
Revisiting ADOPT-ing and its Feedback Schemes

Marius C. Silaghi
Florida Institute of Technology

Makoto Yokoo
Kyushu University

Abstract

Here we revisit ADOPT-ing and bring two new contribu-
tions. One contribution consists of developing variationson
the algorithms keeping the improvement in length of chain
of causal messages without an increase in the total num-
ber of messages. While past experiments have shown that
sending more feedback is better than sending the minimal
information needed for correctness, new experiments show
that one should not exaggerate sending too much feedback
and that the best strategy is at an intermediary point. This
brings large efficiency improvements.

We also find that one of the nogood storages of ADOPT-
ing can be removed without effects on efficiency while de-
creasing the space complexity by a factor given by the num-
ber of agents. We also provide a more general proof show-
ing which types of nogood storages can be used in the in-
ference of feedback without compromising correctness. In
particular we show that all such structures can be updated
by sum-inference, and fromthreshold messages.

1 Introduction

Distributed Constraint Optimization (DCOP) is a formal-
ism that can model naturally distributed problems. These
are problems where agents try to find assignments to a set
of variables that are subject to constraints. Typically re-
search has focused on techniques in which reluctance is
manifested toward modifications to the distribution of the
problem (modification accepted only when some reasoning
infers it is unavoidable for guaranteeing that a solution can
be reached). This criteria is widely believed to be valuable
and adaptable for large, open, and/or dynamic distributed
problems [7, 1, 2, 10]. It is also perceived as an alternative
approach to privacy requirements [12, 5, 8].

Definition 1 (DCOP) A distributed constraint optimiza-
tion problem (DCOP), is defined by a set of agents
A1, A2, ..., An, a setX of variables,x1, x2, ..., xn, and
a set of functionsf1, f2, ...fi, ..., fn, fi : Xi → IR+,
Xi ⊆ X , where onlyAi knowsfi. We assume thatxi can
only take values from a domainDi = {1, ..., d}.

Denoting withx an assignment of values to all the vari-
ables in X, the problem is to findargmin

x

∑n

i=1 fi(x|Xi
).

For simplification and without loss of generality, one typ-
ically assumes thatXi ⊆ {x1, ..., xi}.

By x|Xi
we denote the projection the set of assignments in

x on the set of variables inXi.

2 ADOPT with nogoods

Asynchronous Distributed OPTimization with infer-
ences based on valued nogoods (ADOPT-ing)1 is a dis-
tributed optimization algorithm. It exploits the increased
flexibility brought by the use of valued nogoods. The algo-
rithm can be seen as an extension of both ADOPT [9] and
asynchronous backtracking (ABT) [13].

A nogood,¬N , specifies a setN of assignments that
conflict with existing constraints. Valued nogoods have
the form [SRC, c, N] and are an extension of classical no-
goods. Each valued nogood has aset of references to a con-
flict list of constraintsSRC and a thresholdc. The threshold
specifies the minimal weight of the constraints in the con-
flict list SRC given the assignments of the nogoodN [3, 11].

A valued nogood [SRC, c, N∪〈xi, v〉] applied to a value
v of a variablexi is referred to as the cost assessment (CA)
of that value and is denoted (SRC, v, c, N). If the con-
flict list is missing (and implies the whole problem) then we
speak of a valued global nogood. One can combine valued
nogoods by sum-inference and min-resolution to obtain new
nogoods [3]. IfN = (〈x1, v1〉, ..., 〈xt, vt〉) wherevi ∈ Di,
then we denote byN the set of variables assigned inN ,
N = {x1, ..., xt}.

min-resolution: Assume that we have a set of cost as-
sessments forxi of the form (SRCv, v, cv, Nv) that has the
property of containing exactly one CA for each valuev in
the domain of variablexi and that for allk andj, the assign-
ments for variablesNk∩Nj are identical in bothNk andNj .
Then the CAs in this set can be combined into a new valued
nogood. The obtained valued nogood is [SRC, c, N] such
thatSRC=∪iSRCi, c= mini(ci) andN=∪iNi.

