪ Sepi) (11)

gi(Sepi ∪ Sepi) =

⊕

j∈Chldi

g∗j (Sepj) if i is a variable node

fi(Xi)⊕
⊕

j∈Chldi

g∗j (Sepj) otherwise
(12)

Note that the above expressions include the cases such that Sepi = { } (the root variable node) or
Sepi = { } (non-root variable nodes and leaf function nodes). In expression (12), for each assignment
A of Sepi ∪ Sepi, compatible assignments Ai of Xi and ASepj of Sepj are aggregated. This compu-
tation is performed in a bottom-up manner. As a result, each node i has its optimal objective vectors
g∗i (Sepi) for the assignments of its separators and the subtree rooted at i.

This computation is a dynamic programming based on the following proposition [16].

Proposition 3.1. (Invariance on leximin relation)
Let v and v′ denote vectors of the same length. Also, let v′′ denote another vector. If v ≺leximin v′,
then v ⊕ v′′ ≺leximin v′ ⊕ v′′.

The computation of the second phase is performed in a top-down manner. The optimal assign-
ment d∗i of the root variable node i, that is also represented as A∗

Sepi
= {d∗i }, is determined so that

g∗(A∗Sepi) = g(A∗Sepi ∪A
∗
Sepi

). Namely, g∗({}) = g(A∗
Sepi

). The optimal assignments of other vari-
able nodes are determined by their parent or ancestor node. For each child node j of i, its optimal sep-
arator Sepj is determined by i so thatA∗Sepj ⊆ A

∗
Sepi
∪A∗

Sepi
, where g∗(A∗Sepi) = g(A∗Sepi ∪A

∗
Sepi

).

Note that the above expressions also include the cases such that Sepi = { } or Sepi = { }. In the
actual computation of the first phase, each agent i propagates g∗i (Sepi) to prnti. Then, in the second
phase, each agent i propagates A∗Sepj for each j in Chldi.

74 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

x
0

f
0

f
2

x
1

f
1

x
2

x
2

x
1 x

0
, x

1

x
0
, x

1

x
0

x
1

f
1

a 2

b 1

x
0

x
1

x
2

v
2

a a a [1]

a a b [2]

a b a [3]

a b b [4]

b a a [1]

b a b [2]

b b a [3]

b b b [4]

x
0

x
1

v
2

a a [2]

a b [4]

b a [2]

b b [4]

x
1

v
1

a [2]

b [1]

x
0

x
1

v
1
, v

2

a a [2, 2]

a b [1, 4]

b a [2, 2]

b b [1, 4]

x
0

x
1

f
0

a a 1

a b 2

b a 3

b b 4

x
0

v
0
, v

1
, v

2

a [1, 2, 4]

b [2, 2, 3]

x
0

x
1

v
0
, v

1
, v

2

a a [1, 2, 2]

a b [1, 2, 4]

b a [2, 2, 3]

b b [1, 4, 4]

x
0

v
0
, v

1
, v

2

a [1, 2, 4]

b [2, 2, 3]

x
2

a []

b []

x
0

x
1

x
2

f
2

a a a 1

a a b 2

a b a 3

a b b 4

b a a 1

b a b 2

b b a 3

b b b 4

(b)

(c)

(d)
(a)

(e)

(f)

(g)

(h)

Figure 2. First phase of dynamic programming

For the problem shown in Fig. 1, the first phase of dynamic programming is depicted as Fig. 2.
The computation begins from leaf nodes. Leaf node f1 evaluates its function and propagates table (a)
for its separator. This table contains objective vectors of single values for the agent of f1. On the other
hand, leaf node x2 propagates table (b) which contains empty objective vectors. Function node f2
generates table (c) aggregating its function and table (b) from node x2. Then the function of table (c)
is maximized eliminating assignments to variable x2. The resulting function shown as table (d) is
propagated. Variable node x1 generates table (e) aggregating tables (a) and (d). Note that the vectors in
the table are sorted vectors. Since related separators do not change in this node, table (e) is propagated.
Similarly, function node f0 generates table (f) and propagates table (g). Finally, root node x0 generates
table (h). From this table, the optimal sorted objective vector [2, 2, 3] and corresponding assignment b
to x0 is selected. In the second phase, the optimal solution (x0, x1, x2) = (b, a, b) is selected based on
tables (h), (f) and (c) in a top-down manner. When a similar computation is performed with summation
operator, the optimal objective value is 4 + 1 + 4 = 9 for (x0, x1, x2) = (b, b, b).

This solution method inherits most parts of the correctness and the time/space complexity from
conventional methods based on dynamic programming such as DPOP [2] and Bounded Max-Sum [19].
The overhead of operations on sorted vectors for leximin can be estimated as almost O(n) for a
sequential comparison of values of vectors, where n is the size of sorted vector. The sorting of values
can be implemented as red-black tree whose time complexity is O(log n) [16].

3.2. Approximation method fixing values of variables

In the above exact dynamic programming method, each node i computes a table of objective vectors
g∗i (Sepi) for corresponding separators Sepi. Therefore, the solution method is not applicable for the
large number of separators. In such cases, several approximation methods can be applied to eliminate
several back edges and corresponding separators. However, if the relationship between a variable

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 75

x
0

f
0

f
2

x
1

f
1

x
2

(a) step 1 (b) step 2

x
0

f
0

f
2

x
1

f
1

x
2

(c) step 3

x
0
, x

1

x
0

f
0

f
2

f
1

x
2

x
1

(1)

(2)

(3) x
0

f
0

f
2

x
1

f
1

x
2

(4)

(7)

(5)

(6)

x
2

x
1 x

0
, x

1

x
0
, x

1

x
0

x
1

is fixed

by f
2
.

f
2

is selected

by the root node.

f
2

requests to

x
0

and x
1

x
0

and x
1

request to

their neighborhood nodes.

(8)

(9)

(10)

(double lines indicate initiators)

Figure 3. Flow of approximation

and a function is completely eliminated, the value of the variable is determined ignoring the actual
values of other variables in the scope of the function. As a result, the actual minimum objective value
cannot be well controlled. That may decrease the quality of solutions, since leximin ordering is very
sensitive to the minimum objective value. Here we employ another approach that fixes several values
of variables. To eliminate separators, we define a threshold value maxnsep for the maximum number
of separators. Based on the threshold value maxnsep, the approximation is iteratively performed as
multiple rounds. Each round consists of the following steps. Step 1: selection of the node with the
maximum number of separators (Fig. 3(a)). Step 2: selection/fixation of the variable of the largest
impact in the separators (Fig. 3(b)). Step 3: notification of the fixed variable (Fig. 3(c)).

