Revisiting ADOPT-ing and its Feedback Schemes

Marius C. Silaghi Makoto Yokoo
Florida Institute of Technology Kyushu University
Abstract Denoting withz an assignment of values to all the vari-

ables in X, the problem is to findgmin > | fi(z|x;).

Here we revisit ADOPT-ing and bring two new contribu-
tions. One contribution consists of developing variations
the algorithms keeping the improvement in length of chain
of causal messages without an increase in the total num-By z|x, we denote the projection the set of assignments in
ber of messages. While past experiments have shown that on the set of variables ifX;.
sending more feedback is better than sending the minimal
information needed for correctness, new experiments show? ADOPT with nogoods
that one should not exaggerate sending too much feedback
and that the best strategy is at an intermediary point. This Asynchronous Distributed OPTimization with infer-
brings large efficiency improvements. ences based on valued nogoods (ADOPTrig)a dis-

We also find that one of the nogood storages of ADOPT-ripyted optimization algorithm. It exploits the incredse
ing can be removed without effects on efficiency while de-fiexibility brought by the use of valued nogoods. The algo-
creasing the space complexity by a factor given by the NUm-rithm can be seen as an extension of both ADOPT [9] and
ber of agents. We also provide a more general proof show- asynchronous backtracking (ABT) [13].
ing which types of nogood storages can be used in the in- a nogood, —N, specifies a selV of assignments that
ference of feedback without compromising correctness. Ingqnjflict with existing constraints. Valued nogoods have
particular we show that all such structures can be updated the form [SRC, ¢, N] and are an extension of classical no-
by sum-inference, and frothreshold messages. goods. Each valued nogood haset of references to a con-

flict list of constraintsSRC and a threshold The threshold
specifies the minimal weight of the constraints in the con-
1 Introduction flict list SRC given the assignments of the nogdo¢B, 11].
Avalued nogood§ RC, ¢, NU(z;,v)] applied to a value

Distributed Constraint Optimization (DCOP) is aformal- v of a variablez; is referred to as the cost assessment (CA)
ism that can model naturally distributed problems. These of that value and is denoted RC, v, c, N). If the con-
are problems where agents try to find assignments to a seflict list is missing (and implies the whole problem) then we
of variables that are subject to constraints. Typically re- speak of a valued global nogood. One can combine valued
search has focused on techniques in which reluctance isnogoods by sum-inference and min-resolution to obtain new
manifested toward modifications to the distribution of the nogoods [3]. IfN = ((z1,v1), ..., {z¢, v¢)) Wherev; € D,
problem (modification accepted only when some reasoningthen we denote by the set of variables assigned i,
infers it is unavoidable for guaranteeing that a solution ca N = {z1, ..., 7;}.
be reached). This criteria is widely believed to be valuable
and adaptable for large, open, and/or dynamic distributedmin-resolution: Assume that we have a set of cost as-
problems [7, 1, 2, 10]. Itis also perceived as an alternative sessments far; of the form (SRC,,, v, ¢,,, N,,) that has the
approach to privacy requirements [12, 5, 8]. property of containing exactly one CA for each valuén

Definition 1 (DCOP) A distributed constraint optimiza- the domain ofvana_blei_andth_atfor_alllf_andj,the assign-
tion problem (DCOP), is defined by a set of agents ments for variablesV,NN; are identical in botfiV,, and.N;.

Ay, Ay, ... A,, a setX of variables,zy, s, ... 2y, and Thenthe CAsin th_ls set can be combined into a new valued
: } nogood. The obtained valued nogood$§HC, ¢, N] such

a set of functionsfy, fo, ... i, .., fus fi @ Xi — IRy, that SRC—U.SRC" - o— mi AN—U. N

X; C X, where only4; knowsf;. We assume that; can a =Ui iy c=min;(¢;) and N=U; ;.

only take values from a domaip; = {1, ..., d}. Lintroduced with the acronym ADOPT-ng in [11].

x
For simplification and without loss of generality, one typ-
ically assumes thaX; C {z1,...,2;}.

sum-inference: A set of cost assessments of type @
(SRC;,v,¢;, N;) for a valuev of some variable, where
Vi,j : i # j = SRC; N SRC; = 0, and the assign-
ment of any variabler;, is identical in all N; where zy,
is present, can be combined into a new cost assessment.
The obtained cost assessmentS$RC, v, ¢, N) such that
SRC=U;SRC;, c= Zi(ci), andN=U;N;.