1Introduced with the acronym ADOPT-ng in [11].

1

sum-inference: A set of cost assessments of type
(SRCi, v, ci, Ni) for a valuev of some variable, where
∀i, j : i 6= j ⇒ SRCi ∩ SRCj = ∅, and the assign-
ment of any variablexk is identical in allNi wherexk

is present, can be combined into a new cost assessment.
The obtained cost assessment is (SRC, v, c, N) such that
SRC=∪iSRCi, c=

∑
i(ci), andN=∪iNi.

As in ABT, agents communicate withok? messages
proposing new assignments of the variable of the sender,
nogoodmessages announcing a nogood, andadd-link mes-
sages announcing interest in a variable. As in ADOPT,
agents can also usethreshold messages, but their content
can be included inok? messages.

For simplicity we assume in this algorithm that the com-
munication channels are FIFO. Attachment of counters to
proposed assignments and nogoods also ensures this re-
quirement (i.e., older assignments and older nogoods for the
currently proposed value are discarded).

2.1 Exploiting DFS trees for Feedback

Here we recall the feedback schemes of ADOPT-ing and
introduce the new variants ADOPT-Aand ADOPT-D .
In ADOPT-ing, agents are totally ordered as in ABT,A1

having thehighest priorityandAn the lowest priority. The
targetof a valued nogood is the position of the lowest prior-
ity agent among those that proposed an assignment referred
by that nogood. Note that the basic version of ADOPT-ing
does not maintain a DFS tree, but each agent can send mes-
sages with valued nogoods to any predecessor. ADOPT-ing
also has hybrid versions that can spare network bandwidth
by exploiting an existing DFS tree. It has two ways of ex-
ploiting such an existing structure. The first is by having
each agent send its valued nogood only to its parent in the
tree and it is roughly equivalent to the original ADOPT. The
other way is by sending valued nogoods only to ancestors.
This later hybrid approach can be seen as a fulfillment of a
direction of research suggested in [9], namely communica-
tion of costs to higher priority parents.

The versions of ADOPT-ing are differentiated using the
notationADOPT-XYZ . X shows the destinations of the
messages containing valued nogoods. X has one of the val-
ues{p, a, A, d, D} wherep stands forparent, a andA stand
for all predecessors, andd andD stand forall ancestors
in a DFS trees. Y marks the optimization criteria used by
sum-inference in selecting a nogood when the inputs have
the same threshold. For now we use a single criterion, de-
notedo, which consists of choosing the nogood whose tar-
get has the highest priority.Z specifies the type of nogoods
employed and has possible values{n, s}, wheren speci-
fies the use of valued global nogoods (without SRCs) ands

specifies the use of valued nogoods (with SRCs).
The different schemes are described in Figure 1. The to-

6

1

2

3

4

5

6

1

2

3

4

5

4

2

3

1

5

6 6

1

2

3

4

5

6

1

2

3

4

5

a) b) c) d) e)

Figure 1. Feedback modes in ADOPT-ing.

tal order on agents is described in Figure 1.a where the con-
straint graph is also depicted with dotted lines representing
the arcs. Each agent (representing its variable) is depicted
with a circle. A DFS tree of the constraint graph which
is compatible to this total order is depicted in Figure 1.b.
ADOPT gets such a tree as input, and each agent sends
COST messages (containing information roughly equiva-
lent to a valued global nogood) only to its parent. As men-
tioned above, the versions of ADOPT-ing that replicate this
behavior of ADOPT when a DFS tree is provided are called
ADOPT-p , where p stands forparentand the underscores
stand for any legal value defined above for Y and Z respec-
tively. This method of announcing conflicts based on the
constraint graph is depicted in Figure 1.c and is related to
the classic Graph-based Backjumping algorithm [4, 6].