In Step 1, each node i reports the number of separators in Sepi and its identifier. In actual compu-
tation, the computation is initiated by the root node in a top-down manner (Fig. 3(1)). The information
of the number of separators is then aggregated in a bottom-up manner (Fig. 3(2)). Based on the ag-
gregated information, an agent j who has the maximum number is selected to eliminate one of its
separators. If |Sepj | is less than or equal to the threshold value maxnsep, the iteration of rounds is
terminated. Otherwise, the root node notifies j so that j eliminates a separator (Fig. 3(3)).

In Step 2, node j eliminates a separator by fixing its value. First, for each separator xk in Sepj ,
node j requests the variable node of xk to evaluate the impact of variable xk (Fig. 3(4)). Then,
for each neighborhood (function) node of fl in Nbrk, each variable node k of separator xk requests
function node of fl to evaluate its impact (Fig. 3(5)). Each function node of fl then returns the
information of f⊥l (xk) = minXi\{xk} fi(Xi) to variable node of separator xk (Fig. 3(6)). f⊥l (xk)
represents the lower bound of fl for xk. Then, for each fl, the boundaries are aggregated into sorted
vectors so that h⊥k (xk) =

⊕
fl∈Nbrk

f⊥l (xk). Then, lower bound h⊥⊥k = minleximinxk
h⊥k (xk) and

upper bound h⊥>k = maxleximinxk
h⊥k (xk) of h⊥k (xk) are computed. Variable node of xk returns

h⊥⊥k and h⊥>k to node j (Fig. 3(7)). Now, node j determines the separator xk̂ to be fixed so that
k̂ = argminleximink h

⊥⊥
k .

Note that the length of sorted objective vectors h⊥⊥k can be different. In such cases,∞ is employed
as a padding value. As a result, a longer vector that affects more functions is selected in the case of a
tie. We infer from the above expression that xk̂ is a ‘risky’ variable, since it’s choice may be restricted

76 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

to yield lower objective values in future computations of the approximation. Therefore, we prefer to
fix this variable in advance. The value of xk̂ is fixed to dk̂ so that h⊥>

k̂
= h⊥

k̂
(dk̂). Here we prefer the

value corresponding to the maximum lower bound.
In Step 3, node j propagates the information of Dk̂ = {dk̂} to its parent node and child nodes

(Fig. 3(8)). The propagation is terminated when Sepi or Sepj s.t. j ∈ Chi in a node i do not contain
xk̂. Then, the information of termination is returned to node j (Fig. 3(9)). Then, node j notifies the
root node of the termination of a round (Fig. 3(10)).

Note that the above algorithm is a base line to clarify the flow of information. We believe that there
are several opportunities to optimize the message paths. This approximation method is a heuristic
algorithm focusing on the worst case. Such a pessimistic approach is relatively reasonable for leximin
ordering, since the minimum objective value has a major influence on the quality of the solutions.
The upper bound objective value of each function, whose related variables are fixed, is calculated by
maximizing its objective values for the fixed variables. However, the upper bound objective vector
of an approximated solution cannot be directly calculated, since the objective values are evaluated
on leximin ordering. Instead of that, the upper bound objective vector can be solved as the optimal
solution of an approximated problem with the upper bound values of the functions. It also means
that the technique of Bounded Max-Sum to calculate upper bound objective values is unavailable for
leximin ordering.

3.3. Approximation method based on mini-buckets

In the previous subsection, for all related variable/function nodes, a consistent decision on the same
variable of an eliminated edge is enforced by fixing the value of the valuable. On the other hand, if
there are relatively many candidates of assignments, contradictions of decisions on the same variable
may be mitigated. Here we apply the mini-buckets [23] that is an approximation method for bucket-
elimination algorithm. The basic idea of mini-buckets is the approximation of function g∗i (Sepi)
using functions of smaller arities. With a limit value maxnsep, g∗i (Sepi) can be approximated as⊕

p∈Pi
g∗pi (Seppi) ≈ g∗i (Sepi), where |Seppi | ≤ maxnsep. Each g∗pi (Seppi) is maximized for the

assignments on Seppi . We call g∗pi (Seppi) a mini-bucket. Note that the term is slightly different from
the original mini-buckets due to the DPOP-like solution method on factor graphs.

In the bottom-up computation of the dynamic programming, |Pi|mini-buckets g∗pi (Seppi) of agent
i are propagated to i’s parent node prnti. Then the parent node prnti aggregates g∗pi (Seppi) and
constructs its own mini-buckets g∗p

′

prnti
(Sepp

′

prnti
).

To avoid double-counts of functions, We restrict the aggregation of functions and mini-buckets. A
function fi is aggregated into a single mini-bucket, when node i is a function node. Each g∗pj (Seppj)
of child agent j is aggregated into a single mini-bucket. In addition, we assume that maxnsep is not
less than the maximum arity for all functions, to avoid partial evaluation of the functions. We use the
following heuristic to compute mini-buckets. Basically, each node i determines the number of its own
mini-buckets at first. Then the vectors of the mini-buckets are computed.

Step 1: In the initial state, node i has no mini-buckets. If necessary, new mini-buckets will be
generated.

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 77

Step 2: The node repeatedly checks functions f in {fi}∪
⋃

j∈Chldi

⋃
p∈Pj
{g∗pj (Seppj)}, and com-

putes the arities of existing mini-buckets under the assumption where f is aggregated into the mini-
buckets. If f can be aggregated into an own mini-bucket g∗pi (Seppi) such that |Seppi | ≤ maxnsep,
function f is related to g∗pi (Seppi). Otherwise, a new mini-bucket is generated and f is related to the
new mini-bucket. Then the arity of the corresponding mini-bucket is updated. The above computation
is repeated until each function in {fi} ∪

⋃
j∈Chldi

⋃
p∈Pj
{g∗pj (Seppj)} is related to a mini-bucket.

Step 3: Based on the relationships between mini-buckets and functions, the vectors of all
g∗pi (Seppi) are computed by maximizing the aggregation of functions related to mini-bucket p. In
this step, g∗pi (Seppi) is computed for ASeppi

∈ Seppi as follows.

g∗pi (ASeppi
) = maxleximin A∈Sepi

⊕
f related to mini-bucket p

f((ASeppi
∪ A)↓args(f)), (13)

where A↓args(f) represents the projection of A on the scope of f .