As in ABT, agents communicate witbk? messages
proposing new assignments of the variable of the sender, b &
nogoodmessages announcing a nogood, add-link mes-
sages announcing interest in a variable. As in ADOPT,
agents can also ugbreshold messages, but their content
can be included imk? messages.

For simplicity we assume in this algorithm that the com- 5 order on agents is described in Figure 1.a where the con-
munication channels are FIFO. Attachment of counters t0 g aint graph is also depicted with dotted lines representi

proposed assignments and nogoods also ensures this rgpe grcs. Each agent (representing its variable) is depicte
quirement (i.e., older assignments and older nogoodséorth | iin a circle. A DFES tree of the constraint graph which

5
oY%
©

Figure 1. Feedback modes in ADOPT-ing.

currently proposed value are discarded). is compatible to this total order is depicted in Figure 1.b.
ADOPT gets such a tree as input, and each agent sends
2.1 Exploiting DF'S trees for Feedback COST messages (containing information roughly equiva-

lent to a valued global nogood) only to its parent. As men-

Here we recall the feedback schemes of ADOPT-ing andtioned above, the versions of ADOPT-ing that replicate this
introduce the new variants ADOPT-Aand ADOPT-D._.. behavior of ADOPT when a DFS tree is provided are called
In ADOPT-ing, agents are totally ordered as in ABT; ADOPT-p__, where p stands fgarentand the underscores
having thehighest priorityand A,, the lowest priority. The stand for any legal value defined above for Y and Z respec-
targetof a valued nogood is the position of the lowest prior- tively. This method of announcing conflicts based on the
ity agent among those that proposed an assignment referregonstraint graph is depicted in Figure 1.c and is related to
by that nogood. Note that the basic version of ADOPT-ing the classic Graph-based Backjumping algorithm [4, 6].
does not maintain a DFS tree, but each agent can send mes- In Figure 1.d we depict the nogoods exchange schemes
sages with valued nogoods to any predecessor. ADOPT-ingused in ADOPT-d. and ADOPT-D_ where, for each new
also has hybrid versions that can spare network bandwidthpiece of information, valued nogoods are separately com-
by exploiting an existing DFS tree. It has two ways of ex- puted to be sent to each of the ancestors in the known DFS
ploiting such an existing structure. The first is by having tree. As for the initial version of ADOPT, the proof for
each agent send its valued nogood only to its parent in theADOPT-d__ and ADOPT-D_ shows that the only manda-
tree and it is roughly equivalent to the original ADOPT. The tory nogood messages for guaranteeing optimality in this
other way is by sending valued nogoods only to ancestors.scheme are the ones to the parent agent. However, agents
This later hybrid approach can be seen as a fulfillment of acan infer from their constraints valued nogoods that are
direction of research suggested in [9], namely communica-based solely on assignments made by shorter prefixes of the
tion of costs to higher priority parents. ordered list of ancestor agents. The agents try to infer and

The versions of ADOPT-ing are differentiated using the send valued nogoods separately for all such prefixes.
notation ADOPT-XYZ . X shows the destinations of the Figure 1.e depicts the basic versions of ADOPT-ing,
messages containing valued nogoods. X has one of the valwhen a DFS is not known (ADOPT-aand ADOPT-A.),
ues{p, a, A, d, D} wherep stands foparent « and A stand where nogoods can be sent to all predecessor agents. The
for all predecessorsandd and D stand forall ancestors dotted lines show messages, which are sent between inde-
in a DFS trees Y marks the optimization criteria used by pendent branches of the DFS tree, and which are expected
sum-inference in selecting a nogood when the inputs haveto be redundant. Experiments have shown that valued no-
the same threshold. For now we use a single criterion, de-goods help to remove the redundant dependencies whose
notedo, which consists of choosing the nogood whose tar- introduction would otherwise be expected from such mes-
get has the highest prioritZ specifies the type of nogoods sages. The provided proof for ADOPT-aand ADOPT-A_