In Figure 1.d we depict the nogoods exchange schemes
used in ADOPT-d and ADOPT-D where, for each new
piece of information, valued nogoods are separately com-
puted to be sent to each of the ancestors in the known DFS
tree. As for the initial version of ADOPT, the proof for
ADOPT-d and ADOPT-D shows that the only manda-
tory nogood messages for guaranteeing optimality in this
scheme are the ones to the parent agent. However, agents
can infer from their constraints valued nogoods that are
based solely on assignments made by shorter prefixes of the
ordered list of ancestor agents. The agents try to infer and
send valued nogoods separately for all such prefixes.

Figure 1.e depicts the basic versions of ADOPT-ing,
when a DFS is not known (ADOPT-aand ADOPT-A),
where nogoods can be sent to all predecessor agents. The
dotted lines show messages, which are sent between inde-
pendent branches of the DFS tree, and which are expected
to be redundant. Experiments have shown that valued no-
goods help to remove the redundant dependencies whose
introduction would otherwise be expected from such mes-
sages. The provided proof for ADOPT-aand ADOPT-A
shows that the only mandatory nogood messages for guar-
anteeing optimality in this scheme are the ones to the im-
mediately previous agent. However, agents can infer from
their constraints valued nogoods that are based solely on as-

2

signments made by shorter prefixes of the ordered list of all
agents. As in the other case, the agents try to infer and send
valued nogoods separately for all such prefixes.

A, D vs. a, d: The valued nogood computed for the
prefixA1, ..., Ak ending at a given predecessorAk may not
be different from the one of the immediately shorter prefix
A1,, Ak−1. Sending that nogood toAk may not affect
the value choice ofAk, since the cost of that nogood applies
equally to all values ofAk (except when such nogoods can-
not be composed by sum-inference with some valued no-
goods ofAk.) The new versions ADOPT-Dand ADOPT-
A correspond to the case where optional nogood messages
are only sent when the target of the payload valued nogood
is identical to the destination of the message. The versions
ADOPT-d and ADOPT-a correspond to the case where
optional nogood messages are sent to all possible destina-
tions each time that the payload nogood has a non-zero
threshold. I.e., in those versionsnogoodmessages are sent
even when the target of the transported nogood is not iden-
tical to the destination agent but has a higher priority.

2.2 Data Structures

Each agentAi stores itsagent-view(received assign-
ments), and its outgoing links (agents of lower prior-
ity than Ai and having constraints onxi). The instan-
tiation of each variable is tagged with the value of a
separate counter incremented each time the assignment
changes. To manage nogoods and CAs,Ai uses matri-
cesl[1..d], h[1..d], ca[1..d][i+1..n],th[1..i], lr[i+1..n] and
lastSent[1..i-1] whered is the domain size forxi. crt val is
the current valueAi proposes forxi.

• l[k] stores a CA forxi = k, inferred solely from the
local constraints betweenxi and prior variables.

• ca[k][j] stores a CA forxi = k, which is obtained by
sum-inference from valued nogoods received fromAj .

• th[k] stores nogoods coming viathreshold/ok? mes-
sages fromAk.

• h[v] stores a CA forxi=v, which is inferred from
ca[v][j], l[v] and th[t] for all t andj.

• lr[k] stores the last valued nogood received fromAk.

• lastSent[k] stores the last valued nogood sent toAk.

The names of the structures follow the relation of
ADOPT with A* search. Thus,h stands for the “heuris-
tic” estimation of the cost due to constraints maintained by
future agents (equivalent to theh() function in A*) and l

stands for the part of the standardg() function of A* that
is “local” to the current agent. Here, as in ADOPT, the
value forh() is estimated by aggregating the equivalent of
costs received from lower priority agents. Since the costs

due to constraints of higher priority agents are identical for
each value, they are irrelevant for the decisions of the cur-
rent agent. Thus, the functionf() of this version of A* is
computed combining solelyl andh. We currently store the
result of combiningh andl in h itself to avoid allocating a
new structure forf().