After the bottom-up computation, all nodes have their own mini-buckets. Actually, the compu-
tation of the mini-buckets in the root node can be omitted, since each node has to re-compute the
aggregated vectors of mini-buckets to determine its approximately optimal assignment. In the top-
down computation, the optimal assignment on mini-buckets is determined. The root node i determines
the approximately optimal assignment Ãi = {d̃i} to its own non-separators Sepi by maximizing the
aggregation of approximated functions as follows. Note that Ãprnti = ∅ in the root node.

Ãi = argmaxleximin A∈Sepi

⊕
p∈Pi

⊕
f related to mini-bucket p

f((Ãprnti ∪ A)↓args(f)) (14)

Then Ãi is propagated to child nodes of node i. While Ãi can be filtered for each separators of
each child node, we commonly use Ãi in the child nodes, for simplicity. When approximately op-
timal assignment Ãprnti is propagated, agent i similarly determines its own assignment as shown in
Equation (14). Note that the above re-computations are necessary to avoid contradictions on assign-
ments among different mini-buckets, which are independently maximized for related functions in the
bottom-up computation. After the top-down computation, all agents know the assignment on its own
variable.

The aggregation of approximated functions
⊕

p∈Pi
g∗pi (Seppi) is an upper bound of g∗i (Sepi).

Therefore, the optimization on the mini-buckets can be considered as an optimistic approach.

3.4. Local search

Another inexact approach is based on local search methods. Here we employ a local search method
from a previous study [13]. While the original method is designed for constraint networks, we adapt
the method to (Leximin) AMODCOPs with factor graphs. This local search is cooperatively per-
formed by each agent with its neighborhood agents. Since each agent i has its own variable node xi
and function node fi, the neighborhood agents ANbri of agent i are defined as a set of agents who
have a neighborhood node of xi or fi. Note that we denote the neighborhood nodes of xi and fi as

78 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

1 Preprocessing:
2 let Nbr−xi

denote (Nbri of xi) \ {fi}. let Nbr−fi denote (Nbri of fi) \ {xi}.
3 ANbrxi

←
⋃

j(the owner agent of fj in Nbr−xi
).

4 ANbrfi ←
⋃

j(the owner agent of xj in Nbr−fi). ANbri ← ANbrxi
∪ANbrfi .

5 send ANbri to j in ANbri. receive ANbrj from all j in ANbri.
6 BANbri ← ANbri ∪

⋃
j∈ANbri

ANbrj .
7 Main procedure:
8 choose the initial assignment dcuri of xi. // locally maximize fi.
9 until(cutoff){

10 send dcuri to all agents j in ANbrxi
. receive dcurj from all agents j in ANbrfi .

11 Acur
i ← {(xi, dcuri)} ∪

⋃
xj in Nbr−fi

(xj , d
cur
j).

12 vcuri ← fi(Acur
i). send vcuri to agents j in ANbri. receive vcurj from agents j in ANbri.

13 vcur
i ← {vcuri } ⊕

⊕
j in ANbri

{vcurj }.
14 choose the new assignment dnewi under Acur

i \ {(xi, dcuri)}.
15 Anew

i ← {(xi, dnewi)} ∪
⋃

xj in Nbr−fi
(xj , d

cur
j). vnewi ← fi(Anew

i).

16 send dnewi to all agents j in ANbrxi
. receive dnewj from all agents j in ANbrfi .

17 foreach(xk in Nbr−fi){
18 Anew

i,k ← {(xi, dcuri)} ∪ (xk, d
new
k) ∪

⋃
xj in Nbr−fi

\{xk}(xj , d
cur
j). vnewi,k ← fi(Anew

i,k).

19 send vnewi,k to the owner agent of xk.
20 }
21 receive vnewj from all agents j in ANbrxi

.
22 vnew

i ← {vnewi }⊕
⊕

j in ANbrxi
{vnewj } ⊕

⊕
k in ANbri\ANbrxi

{vcurk }.
23 if(vcur

i ≺leximin vnew
i){ vdifi ← max(0, vnewi − vcuri). }else{ vdifi ← 0. }

24 send vdifi to all agents j in BANbri. receive vdifj from all agents j in BANbri.
25 if(vdifi = maxj in BANbri∪{i} v

dif
j){ dcuri ← dnewi . } // tie is broken by agent IDs.

26 }

Figure 4. local search (procedures of node i)

Nbri and Nbri, respectively. In addition, each agent i has to know its second order neighborhood
agents BANbri. BANbri is referred in decision making among agents. Since the variable of i’s
neighborhood agent j affects the functions of j’s neighborhood agents including i, agent i should
agree with agents within two hops. The above computations are performed in a preprocessing (Fig. 4,
lines 1-6).

After the initialization (Fig. 4, line 9), the local search is iteratively performed as multiple rounds
(lines 10-27). Each round consists of the following steps. Step 1: notification of current assignments
(lines 11 and 12). Step 2: evaluation of current assignments (lines 13 and 14). Step 3: proposal of
new assignments (lines 15-17). Step 4: evaluation of new assignments (lines 18-23). Step 5: update
of assignments (lines 24-26).

In Step 1, each agent i notifies the agents, whose functions relate to xi, of the current assignment
dcuri of its own variable xi. Then, agents update the related current assignments. In Step 2, each
agent i evaluates the value of its own function fi for the current assignment. The valuation of fi is
announced to neighborhood agents. Then, agents update the current valuations. In addition, using

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 79

the valuations, a sorted vector is generated. These valuations are stored for future evaluation. In Step
3, each agent i chooses its new assignment dnewi that improves the valuation of fi under the current
assignment of other variables. Agent i then announces the new assignment dnewi to the agents whose
functions relate to xi. In Step 4, each agent i evaluates the value of its own function fi assuming that
an assignment dcurk in the current assignment is updated to dnewk by an agent who has xk. Agent i then
returns the valuation to the agent of xk. This process is performed for all variables in the scope of fi.
Each agent of xk receives and stores the valuation for dnewk . Then, using the valuations, xk generates
a sorted vector for the case of dnewk . In Step 5, each agent i compares the sorted vectors for the cases
of dcuri and dnewi . If the sorted vector for dnewi is preferred, the improvement ddifi of the valuation of
its own function fi is evaluated. Otherwise, ddifi is set to 0. Then, agent i notifies agents, within two
hops, of the improvement ddifi . When its own improvement ddifi is the greatest value in the agents
BANbri, dcuri is updated by dnewi .