employed and has possible valugs s}, wheren speci- shows that the only mandatory nogood messages for guar-
fies the use of valued global nogoods (without SRCs)sand anteeing optimality in this scheme are the ones to the im-
specifies the use of valued nogoods (with SRCs). mediately previous agent. However, agents can infer from

The different schemes are described in Figure 1. The to-their constraints valued nogoods that are based solely-on as

signments made by shorter prefixes of the ordered list of all

due to constraints of higher priority agents are identioal f

agents. As in the other case, the agents try to infer and senaach value, they are irrelevant for the decisions of the cur-

valued nogoods separately for all such prefixes.

A, D vs. a, d: The valued nogood computed for the
prefix Ay, ..., Ay, ending at a given predecesséy may not
be different from the one of the immediately shorter prefix
Ay,,Ax_1. Sending that nogood td; may not affect
the value choice ofi;, since the cost of that nogood applies
equally to all values ofi;, (except when such nogoods can-

not be composed by sum-inference with some valued no-

goods ofA;.) The new versions ADOPT-Dand ADOPT-

rent agent. Thus, the functiof() of this version of A* is
computed combining solelyandh. We currently store the
result of combiningh and! in A itself to avoid allocating a
new structure forf ().

The structuregr andth store received valued nogoods
andca stores intermediary valued nogoods used in comput-
ing h. The reason for storing-, th andca is that change
of context may invalidate some of the nogoods:iwhile
not invalidating each of the intermediary components from

A__correspond to the case where optional nogood messagewhich h is computed. Storing these components (which is
are only sent when the target of the payload valued nogoodoptional) saves some work and offers better initial heuris-
is identical to the destination of the message. The versiongtic estimations after a change of context. The cost assess-

ADOPT-d _ and ADOPT-a. correspond to the case where

ments stored ira[v][j] of A; also maintain the information

optional nogood messages are sent to all possible destinaneeded fothreshold messages, namely the heuristic esti-
tions each time that the payload nogood has a non-zeramate for the value of the variabler; at successod; (to

threshold. l.e., in those versionsgoodmessages are sent

even when the target of the transported nogood is not iden-

tical to the destination agent but has a higher priority.
2.2 Data Structures
Each agentd; stores itsagent-view(received assign-

ments), and its outgoing links (agents of lower prior-
ity than A; and having constraints om;). The instan-

be transmitted to4; if the valuew is proposed again).

The arraylastSent is used to store at each indéxhe
last valued nogood sent to the ageht. The arrayir is
used to store at each indéxhe last valued nogood received
from the agentd;. Storing them separately guarantees that
in case of changes in context, they are discarded at the re-
cipient only if they are also discarded at the sender. This
property guarantees that an agent can safely avoid retrans-
mitting to A, messages duplicating the last sent nogood,

tiation of each variable is tagged with the value of a Sinceif it has notyetbeen discarded frématSent[k] then
separate counter incremented each time the assignmerif® recipients have not discarded it frénik| either.

changes. To manage nogoods and CAs,uses matri-
cesl[1..d], h[1..d], ca[1..d][¢+1..n],¢R[1..]], Ir[i+1..n] and
lastSent[1..i-1] wheréd is the domain size fat;. crt_val is

the current valued; proposes for;.

e [[K] stores a CA forz; = k, inferred solely from the
local constraints betweery and prior variables.

ca[K][j] stores a CA forxz; = k, which is obtained by
sum-inference from valued nogoods received frdm

th[Kk] stores nogoods coming vikreshold/ok? mes-
sages fromy.

h[v] stores a CA forz;=v, which is inferred from
ca[V][j], I[v] andth[t] for all ¢ andj.