The structureslr andth store received valued nogoods
andca stores intermediary valued nogoods used in comput-
ing h. The reason for storinglr, th andca is that change
of context may invalidate some of the nogoods inh while
not invalidating each of the intermediary components from
which h is computed. Storing these components (which is
optional) saves some work and offers better initial heuris-
tic estimations after a change of context. The cost assess-
ments stored inca[v][j] of Ai also maintain the information
needed forthreshold messages, namely the heuristic esti-
mate for the valuev of the variablexi at successorAj (to
be transmitted toAj if the valuev is proposed again).

The arraylastSent is used to store at each indexk the
last valued nogood sent to the agentAk. The arraylr is
used to store at each indexk the last valued nogood received
from the agentAk. Storing them separately guarantees that
in case of changes in context, they are discarded at the re-
cipient only if they are also discarded at the sender. This
property guarantees that an agent can safely avoid retrans-
mitting to Ak messages duplicating the last sent nogood,
since if it has not yet been discarded fromlastSent[k] then
the recipients have not discarded it fromlr[k] either.

2.3 Data flow in ADOPT-ing

The pseudocode is described in Algorithm 1. The
min resolution(j) function applies the min-resolution
over the CAs associated to all the values of the variable of
the current agent, but uses only CAs having no assignment
from agents with lower priority thanAj . More exactly it
first re-computes the arrayh using only CAs inca and l

that contain only assignments fromA1, ..., Aj , and then ap-
plies min-resolution over the obtained elements ofh. As
mentioned above, in the current implementation we recom-
putel andh at each call tomin resolution(j), and such a
call is separately performed for each ancestor agentAj .

The order of combining CAs matters. To computeh[v]:

1. a) When maintaining DFS trees, for each valuev, CAs
are combined separately for each sets of agents defin-
ing a DFS sub-tree of the current node:
tmp[v][s]=sum-inferencet∈s(ca[v][t]).
b) Otherwise, with ADOPT-a and ADOPT-A , we
act as if we have a single sub-tree:
tmp[v]=sum-inferencet∈[i+1,n](ca[v][t]).

2. CAs from step 1 (a or b) are combined:
In case (a) this means:

3

when receiveok?(〈xj , vj〉, tvn) do
// tvn is a threshold valued nogood

integrate(〈xj , vj〉);
if (tvn no-null and has no old assignment)then

k:=target(tvn); // thresholdtvn as common cost;
th[k]:=sum-inference(tvn,th[k]);

check-agent-view();

when receiveadd-link (〈xj , vj〉) fromAj do
addAj to outgoing-links;
if (〈xj , vj〉) is old,sendnew assignment toAj ;

when receivenogood(rvn, t) fromAt do
foreachnew assignmenta of a linked variablexj in rvn do

integrate(a); // counters show newer assignment;

if (an assignment inrvn is outdated)then
if (some new assignment was integrated now)then

check-agent-view();

return;

foreachassignmenta of a non-linked variablexj in rvn do
sendadd-link (a) toAj ;

lr[t]:=rvn;
foreach valuev of xi such that rvn|v is not∅ do

vn2ca(rvn, i, v) → rca (a CA for the value v ofxi);
ca[v][t]:=sum-inference(rca,ca[v][t]);
updateh[v] and retract changes toca[v][t]

if h[v]’s cost decreases;

check-agent-view();

procedurecheck-agent-view()do
for every Aj with higher priority thanAi (respectively an-
cestor in the DFS tree, when one is maintained)do

for every(v ∈ Di) updatel[v] and recomputeh[v];
// with valued nogoods using only instantiations
// of {x1, ..., xj};

if (h has non-null cost CA for all values ofDi) then
vn:=min resolution(j);
if (vn 6= lastSent[j]) then

if (target(vn)== j) then
sendnogood(vn,i) to Aj ;
lastSent[j] = vn;

crt val=argminv(cost(h[v]));
if (crt val changed)then

sendok?(〈xi, crt val〉, ca2vn(ca[crt val][k]), i)
to eachAk in outgoinglinks;

procedure integrate(〈xj , vj〉) do
discard elements inca, th, lastSent andlr

based on other values forxj ;
use lr[t]|v to replace each discardedca[v][t];
store〈xj , vj〉 in agent-view;

procedure init do
h[v] := l[v]:=initialize CAs from unary constraints;
crt val=argminv(cost(h[v]));
sendok?(〈xi, crt val〉,∅) to all agents in outgoing-links;