4. Evaluation

4.1. Settings

4.1.1. Example problems and evaluation values

We experimentally evaluated the proposed method. A class of Leximin AMODCOPs is used to gen-
erate test problems. The problems consist of n agents who have a ternary variable xi (|Di| = 3) and a
function fi of arity a. Objective values of the functions were randomly set as follows. g9 2: a rounded
integer value based on a gamma distribution with (α = 9, β = 2), similar to [19]. u1-10: an integer
value in [1, 10] based on uniform distribution. Results were averaged over 25 instances of the prob-
lems. We evaluated the following criteria for a sorted objective vector v. scl: a scalarized value of v
shown below. sum: the total value of values in v. min: the minimum value in v. wtheil/theil: WTheil
social welfare and Theil index shown below. As a normalization, each criterion (except ‘theil’) is
divided by the corresponding criterion of the upper limit vector. The upper limit vector is defined as
the vector consisting of maxXi fi(Xi) for all agent i.

4.1.2. Scalarization of sorted vectors (scl)

To visualize sorted vectors, we introduce a scalar measurement. The scalar value represents the loca-
tion on a dictionary that is compatible with a lexicographic order on the leximin. Here the minimum
objective value v⊥ and the maximum objective value v> are given. With these limit values, for a sorted
vector v, a scalar value s(v) = s(v)(|A|−1) that represents v’s location on the dictionary is recursively
calculated as s(v)(k) = s(v)(k−1) · (|v> − v⊥| + 1) + (vk − v⊥) and s(v)(−1) = 0. Here vk is the

kth objective value in sorted vector v. Since we consider the values in [v⊥, v>] as the characters in
{c0, · · · , cv>−v⊥} that construct a word in the dictionary, |v> − v⊥|+ 1 is considered as the number
of characters in the ‘alphabet’. In the case where |v> − v⊥| and the number of variables are large,
we can use multiple precision variables in the actual implementation. Below, we simply use ‘scl’ that
denotes s(v).

80 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

4.1.3. Social welfare based on Theil Index (wtheil/theil)

In a previous study [13], a social welfare based on Theil Index has been employed. Originally, Theil
index is a criterion of unfairness defined as T = 1

N

∑i
N

(
xi
x ln xi

x

)
. Here x denotes the average value

for all xi. T takes zero if all xi are equal. The social welfare is defined as WTheil = xe−T so that
the average (summation) is integrated to the fairness. We compared the results with Theil Index and
WTheil.

4.1.4. Bounded Max-Sum algorithm

As addressed in Subsection 2.4.3, the Bounded Max-Sum algorithm can be adapted to leximin op-
timization problems. We evaluated such a Bounded Max-Sum (Bounded Max-Leximin) algorithm.
While there are opportunities to modify the impact values of edges for minimum spanning trees, we
found that other types of impact values were not very effective. Therefore, we simply employed the
spanning trees of the original algorithm.

4.2. Results

4.2.1. Different optimzation criteria

First, we compared different criteria of optimization. In this experiment, we employed exact algo-
rithms based on dynamic programming, except the case of WTheil as shown below. The aggregation
and maximization operators of the solution method were replaced by other operators similar to the
previous study [14]. Those operators are correctly applied to the dynamic programming based on
pseudo trees. Table 1 shows the results of the comparison. Here ‘ptmaxleximin’ denotes the proposed
method based on pseudo trees. Compared methods maximize the summation (‘ptmaxsum’) and the
minimum value (‘ptmaximin’), respectively. Additionally, ‘ptmaximinsum’ is an improved version of

Table 1. Comparison with different optimization cri-
teria (n = 15, a = 3)

prb. opt. criteria scl sum min wtheil theil
g9 2 maxwtheil 0.563 0.815 0.637 0.799 0.031

ptmaximin 0.698 0.735 0.752 0.730 0.017
ptmaximinsum 0.699 0.769 0.752 0.763 0.019

ptmaxsum 0.513 0.818 0.596 0.797 0.037
ptmaxlexmin 0.699 0.759 0.752 0.755 0.016

u1-10 maxwtheil 0.636 0.888 0.668 0.879 0.010
ptmaximin 0.688 0.840 0.722 0.832 0.010

ptmaximinsum 0.691 0.882 0.722 0.874 0.009
ptmaxsum 0.599 0.888 0.632 0.878 0.013

ptmaxlexmin 0.692 0.875 0.722 0.869 0.008
* Problems were solved by exact algorithms.
* scl, sum, min and wtheil are ratio values to the upper limit vector.

* To be maximized: scl, sum, min, wtheil. To be minimized: theil.

Table 2. Size of pseudo tree (a=3)

n depth #leafs avg. max. max.
#branches |Sepi|

∏
k∈Sepi

|Dk|
10 16 3 1.15 6 1558
20 30 7 1.18 11 447460
30 42 11 1.20 15 462162351
40 55 14 1.20 19 1.165E+11
50 65 18 1.21 25 1.156E+13

* Each factor graph consists of n variable nodes and
n function nodes.

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 81

‘ptmaximin’ that maximizes the summation when two minimum values are the same. Moreover, we
also evaluated an exact solution method that maximizes WTheil (‘maxwtheil’). Since WTheil cannot
be decomposed into dynamic programming, we employed a centralized solver based on tree search.
Due to the time/space complexity of the solution methods, we evaluated the case of n = 15 and a = 3.

The results in Table 1 shows that ‘ptmaxleximin’ always maximizes sorted vectors on leximin
ordering (‘scl’). Similarly, ‘ptmaxsum’ and ‘maxwtheil’ always maximize summation (‘sum’) and
wtheil, respectively. ‘ptleximin’, ‘ptmaximin’ and ‘ptmaximinsum’ maximize the minimum value
(‘min’). While ‘ptmaximinsum’ relatively increases ‘scl’ in average, Theil index (‘theil’) of ‘ptlex-
imin’ is less than that of ‘ptmaximinsum’. Therefore, it is considered that ‘ptleximin’ improves fair-
ness among agents. Table 2 shows the size of pseudo trees in the case of a = 3. Due to the size
of |Sepi|, even in the case of n = 20, the exact solution method is not applicable in practical time.
Therefore, we did not compared exact methods and approximate methods.