o [r[K] stores the last valued nogood received fram

o lastSent[k] stores the last valued nogood sem o

The names of the structures follow the relation of
ADOPT with A* search. Thush stands for the “heuris-
tic” estimation of the cost due to constraints maintained by
future agents (equivalent to thig) function in A*) and!
stands for the part of the standag@) function of A* that
is “local” to the current agent. Here, as in ADOPT, the
value forh() is estimated by aggregating the equivalent of
costs received from lower priority agents. Since the costs

2.3 Data flow in ADOPT-ing

The pseudocode is described in Algorithm 1. The
min_resolution(j) function applies the min-resolution
over the CAs associated to all the values of the variable of
the current agent, but uses only CAs having no assignment
from agents with lower priority thaml;. More exactly it
first re-computes the arraly using only CAs inca and!
that contain only assignments fraf, ..., A;, and then ap-
plies min-resolution over the obtained elementshofAs
mentioned above, in the current implementation we recom-
putel andh at each call tonin_resolution(j), and such a
call is separately performed for each ancestor agent

The order of combining CAs matters. To compufe]:

1. a) When maintaining DFS trees, for each valu€As
are combined separately for each sef agents defin-
ing a DFS sub-tree of the current node:
tmp[v][s]=sum-inferencg: ;(ca[V][t])-

b) Otherwise, with ADOPT-a and ADOPT-A_, we
act as if we have a single sub-tree:
tmp[v]=sum-inferencg:(; 1 ,j(ca[vI[t]).

2. CAs from step 1 (a or b) are combined:

In case (a) this means:

whenreceiveok?({x;, v;), tvn) do
Il tvn is a threshold valued nogood
integrate(z;, v;));
if (tvn no-null and has no old assignmertiten
k:=target¢vn); // thresholdtvn as common cost;
L th[k]:=sum-inferencefvn,th[K]);
| check-agent-view();
whenreceiveadd-link ((z;, v;)) from A; do
add A; to outgoing-links;
| if ((x;,v;)) is old, sendnew assignment td;;
whenreceivenogoodrvn, t) from A, do
foreach new assignment of a linked variablex; in rvn do
| integrateg); // counters show newer assignment;

if (an assignment invn is outdatedthen
if (some new assignment was integrated niheh
| check-agent-view();

return;

foreach assignment of a non-linked variable:; in rvn do
| sendadd-link(a) to A;;

lr[t]:=run;
foreachvaluew of z; such that rvn, is not() do
vn2ca(ron, i,v) — rca (@ CA for the value v oft;);
ca[V][t]:=sum-inferencefca,ca[V][t]);
updateh[v] and retract changes ta[V][t]
if h[v]'s cost decreases;

| check-agent-view();
procedure check-agent-view@o

cestor in the DFS tree, when one is maintained)
for every(v € D;) updatel[v] and recomputé[v];

/I of {1‘1, vy $J},
if (h has non-null cost CA for all values &f;) then
vn:=min_resolution(j);
if (vn# lastSent[j]) then
if (target(vn)==) then
sendnogoodvn,i) to A;;
lastSent[j] = vn;

crtval=argmin, (cost(h[v]));

f (crt_val changed}hen

sendok?((z;, crt_val), ca2vnga[crt_val][K]), 7)
to eachAy, in outgoinglinks;

procedure integrate(z;, v;)) do
discard elements iaa, th, lastSent andir
based on other values fat;
use Irt],, to replace each discarded[V][t];
| store(z;,v;) in agent-view;
procedure init do
h[v] := l[v]:=initialize CAs from unary constraints;
crt_val=argmin, (cost(h[v]));
| sendok?({zs, crt_val),d) to all agents in outgoing-links;

Algorithm 1: Receiving messages df in ADOPT-ing

for every A; with higher priority thanA; (respectively an-

// with valued nogoods using only instantiations

Y, s; h[v|=sum-inference,(tmp[v][s]).

Note that the SRCs in each term of this sum-inference
are disjoint and therefore we obtain a valued nogood
with threshold given by the sum of the individual
thresholds obtained for each DFS sub-tree (or larger).