Algorithm 1: Receiving messages ofAi in ADOPT-ing

∀v, s; h[v]=sum-inference∀s(tmp[v][s]).
Note that the SRCs in each term of this sum-inference
are disjoint and therefore we obtain a valued nogood
with threshold given by the sum of the individual
thresholds obtained for each DFS sub-tree (or larger).

For case (b) we obtain h[v]=tmp[v]. This makes
sure that at quiescence the threshold ofh[v] is at least
equal to the total cost obtained at the next agent.

3. Add l[v]: h[v]=sum-inference(h[v], l[v]).

4. Add threshold: h[v]=sum-inference(h[v], th[*]).

The following is a new result:

Lemma 1 (Infinite Cycle) At a given agent, assume that
the agent-view no longer changes and that its arrayh (used
for min-resolution and for deciding the next assignment)
is computed only using cost assessments that are updated
solely by sum-inference. In this case the thresholds of the
elements of itsh cannot be modified in an infinite cycle.

Proof. Valued nogoods that are updated solely by sum-
inference have thresholds that can only increase (which can
happen only a finite number of times). For a given thresh-
old, modifications can only consist of modifying assign-
ments to obtain lower target agents, which again can hap-
pen only a finite number of times. Therefore, after a finite
number of events, the cost assessments used to inferh will
not be modified any longer and thereforeh will no longer
be modified. �

Corollary 1.1 If ADOPT-ing uses the aforementioned pro-
cedure, then for a given agent-view, the elements of the ar-
ray h for that agent cannot be modified in an infinite cycle.

Remark 1 Sincelr contains the last received valued no-
goods via messages other thanok? messages which change
the agent-view, that array is updated by assignment with re-
cently received nogoods without sum-inference. Therefore,
we do not use it directly to inferh. We uselr only to initial-
izeca after a change of the agent-view.

Note that with the described procedure, a newly arriv-
ing valued nogood can decrease the threshold of certain el-
ements ofh. This is because, while increasing the threshold
of some element inca, it can also modify its SRC and there-
fore forbid its composition by sum-inference with other cost
assessments.

Remark 2 (Obtaining Monotonic Increase) The imple-
mentation used for the experiments reported here avoids the
undesired aforementioned effect, where incoming nogoods
decrease thresholds of cost assessments inh. Namely, after

4

a newly received valued nogood is added by sum-inference
to the corresponding element ofca[v] for some valuev, if
the threshold ofh[v] decreases then the old content ofca[v]
is restored. Each new valued nogood is used for updating
lr. However, on each change of the agent-view (set of
known valid assignments), all values ofca are updated
using the valued nogoods found inlr andth.

Lemma 2 Revised ADOPT-ing terminates in finite time.

Proof.
Given the list of agentsA1, ..., An, define the suffix of

lengthm of this list as the lastm agents. Then the result
follows immediately by induction for an increasingly grow-
ing suffix (increasingm), assuming the other agents reach
quiescence.

The basic case of the induction (for the last agent) fol-
lows from the fact that the last agent terminates in one step
if the previous agents do not change their assignments.