4.2.2. Approximation methods and local search method

Next, we evaluated approximate methods and local search methods. Figure 5 shows the results in the
case of g9 2 and a = 3. Here we evaluated the following methods. bms: the original Bounded Max-
Sum algorithm. bmleximin: a Bounded Max-Sum algorithm whose values and operators are replaced
for leximin. lsleximin100/1000: the local search method shown in Subsection 3.4, where the cutoff
round is 100 or 1000. ptmaxleximin1/4/8: the approximation method fixing values of variables shown
in Subsection 3.2, where the maximum size maxnsep of |Sepi| is 1, 4 or 8. ptmaxleximin8 ub: the
upper bound of ‘ptmaxleximin8’ that is addressed in Subsection 3.2.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

(a) scl

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

bms

bmleximin

lsleximin100

lsleximin1000

ptmaxleximin1

ptmaxleximin4

ptmaxleximin8

ptmaxleximin8_ub

(b) sum

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

(c) min

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

10 20 30 40 50

th
e

il

number of agents

(d) theil

Figure 5. g9 2, a=3

82 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

While we also evaluated a local search which employs WTheil, the results resemble that of ‘lslex-
imin’. It is considered that the both criteria resemble and only work as a threshold in the local search.
Therefore, we show the results of ‘lsleximin’. Figure 5 (a) shows the result of ‘scl’. The values of
‘bms’ and ‘bmleximin’ are relatively low, since those algorithms eliminate edges of factor graphs. As
a result, actual values of several variables are ignored by other nodes. That decreases the minimum
objective value and ‘scl’. However, the results of ‘bmleximin’ are slightly better than that of ‘bms’.
When the maximum size of |Sepi| is sufficient, ‘ptmaxleximin’ is better than other methods. On the
other hand, with the number of fixed variables, the quality of solutions decreases. The local search
method outperforms ‘ptmaxleximin’ around thirty agents. Also, the local search method is better than
Bounded Max-Sum/Leximin methods. Figures 5 (b) and (c) show the results of ‘sum’ and ‘min’. The
results show that ‘min’ mainly affects the quality of ‘scl’. Figure 5 (d) shows the results of Theil
index. Even if ‘ptmaxleximin’ loses the best quality on leximin ordering, it still holds relatively low
unfairness. Figure 6 shows the cases of u1-10 and a = 3. While the results resemble the cases of g9 2
and a = 3, ‘ptmaxleximin’ is slightly better. It is considered that relatively uniform objective values
mitigate the influence of the approximation.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

(a) scl

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 20 30 40 50

th
e

il

number of agents

bms

bmleximin

lsleximin100

lsleximin1000

ptmaxleximin1

ptmaxleximin4

ptmaxleximin8

ptmaxleximin8_ub

(b) theil

Figure 6. u1-10, a=3

While we presented baseline approximation/inexact algorithms for the sake of simplicity, we eval-
uated the total number of synchronized message cycles and the total number of messages. Note that
the current evaluation is not in the main scope of this study. Tables 3 and 4 show the results of ‘lslex-
imin’ and ‘ptmaxleximin’, respectively. While the approximation method requires relatively large
number of cycles, the total number of messages is less than that of the simple local search, where
agents basically multicast messages to their neighborhood agents.

Table 3. Total number of cycles/messages (g9 2, n=50, a=3, lsleximin)

cutoff #converg. #cyc. #cyc. in converg. #msg. #msg. in converg.
round min. ave. max. min. ave max.

100 4 457 121 254 436 119903 31590 66249 113990
1000 6 3886 121 372 676 1017571 31590 98736 181640

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 83

Table 4. Total number of cycles/messages (g9 2, n=50 (100 nodes), a=3, ptmaxleximin)

lmt. #cyc. #msg.
|Sepi| step1 step2 step3 DP total step1 step2 step3 DP total

1 4302 129 1386 192 6009 6638 3184 2075 297 12195
8 2479 73 936 192 3680 3828 2729 1422 297 8276

* DP includes an extra top-down initiation phase

4.2.3. Approximation method based on mini-buckets

Then, we evaluated the approximation method based on mini-buckets. Figure 7 shows the comparison
on approximation methods in the case of g9 2 and a = 3. Here the following approximation methods
are evaluated. ptmaxleximin8: the approximation method fixing values of variables shown in Subsec-
tion 3.2, where the maximum size maxnsep of |Sepi| is 8. ptmaxleximin mb3/6: the approximation
method based on mini-buckets shown in Subsection 3.3, with maxnsep = 3 and 6.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

(a) scl

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

lsleximin1000

ptmaxleximin_mb3

ptmaxleximin_mb6

ptmaxleximin8

(b) sum

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

(c) min

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

10 20 30 40 50

th
e

il

number of agents

(d) theil

Figure 7. g9 2, a=3, mini-buckets

The results show that, in the cases of larger number of agents, ‘scl’ and ‘min’ of mini-buckets
methods are relatively better in average. In such cases, ‘ptmaxleximin8’ fixes the values of large
number of variables to eliminate back edges. Since this approach is greedy, the opportunities of better
assignments for several functions are also decreased. On the other hand, mini-buckets preserve various
combinations of assignments. Therefore, if the sizes of mini-buckets are relatively large, there are the

84 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

number of agents

(a) scl

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 20 30 40 50

th
e

il

number of agents

lsleximin1000

ptmaxleximin_mb3

ptmaxleximin_mb6

ptmaxleximin8

(b) theil

Figure 8. u1-10, a=3, mini-buckets

opportunities to choose better assignments. In particular, ‘ptmaxleximin mb6’ is also better in the
case of smaller number of agents. Figure 8 shows the comparison on approximation methods in the
case of u1-10 and a = 3. While the results resemble the case of g9 2 and a = 3, ‘scl’ of mini-buckets
methods relatively decreased. It is considered that uniform objective values mitigate the influence of
‘ptmaxleximin8’ that fixes values of valuables, as addressed in the previous subsection.

Table 5. Size of function tables (a = 3)

n alg. max. num. of asg. on total num. of asg. max. num. of
reduced separtors on all tables tables

40 ptmaxleximin8 6561 77342
ptmaxleximin mb3 27 7886 11.6
ptmaxleximin mb6 729 68486 5.7

50 ptmaxleximin8 6561 90578
ptmaxleximin mb3 27 12219 15.0
ptmaxleximin mb6 729 100225 7.5

Table 5 shows the results on size of function tables. The maximum number of assignments on
reduced separators in third column depends on the maxnsep (8 for ‘ptmaxleximin8’ and 3/6 for
‘ptmaxleximin mb3/6’). The total number of assignments on all tables in fourth column represents
the total size of tables for all function/variable nodes. In the case of ‘ptmaxleximin8’, each node has
a single table. When a value of a variable is fixed to reduce the size of a separator, it also reduces the
size of other separators. Therefore, the total size of tables is highly affected by the tables of large size,
which are bounded with maxnsep. On the other hand, in the cases of ‘ptmaxleximin mb3/6’, the size
is affected by maxnsep, and the number of mini-buckets. Note that several function/variable nodes
have multiple mini-buckets of maxnsep. The maximum number of tables in fifth column represents
the maximum number of mini-buckets for all nodes. There is a negative correlation betweenmaxnsep
and the number of mini-buckets.