For case (b) we obtain h[v]=tmp[v]. This makes
sure that at quiescence the threshold.pf is at least
equal to the total cost obtained at the next agent.

3. Add I[v]: h[v]=sum-inference(h[v], I[V]).
4. Add threshold: h[v]=sum-inference(h[v], th[*]).
The following is a new result;

Lemma 1 (Infinite Cycle) At a given agent, assume that
the agent-view no longer changes and that its arigysed

for min-resolution and for deciding the next assignment)
is computed only using cost assessments that are updated
solely by sum-inference. In this case the thresholds of the
elements of it cannot be modified in an infinite cycle.

Proof. Valued nogoods that are updated solely by sum-
inference have thresholds that can only increase (which can
happen only a finite number of times). For a given thresh-
old, maodifications can only consist of modifying assign-
ments to obtain lower target agents, which again can hap-
pen only a finite number of times. Therefore, after a finite
number of events, the cost assessments used tornvidt

not be modified any longer and therefdrewill no longer

be modified. O

Corollary 1.1 If ADOPT-ing uses the aforementioned pro-
cedure, then for a given agent-view, the elements of the ar-
ray h for that agent cannot be modified in an infinite cycle.

Remark 1 Sincelr contains the last received valued no-
goods via messages other thak? messages which change
the agent-view, that array is updated by assignment with re-
cently received nogoods without sum-inference. Therefore
we do not use it directly to infér. We usér only to initial-

ize ca after a change of the agent-view.

Note that with the described procedure, a newly arriv-
ing valued nogood can decrease the threshold of certain el-
ements of.. This is because, while increasing the threshold
of some elementina, it can also modify its SRC and there-
fore forbid its composition by sum-inference with othertcos
assessments.

Remark 2 (Obtaining Monotonic Increase) The imple-
mentation used for the experiments reported here avoids the
undesired aforementioned effect, where incoming nogoods
decrease thresholds of cost assessmenis Mamely, after

a newly received valued nogood is added by sum-inference 123

to the corresponding element af[v] for some value, if 1 @ @y 2

the threshold ofi[v] decreases then the old contentafv)

is restored. Each new valued nogood is used for updating

lr. However, on each change of the agent-view (set of Figure 2. The penalty of conflicting the con-
known valid assignments), all values af are updated straint o, # 2, is 2, denoted (#2).

using the valued nogoods foundlinandth.

Lemma 2 Revised ADOPT-ing terminates in finite time.

1. A 70k?(1’1, 1>—, Ag, A3
Proof. :2% 122 —HOQOOC{\FILZQ Fl, 37 (@1,)]— AAlA
. . " . A — ok(z1,2) 2, A3
Given the list of agentsl,, ..., A,, define the suffix of 4. A3 _nogood|F, F,T|,1, (z1, 21, A1 As
lengthm of this list as the lastn agents. Then the result 5.A1 ___ okz1,3)_____, A As
follows immediately by induction for an increasingly grow- 6. A2 _nogood|F, F,T|, 1, {z1,2)] - Ay
ing suffix (increasingn), assuming the other agents reach
quiescence. Figure 3. Trace of ADOPT-aos and ADOPT-

The basic case of the induction (for the last agent) fol- Aos on the problem in Figure 2
lows from the fact that the last agent terminates in one step
if the previous agents do not change their assignments.