Let us now assume that the induction assertion is true
for a suffix ofk agents. Based on this assumption we now
prove the induction step, namely that the property is also
true for a suffix ofk+1 agents: For each assignment of
the agentAn−k, the remainingk agents will reach quies-
cence, according to the assumption of the induction step;
otherwise, the assignment’s CA threshold increases. By
construction, thresholds for CAs associated with the values
of An−k can only grow (see Remark 2). Even without the
technique in Remark 2, thresholds for CAs associated with
the values ofAn−k will eventually stop being modified as
a consequence of Lemma 1. After values are proposed in
turn and the smallest threshold reaches its highest estimate,
agentAn−k selects the best value and reaches quiescence.
The other agents reach quiescence according to the induc-
tion step. �

The following results were proven in [11] and remain
true for the described generalization.

Lemma 3 The last valued nogoods sent by each agent ad-
ditively integrate the non-zero costs of the constraints ofall
of the agent’s successors.

Theorem 4 ADOPT-ing returns an optimal solution.

Note that thelvn data structure mentioned in [11] is no
longer used. That data structure holdsn2 valued nogoods
and its removal has little impact on the experimental results.
Since remaining arrays have dimensions that are only linear
in n, the space complexity of the revisited version is smaller
than the one of the original version by the factorn.

2.4 Example

Now we give a detailed example of a run of ADOPT-ing
basic versions ADOPT-aos and ADOPT-Aos. Let us take

x1

x2 x3

<>(#2) <>(#1) {2}{1}

{1,2,3}

Figure 2. The penalty of conflicting the con-
straint x1 6= x2 is 2, denoted (#2).

1. A1 ok?〈x1, 1〉 → A2, A3

2. A2 nogood[|F, T, F |, 2, 〈x1, 1〉]→ A1

3. A1 ok?〈x1, 2〉 → A2, A3

4. A3 nogood[|F, F, T |, 1, 〈x1, 2〉]→ A1, A2

5. A1 ok?〈x1, 3〉 → A2, A3

6. A2 nogood[|F, F, T |, 1, 〈x1, 2〉]→ A1

Figure 3. Trace of ADOPT-aos and ADOPT-
Aos on the problem in Figure 2

the problem in Figure 2. Note that in this simple case the
two versions do not differ since any optional nogood mes-
sage can only leave fromA3 to A1. Such a message is sent
in ADOPT-aos only if it has a non-zero threshold, which
happens only whenA1 is a target of the message, which
means that it will also be sent in ADOPT-Aos. A trace is
shown in Figure 3 where identical messages sent simulta-
neously to several agents are grouped by displaying the list
of recipients. The agents start selecting values for their vari-
ables and announce them to interested lower priority agents.
A3 has no constraint betweenx3 andx2; therefore the first
exchanged messages areok? messages sent byA1 to both
successorsA2 andA3 and proposing the assignmentx1=1.

After receiving the assignment fromA1, the best (and
only) assignment forA2 is x2=1 at a cost of 2 due to the
conflict with the constraintx1 6= x2. Similarly A3 instanti-
atesx3 with 2 and with a local cost of 0.

Since the best local cost ofA2 is not null,A2 performs
a min-resolution. Since a single value exists forA2 andca

is empty, this min-resolution simply obtains a valued no-
good defined by the existing local nogood:h[1] = l[1] =
[C1,2, 2, 〈x1, 1〉]. In our implementation we decide to main-
tain a single reference for each agent’s secret constraints.
SRCs are represented as Boolean values in an array of size
n. A value on theith position in the array SRC equal toT
signifies that the constraints ofAi are used in the inference
of that nogood.A2 also stores the sent valued nogood in
lastSent[1] such that it avoids resending it without modifi-
cation as a result of receiving other messages.A1 stores this
received valued nogood inlr[2], from where it is used to up-
dateca[1][2], by sum-inference. Sinceca[1][2] is empty, it
becomes equal to this valued nogood.