Figure 9 shows the results for different arities. Basically, the quality of solutions decreases with
arities. The results for different sizes of domains are shown in Fig. 10. In the case of n = 20, the

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 85

results of the proposed methods are similar. On the other hand, in the case of larger size problems
such as n = 50, ‘ptmaxlesimin8’, which fixes the values of selected variables, was affected by the size
of domain.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 5

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

arity of function

(a) n=20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 5

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

arity of function

lsleximin1000

ptmaxleximin8

ptmaxleximin_mb6

(b) n=50

Figure 9. g9 2, a=2-5, scl

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 4 5

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

size of domain

(a) n=20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 4 5

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

size of domain

lsleximin1000

ptmaxleximin8

ptmaxleximin_mb6

(b) n=50

Figure 10. g9 2, a=3, different sizes of domains, scl

4.2.4. Structured problem domain

Finally, we applied the proposed methods to a structured problem domain. This class of problem is
based on a DCOP representation of the Coalition Structure Generation problem [15]. In this problem,
an agent decides whether it belongs to one of the groups. If the agent does not belong to any groups,
a utility value is given. Otherwise, the agent obtains utility values based on its selection and the
relationships among several neighborhood agents. In this case, the problem is defined as a DCOP with
additional variables, under the same selection of groups. The additional variables represent states of
agents in a group.

We defined an asymmetric DCOP, where utility values are aggregated for each agent. In addition,
to emphasize the aim of our experiment, we simplified the original problem so that a cooperation
with a neighborhood agent yields a constant utility value. Namely, additional variables in the original
definition were integrated with the selection of groups. The definition of the problem ‘csg’ is as
follows.

86 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

A problem is based on a DCOP consisting of n variables/agents, n unary functions and r binary
functions. A variable takes a value in a set of group names G or a special value ‘alone′. An agent i
has a variable xi that represents a group to which agent i belongs. Depending on xi, utility values that
relate to xi are defined as follows. For xj of another agent j, fgi,j(xi, xj) = grpwi,j if xi 6= ‘alone′ ∧
xi = xj . Otherwise, fgi,j(xi, xj) = 0. fai (xi) = alnwi if xi = ‘alone′. Otherwise, fai (xi) = 0. With
these functions, the local problem of agent i is defined as fi(Xi) = fai (xi) +

∑
j∈Nbri

fgi,j(xi, xj),
where agent i aggregates functions among i and its neighborhood agents in Nbri. When alnwi is a
sufficiently large value, agent i prefers ‘alone′. Otherwise, the agent will choose cooperation.

We set the number of groups |G| and the maximum size of arity a for fi(Xi) to 3 and 4, respec-
tively. Each grpwi,j was randomly set to 1 or 2 with uniform distribution. In addition, while each
alnwi of a half of agents was set to 1, a different value of alnwi was chosen for all other agents. With
the above setting, we evaluated two contrastive cases, where alnwi = 1 or 2, and alnwi = 1 or 8.

Table 6. Comparison with different optimization criteria (csg, n = 12, r = 16, 2 ≤ a ≤ 4)

prb. opt. criteria scl sum min wtheil theil

alnw = maxwtheil 0.806 0.901 0.790 0.89 0.040

1 or 2 ptmaxmin 0.894 0.822 0.927 0.814 0.039

grpw = ptmaxminsum 0.907 0.886 0.927 0.880 0.036

1 or 2 ptmaxsum 0.775 0.902 0.757 0.889 0.042

ptmaxlexmin 0.913 0.884 0.927 0.879 0.034

alnw = maxwtheil 0.635 0.772 0.640 0.732 0.097

1 or 8 ptmaxmin 0.867 0.642 0.903 0.642 0.045

grpw = ptmaxminsum 0.870 0.724 0.903 0.699 0.079

1 or 2 ptmaxsum 0.366 0.798 0.370 0.695 0.185

ptmaxlexmin 0.879 0.695 0.903 0.695 0.044
* Problems were solved by exact algorithms.
* scl, sum, min and wtheil are ratio values to the upper limit vector.
* To be maximized: scl, sum, min, wtheil. To be minimized: theil.

Table 6 shows the results of exact solution methods in the case of n = 12, r = 16. The results
resemble ones shown in Table. 1. In the case of alnwi = 1 or 8, the difference between ‘ptmaxsum’
and ‘ptmaxlexmin’ were significant in ‘scl’ and ‘min’.

Figure 11 shows the results of approximation methods for lexmin criterion. ‘ptmaxleximin mb6’,
which employs mini-buckets approach, was relatively better in all cases. On the other hand, ‘pt-
maxleximin8’, which fixes values of selected variables, was ineffective for relatively small and dense
problems as shown in Figs. 11 (c) and (d). While local search ‘lslexmin1000’ was relatively ef-
fective in cooperative cases alnwi = 1 or 2, its solution quality was less effective in selfish cases
alnwi = 1 or 8. These results reveal that the greedy heuristic and the local search were influenced
by the structures and densities of the problems. The drawbacks of the both methods were emphasized
in the cases of small numbers of agents. A possible reason is that the sparseness of the problems

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 87

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=16,

r=18

n=20,

r=22

n=50,

r=55

n=100,

r=110

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

problem

(a) alnw = 1 or 2, relatively sparse

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=16,

r=18

n=20,

r=22

n=50,

r=55

n=100,

r=110

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

problem

lsleximin1000

ptmaxleximin8

ptmaxleximin_mb6

(b) alnw = 1 or 8, relatively sparse

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=16,

r=22

n=20,

r=28

n=50,

r=65

n=100,

r=120

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

problem

(c) alnw = 1 or 2, relatively dense

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=16,

r=22

n=20,

r=28

n=50,

r=65

n=100,

r=120

ra
ti

o
 t

o
 u

p
p

e
r

li
m

it
 v

e
ct

o
r

problem

(d) alnw = 1 or 8, relatively dense

Figure 11. csg, 2 ≤ a ≤ 4, grpw = 1 or 2, scl

is correlated to the number of agents in these settings. The results show that the greedy heuristic is
affected by the relatively high density due to its approximation strategy. On the other hand, the local
search is affected by relatively deep local optimal solutions in the case of alnwi = 1 or 8.