Let us now assume that the induction assertion is true
for a suffix of k agents. Based on this assumption we now the problem in Figure 2. Note that in this simple case the
prove the induction step, namely that the property is also two versions do not differ since any optional nogood mes-
true for a suffix ofk+1 agents: For each assignment of sage can only leave froms to A;. Such a message is sent
the agentA,,_, the remainingt agents will reach quies- in ADOPT-aos only if it has a non-zero threshold, which
cence, according to the assumption of the induction step;happens only wher, is a target of the message, which
otherwise, the assignment’s CA threshold increases. Bymeans that it will also be sent in ADOPT-Aos. A trace is
construction, thresholds for CAs associated with the \&lue shown in Figure 3 where identical messages sent simulta-
of A,._; can only grow (see Remark 2). Even without the neously to several agents are grouped by displaying the list
technique in Remark 2, thresholds for CAs associated with of recipients. The agents start selecting values for thagir v
the values of4,,_, will eventually stop being modified as ables and announce them to interested lower priority agents
a consequence of Lemma 1. After values are proposed inds has no constraint between andz,; therefore the first
turn and the smallest threshold reaches its highest estjmat exchanged messages at€? messages sent by; to both
agentA,,_;, selects the best value and reaches quiescencesuccessorsl, andAs and proposing the assignment=1.

The other agents reach quiescence according to the induc- After receiving the assignment from,, the best (and
tion step. O only) assignment for, is zo=1 at a cost of 2 due to the
conflict with the constraint; # x5. Similarly A3 instanti-
ateszs with 2 and with a local cost of 0.

Since the best local cost of; is not null, A, performs
Lemma 3 The last valued nogoods sent by each agent ad-a min-resolution. Since a single value exists forandca
ditively integrate the non-zero costs of the constrain@alof js empty, this min-resolution simply obtains a valued no-
of the agent’s successors. good defined by the existing local nogoddi] = I[1] =
[Cy 2,2, (z1,1)]. In ourimplementation we decide to main-
tain a single reference for each agent's secret constraints

Note that thdvn data structure mentioned in [11] is no SRCs are represented as Boolean values in an array of size
longer used. That data structure hotdsvalued nogoods 7. A value on thei*” position in the array SRC equal
and its removal has little impact on the experimental result - signifies that the constraints df; are used in the inference
Since remaining arrays have dimensions that are only linearof that nogood. A, also stores the sent valued nogood in
in n, the space complexity of the revisited version is smaller lastSent[1] such that it avoids resending it without modifi-

The following results were proven in [11] and remain
true for the described generalization.

Theorem 4 ADOPT-ing returns an optimal solution.

than the one of the original version by the factor cation as a result of receiving other messaggsstores this
received valued nogood in[2], from where it is used to up-
2.4 Example dateca[1][2], by sum-inference. Since:[1][2] is empty, it

becomes equal to this valued nogood.

Now we give a detailed example of a run of ADOPT-ing Agent A; now updates its[1] by setting it toca[1][2]
basic versions ADOPT-aos and ADOPT-Aos. Let us take (sincel[1] andca[1][3] are empty). Since the threshold of

Agents| ADOPT | aos Aos dos Dos Nodes| aos Aos dos Dos pon
14 75.64 | 4232 | 42.8 | 42.44 | 42.72 14 21.981 | 14.696 | 15.760 | 12.427| 16.869
25 221.44 | 83.12 | 83.96 | 80.64 | 84.2 25 863.14 | 350.33 | 602.43 | 291.92| 630.51
30 433.92 | 112.68| 122.64| 112.52| 114.84 30 | 3640.81| 1137.31| 1853.42| 881.04| 830.61
40 720.04 | 117.28| 108.4 | 107.64| 112.24 40 49803 | 9046.12| 22414 | 7141.7

Table 1. Cycles at density 20%. Table 2. Thousands messages at density .3.

h[1] becomes 2 and is higher than the threshold of the otheris tested separately by comparison with a random ordering.
two values,{2,3}, in the domain ofr1, A; changes the as- The set of problems distributed with ADOPT and used here
signment ofz, to one of them, here 2. This is announced contains 25 problems for each problem size. It contains
through anotheok? message tol; and 4;. problems with up to 40 agents, and it contains test sets with
On the receipt of th@k? messages, the agents update density .2 and with density .3.