5. Related works and discussions

Pseudo trees on factor graphs of DCOPs have been proposed in [18]. While the previous study ad-
dresses the conventional DCOPs on factor graphs, we employ the factor graphs to eliminate the di-
rections of edges in the cases of Asymmetric DCOPs on constraint graphs [16, 11, 9]. As a result,
the obtained solution methods do not directly handle the direction of edges that was necessary in the
previous studies. In addition, the factor graph represents n-ary functions. In Subsection 3.3, we pro-
posed a mini-bucket method for pseudo trees on factor graphs. That approach can also be applied to
the conventional DCOPs by replacing objective vectors and operators.

The Max-Sum algorithm is a logarithmic representation of the Max-Product algorithm, which is
derived from Belief Propagation on factor graphs. Belief Propagation have been applied to graphical
models such as Bayesian networks and Markov Random Fields. The Max-Sum algorithm has been
applied to DCOPs in [3]. Since this algorithm is inexact solution method except in the case where a
factor graph is a tree, cyclic graphs are modified to trees in the previous studies [19, 18]. We employed
a pseudo tree approach which is based on a tree decomposition.

88 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

Asymmetric DCOPs on factor graphs have been presented in [10]. In that work, several solution
methods based on the Max-Sum algorithm have been proposed for the original Asymmetric DCOPs,
where the summation of utilities among agents is optimized. On the other hand, we address the
different classes of problems with leximin criterion.

Theil based social welfare WTheil has been proposed in [13]. However, that social welfare cannot
be decomposed into dynamic programming. We evaluated exact algorithms that optimize leximin and
WTheil. In our experiment, the result shows that leximin is better than WTheil on the criteria of
leximin, maximin and Theil Index.

This study is based on the previous work of Leximin AMODCOP [16]. The correctness of our pro-
posed method based on a dynamic programming is similar to the solution method on constraint graphs
in the previous study as shown in Proposition 3.1. In the previous study, an efficient method that
compresses objective vectors using run-length encoding. While we did not address the compression
technique for simplicity, similar methods can be employed in our proposed methods. We experimen-
tally evaluated several approximate/inexact optimization methods on leximin ordering. The results
reveal that a difficulty in such incomplete methods is the preservation of the minimum objective value,
which directly affects the leximin. The incomplete methods that well handle the minimum objective
value can be an important issue, even if the optimization on maximin captures neither inequality nor
Pareto optimality.

While we addressed fairness among agents in a class of asymmetric and multiple objective DCOPs,
similar approaches may be applied to solve the problems in multiagent planning [24, 25, 26]. In
several phases of the multiagent planning, agents cooperatively solve subproblems to allocate goals
and tasks, or to resolve consistencies/conflicts among individual plans. Several studies have addressed
DCOPs and multiagent planning [27, 28]. In the situation where the fairness among individual plans
of selfish agents is important, such problems may be defined using several representations similar to
Asymmetric DCOPs and various criteria of fairness.

6. Conclusions

We proposed the solution methods for the leximin multiple objective optimization problems with
preferences of agents and employing factor graphs. We presented a complete solution method based
on a dynamic programming method on factor graphs. Then several approximation methods and a local
search method were also presented to address the issue of combinational explosion in the complete
solution method. The experimental results show the influences brought by the approximation/inexact
methods on the leximin social welfare and factor graphs.

In the case of exact solution methods, the optimization based on the leximin criterion has sig-
nificantly improved the minimum values and the equality on both random and structured problems.
Approximation methods and a local search method were firstly evaluated on random problems. The
solution quality of approximation on leximin criterion decreased with the loss of information of prob-
lems, while the local search was relatively stable. In addition, as we addressed in Section 5, these
results revealed that the solution quality was mainly affected by the minimum objective value, in com-
parison to the summation value and the inequality. It can be considered that the approximation of
‘maximin’ should be more focused.

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 89

In the case of structured problems, the solution quality of the approximation methods and the
local search were different with the settings. The results show that the heuristic, which eliminates
assignments to selected variables, may be too greedy for some problem structures. Similarly, several
patterns of local minimum solutions may affect the local search. On the other hand, the approximation
method with a mini-buckets approach was relatively better than other methods. It can be considered
that the mini-buckets approach also leaves a diversity of solutions in the case of the leximin criterion.
We believe that these results reveal several important issues for distributed optimization problems with
equality/inequality criteria.

The proposed approach will be applied to several distributed resource allocation problems such
as distributed sensor networks, where sensor resources are cooperatively allocated to targets. In such
a case, a sensor agent will perform as a representative of a target within its observation range, and
will cooperate with other sensor agents to allocate resources for targets considering the fairness of
observation quality among targets. Other possible tasks are exclusive resource allocation problems
such as wireless communication channels/slots between autonomous radio stations, which serve as
access points of their neighborhood areas. The fair resource allocation on these applications is obvi-
ously important. Since the proposed approximation methods are influenced by the size of separators
and variables’ domains, dedicated designs of DCOPs and additional methods will be necessary for
practical problems. On the other hand, the proposed approach is promising for distributed resource
allocation systems on tree-like networks.

Our future research directions will include improvements of solution quality including the min-
imum objective value, detailed evaluations on different criteria of fairness, and application of the
proposed method to practical problems instances.

Acknowledgments: This work was supported in part by KAKENHI Grant-in-Aid for Scientific Re-
search (C), 25330257 and 16K00301.

References

[1] Modi PJ, Shen W, Tambe M, Yokoo M. Adopt: Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 2005;161(1-2):149–180. https://doi.org/10.1016/
j.artint.2004.09.003.

[2] Petcu A, Faltings B. A Scalable Method for Multiagent Constraint Optimization. In: 19th International
Joint Conference on Artificial Intelligence. 2005 pp. 266–271. http://dl.acm.org/citation.
cfm?id=1642293.1642336.

[3] Farinelli A, Rogers A, Petcu A, Jennings NR. Decentralised coordination of low-power embedded de-
vices using the max-sum algorithm. In: 7th International Joint Conference on Autonomous Agents and
Multiagent Systems. 2008 pp. 639–646. ISBN: 978-0-9817381-1-6.