their agent-view with the new assignment. Each agenttries The length of the longest causal (sequential) chain of
to generate valued nogoods for each prefix of its list of pre- messages of each solver, computed as the number of cycles
decessor agents{A} and {4, A;} respectively. This of our simulator is given in Tables 3 and 1. It took more
time itis A3 whose only possible assignment leads to a non- than two weeks for the original ADOPT implementation to
zero local cost. Based on its agent-view and constraitis, solve one of the problems for 20 agents and density .3, and

generates a corresponding valued noga@dy, 1, (z1,2)] one of the problems for 25 agents and density .3 (at which
with threshold 1 due to the weight 1 of its constraint. This moment the solver was interrupted).
valued nogood is sent to the ageht whose assignment is The use of valued nogoods in ADOPT-ing brought an

involved in this nogood. To guarantee optimality the no- jmprovement of approximately 7 times on problems of den-
good is also sent to its immediate predecessor, namely thesity 0.2, and an approximately 5 times improvement on the
agentA,, making sure that at quiescence all the costs of its problems of density .3.
children are summed. . Table 3 shows that, with respect to the number of cycles,

After receiving this second nogood, stores it inir(3], the use of SRCs practically replaces the need to maintain the
used further by sum-inference to set[2][3], and finally prg tree since ADOPT-aos and ADOPT-Aos are compara-
used to update(2]. As aresultA;, now switchesits assign- g iy efficiency with ADOPT-dos and ADOPT-Dos. SRCs
ment to its value that has the lowest thresholdimamely ping improvements over versions with valued global no-
the value3. The new assignment is again sentdkp mes- 4,04s since SRCs allow detection of dynamically obtained
sages to its successors. Meanwhile, the agenalso pro- j,qenendence. Versions using DFS trees require fewer to-
cesses the valued nogood received frﬂms.torlng it in its tal messages, being more network friendly, as seen in Ta-
own Ir(3], ca[2][3] andA[2]. The nogood is not changed pje 5 Taple 2 shows that refraining from sending too many
by sum inference or min-resolution at this agent; it is sent optional nogoods messages, as done in ADOPT-Aos and
on to A, which stores it in'7(2] andca(2][2]. However, it ApOPT-Dos, is comparable to ADOPT-pon in terms of to-
does not lead to any modification in the] of A since the 5 hymber of messages, while maintaining the efficiency in
SRCs Ofca[2].[2.] andca[2].[3] haye anonempty intersection. ¢y cjes comparable to ADOPT-aos and ADOPT-dos.

After receiving the third assignment frody, the other Another experiment, whose results are shown in Table 4,
two agents reach quiescence with cost 0; thus an optimalg oant to evaluate the impact of the guarantees that the

solution is found. Note that the existence of message 6 de'ordering on agents is compatible with some short DFS tree.

pends on whether the message 5 (with the last assignmer\t/\,e evaluate this by comparing ADOPT-aos with an order-
from A;) reachesds ,befo'fe or after the “0900(_’ froots, __ing that is compatible with the DFS tree built by ADOPT,
that the message 5 invalidates. The solution is found in 5,015,554 random ordering. The results show that random or-
half-round-trips of messages (a logic time of 5). derings are unlikely to be compatible with short DFS trees
) and that verifying the existence of a short DFS tree compat-
3 Experiments ible to the ordering on agents to be used by ADOPT-ing is
highly recommended.

The algorithms are compared on the same problems that Table 3 clearly show that the highest improvement in
are used to report ADOPT's performance in [9]. To cor- number of cycles is brought by sending valued nogoods to
rectly compare our techniques with the original ADOPT other ancestors besides the parent. The use of the struc-
and ADOPT-ing, we have used the same order (or DFStures of the DFS tree makes slight improvements in number
trees) on agents for each problem. The impact of the ex-of cycles (when nogoods reach all ancestors) and slight im-
istence of a good DFS tree compatible with the used orderprovements in total message exchange. To obtain a low total

Agents| ADOPT aos Aos dos Dos
14 1591 674.56 704.96 656.24 669.44
18 4666.4 | 1777.44 | 1815.6 | 1727.84 | 1765.16
30 *58459.1| 16707.48| 17618.48| 16097.36| 17154.4
40 * 96406.76| 90747.6 | 93678.76| 90951.56

Table 3. Cycles at density .3. Entries with * show algorithm h ad to be interrupted.

Agents 16 18 20 25 30 40
DFS compatible] 839.92 | 1777.44| 1711.84| 7499.32 16*10° | 96*10°
random order | 461*10% | 1.5*10% | 3.7*106 | 48*106 | 128*1(9 —

Table 4. Impact of choice of order at density .3.

message traffic and to reduce computation at agent level, wechain of messages (measured as number of cycles of the
found that it is best not to announce any possible valued no-simulator). It brings an order of magnitude improvements
goods to each interested ancestor. Instead, one can reduda the total number of messages, as in ADOPT.

the communication without a penalty in number of cycles

by only ann(_)uncing valued nogoods tq the highest prior.ity References

agent to which they are relevant (besides the communica-

tion with the parent, required for guaranteeing optimality [1] S. Ali, S. Koenig, and M. Tambe. Preprocessing techrigue

for accelerating the DCOP algorithm ADOPT. AAMAS

4 Conclusions 2005.

[2] A. Chechetka and K. Sycara. No-commitment branch and
bound search for distributed constraint optimizationAlk-
The Asynchronous Distributed Optimization with no- MAS 2006.

goods (ADOPT-ing) algorithm is revisited and its space [3] P.Dago and G. Verfaillie. Nogood recording for valuedheo
complexity is reduced by one factor without a negative im- straint satisfaction problems. IG€TAI, 1996.
pact on efficiency. Its proof is generalized to allow for ex- [4] R. Dechter. Enhancement schemes for constraint pro-
tensions of its nogood storage schemes. Previous experi- CSSing: Backjumping, learming, and cutset decomposition
mentation with .ADOPT—ing ha; shown that it is important [5] Q %Or’ele?]?s?édt’ 3. Pearce, E. Bowring, and M. Tambe. Ex-
for an ager_1t to |nfer_ and se_nd_|n parallel several valued no- perimental analysis of privacy loss in dcop algorithms. In
g_oods to different hlgher_prlorl'Fy aggnts [11]. That conclu AAMAS pages 1024-1027, 2006.
sion was drawn by experimenting with the two extreme set- [6] Y. Hamadi and C. Bessiére. Backtracking in distributed-
tings: 1) where no optional message with valued nogoods is straint networks. IEECAI'98, pages 219-223, 1998.
sent (similar to ADOPT), and 2) where any inferred valued [7] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and

P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed event scheduling Ak
MAS 2004.

R. Mailler and V. Lesser. Solving distributed constitzopti-
mization problems using cooperative mediationAKMAS
pages 438-445, 2004.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization witlagu

ity guaranteesAlJ, 161, 2005.

A. Petcu and B. Faltings. ODPOP: an algorithm for
open/distributed constraint optimization. AMAl, 2006.

M.-C. Silaghi and M. Yokoo. Nogood-based asynchronous
distributed optimization. IANAMAS 2006.

[12] R. Wallace and E. Freuder. Constraint-based multinage
meeting scheduling: Effects of agent heterogeneity on per-
formance and privacy loss. DCR, pages 176-182, 2002.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalizat
and algorithmsIEEE TKDE 10(5):673—-685, 1998.

nogood is sent to all ancestors able to handle it. The first
extreme was found to be an order of magnitude better than
the other extreme in terms of total number of messages. The
second extreme is an order of magnitude better than the first (8]
one in length of the longest causal chain of messages.
Experiments show that an intermediary setting has the 9]
advantages of both extremes. If each inferred valued no-
good is sent only to the highest priority agent that can han-
dle it (its target), than the protocol is comparable to ADOPT [10]
in the total number of messages and comparable to the other
extreme in length of longest causal chain of messages. [11]
We determined the importance of precomputing and
maintaining a short DFS tree of the constraint graph, or
at least of guaranteeing that a DFS tree is compatible with
the order on agents, which is almost an order of magnitude 13
in our problems. Choosing a strategy of medium aggres-
siveness for sending valued nogoods to predecessors brings
slightimprovements in terms of length of the longest causal