[4] Zhang W, Wang G, Xing Z, Wittenburg L. Distributed stochastic search and distributed breakout: proper-
ties, comparison and applications to constraint optimization problems in sensor networks. Artificial Intel-
ligence, 2005;161(1-2):55–87. https://doi.org/10.1016/j.artint.2004.10.004.

90 T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents

[5] Miller S, Ramchurn SD, Rogers A. Optimal decentralised dispatch of embedded generation in the smart
grid. In: 11th International Conference on Autonomous Agents and Multiagent Systems, volume 1. 2012
pp. 281–288. ISBN: 0-9817381-1-7, 978-0-9817381-1-6.

[6] Ramchurn SD, Farinelli A, Macarthur KS, Jennings NR. Decentralized Coordination in RoboCup Rescue.
2010;53(9):1447–1461. https://doi.org/10.1093/comjnl/bxq022.

[7] Delle Fave FM, Stranders R, Rogers A, Jennings NR. Bounded decentralised coordination over multiple
objectives. In: 10th International Conference on Autonomous Agents and Multiagent Systems, volume 1.
2011 pp. 371–378. ISBN: 0-9826571-5-3, 978-0-9826571-5-7.

[8] Matsui T, Silaghi M, Hirayama K, Yokoo M, Matsuo H. Distributed Search Method with Bounded Cost
Vectors on Multiple Objective DCOPs. In: Principles and Practice of Multi-Agent Systems - 15th Interna-
tional Conference. 2012 pp. 137–152. https://doi.org/10.1007/978-3-642-32729-2_10.

[9] Grinshpoun T, Grubshtein A, Zivan R, Netzer A, Meisels A. Asymmetric Distributed Constraint Opti-
mization Problems. Journal of Artificial Intelligence Research, 2013;47(1):613–647. http://dl.acm.
org/citation.cfm?id=2566972.2566988.

[10] Zivan R, Parash T, Naveh Y. Applying Max-sum to Asymmetric Distributed Constraint Optimization. In:
24th International Joint Conference on Artificial Intelligence. 2015 pp. 432–438. ISBN: 978-1-57735-738-
4.

[11] Netzer A, Meisels A. Distributed Envy Minimization for Resource Allocation. In: 5th International Con-
ference on Agents and Artificial Intelligence, volume 1. 2013 pp. 15–24.

[12] Netzer A, Meisels A. Distributed Local Search for Minimizing Envy. In: 2013 IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology. 2013 pp. 53–58. doi:10.1109/WI-IAT.2013.90.

[13] Netzer A, Meisels A. SOCIAL DCOP - Social Choice in Distributed Constraints Optimization. In: 5th
International Symposium on Intelligent Distributed Computing. 2011 pp. 35–47. https://doi.org/
10.1007/978-3-642-24013-3_5.

[14] Matsui T, Matsuo H. Considering Equality on Distributed Constraint Optimization Problem for Resource
Supply Network. In: 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and
Intelligent Agent Technology, volume 2. 2012 pp. 25–32. doi:10.1109/WI-IAT.2012.22.

[15] Ueda S, Iwasaki A, Yokoo M, Silaghi MC, Hirayama K, Matsui T. Coalition Structure Generation Based
on Distributed Constraint Optimization. In: 24th AAAI Conference on Artificial Intelligence. 2010 pp.
197–203. http://dblp.uni-trier.de/db/conf/aaai/aaai2010.html#UedaIYSHM10.

[16] Matsui T, Silaghi M, Hirayama K, Yokoo M, Matsuo H. Leximin Multiple Objective Optimization for
Preferences of Agents. In: 17th International Conference on Principles and Practice of Multi-Agent Sys-
tems. 2014 pp. 423–438. https://doi.org/10.1007/978-3-319-13191-7_34.

[17] Matsui T, Silaghi M, Okimoto T, Hirayama K, Yokoo M, Matsuo H. Leximin Asymmetric Multiple Objec-
tive DCOP on Factor Graph. In: 18th International Conference on Principles and Practice of Multi-Agent
Systems. 2015 pp. 134–151. https://doi.org/10.1007/978-3-319-25524-8_9.

[18] Matsui T, Matsuo H. Complete Distributed Search Algorithm for Cyclic Factor Graphs. In: 6th Interna-
tional Conference on Agents and Artificial Intelligence. 2014 pp. 184–192.

[19] Rogers A, Farinelli A, Stranders R, Jennings NR. Bounded Approximate Decentralised Coordination via
the Max-Sum Algorithm. Artificial Intelligence, 2011;175(2):730–759. doi:10.1016/j.artint.2010.11.001.

[20] Sen AK. Choice, Welfare and Measurement. Harvard University Press, 1997.

T. Matsui et al. / Leximin Multiple Objective DCOPs on Factor Graphs for Preferences of Agents 91

[21] Marler RT, Arora JS. Survey of multi-objective optimization methods for engineering. Struc-
tural and Multidisciplinary Optimization, 2004;26:369–395. https://doi.org/10.1007/
s00158-003-0368-6.

[22] Zivan R, Peled H. Max/Min-sum Distributed Constraint Optimization Through Value Propagation on an
Alternating DAG. In: 11th International Conference on Autonomous Agents and Multiagent Systems.
2012 pp. 265–272. ISBN:0-9817381-1-7, 978-0-9817381-1-6.

[23] Dechter R. Mini-buckets: A General Scheme for Generating Approximations in Automated Reasoning.
In: 15th International Joint Conference on Artifical Intelligence, volume 2. 1997, pp. 1297–1302. ISBN:
1-555860-480-4.

[24] de Weerdt M, Clement B. Introduction to Planning in Multiagent Systems. Multiagent and Grid Systems -
Planning in multiagent systems. 2009;5(4): 345–355. http://dl.acm.org/citation.cfm?id=
1735317.1735318.

[25] Weiss G (ed.). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press,
1999.

[26] Weiss G (ed.). Multiagent Systems, Second Edition. MIT Press, 2013. ISBN: 9780262018890.

[27] Cox JS, Durfee EH, Bartold T. A Distributed Framework for Solving the Multiagent Plan Coordination
Problem. In: rth International Joint Conference on Autonomous Agents and Multiagent Systems. 2005 pp.
821–827. ISBN: 1-59593-093-0.

[28] Nissim R, Brafman RI, Domshlak C. A General, Fully Distributed Multi-agent Planning Algorithm. In:
9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1. 2010
pp. 1323–1330. ISBN: 978-0-9826571-1-9.