Agent A1 now updates itsh[1] by setting it toca[1][2]
(sincel[1] andca[1][3] are empty). Since the threshold of

5

Agents ADOPT aos Aos dos Dos
14 75.64 42.32 42.8 42.44 42.72
25 221.44 83.12 83.96 80.64 84.2
30 433.92 112.68 122.64 112.52 114.84
40 720.04 117.28 108.4 107.64 112.24

Table 1. Cycles at density 20%.

h[1] becomes 2 and is higher than the threshold of the other
two values,{2,3}, in the domain ofx1, A1 changes the as-
signment ofx1 to one of them, here 2. This is announced
through anotherok? message toA2 andA3.

On the receipt of theok? messages, the agents update
their agent-view with the new assignment. Each agent tries
to generate valued nogoods for each prefix of its list of pre-
decessor agents:{A1} and {A1, A2} respectively. This
time it isA3 whose only possible assignment leads to a non-
zero local cost. Based on its agent-view and constraints,A3

generates a corresponding valued nogood [C1,3, 1, 〈x1, 2〉]
with threshold 1 due to the weight 1 of its constraint. This
valued nogood is sent to the agentA1 whose assignment is
involved in this nogood. To guarantee optimality the no-
good is also sent to its immediate predecessor, namely the
agentA2, making sure that at quiescence all the costs of its
children are summed.

After receiving this second nogood,A1 stores it inlr[3],
used further by sum-inference to setca[2][3], and finally
used to updateh[2]. As a result,A1 now switches its assign-
ment to its value that has the lowest threshold inh, namely
the value3. The new assignment is again sent byok? mes-
sages to its successors. Meanwhile, the agentA2 also pro-
cesses the valued nogood received fromA3 storing it in its
own lr[3], ca[2][3] andh[2]. The nogood is not changed
by sum inference or min-resolution at this agent; it is sent
on toA1 which stores it inlr[2] andca[2][2]. However, it
does not lead to any modification in theh[2] of A1 since the
SRCs ofca[2][2] andca[2][3] have a nonempty intersection.

After receiving the third assignment fromA1, the other
two agents reach quiescence with cost 0; thus an optimal
solution is found. Note that the existence of message 6 de-
pends on whether the message 5 (with the last assignment
from A1) reachesA2 before or after the nogood fromA3,
that the message 5 invalidates. The solution is found in 5
half-round-trips of messages (a logic time of 5).

3 Experiments

The algorithms are compared on the same problems that
are used to report ADOPT’s performance in [9]. To cor-
rectly compare our techniques with the original ADOPT
and ADOPT-ing, we have used the same order (or DFS
trees) on agents for each problem. The impact of the ex-
istence of a good DFS tree compatible with the used order

Nodes aos Aos dos Dos pon
14 21.981 14.696 15.760 12.427 16.869
25 863.14 350.33 602.43 291.92 630.51
30 3640.81 1137.31 1853.42 881.04 830.61
40 49803 9046.12 22414 7141.7

Table 2. Thousands messages at density .3.

is tested separately by comparison with a random ordering.
The set of problems distributed with ADOPT and used here
contains 25 problems for each problem size. It contains
problems with up to 40 agents, and it contains test sets with
density .2 and with density .3.

The length of the longest causal (sequential) chain of
messages of each solver, computed as the number of cycles
of our simulator is given in Tables 3 and 1. It took more
than two weeks for the original ADOPT implementation to
solve one of the problems for 20 agents and density .3, and
one of the problems for 25 agents and density .3 (at which
moment the solver was interrupted).

The use of valued nogoods in ADOPT-ing brought an
improvement of approximately 7 times on problems of den-
sity 0.2, and an approximately 5 times improvement on the
problems of density .3.

Table 3 shows that, with respect to the number of cycles,
the use of SRCs practically replaces the need to maintain the
DFS tree since ADOPT-aos and ADOPT-Aos are compara-
ble in efficiency with ADOPT-dos and ADOPT-Dos. SRCs
bring improvements over versions with valued global no-
goods, since SRCs allow detection of dynamically obtained
independence. Versions using DFS trees require fewer to-
tal messages, being more network friendly, as seen in Ta-
ble 2. Table 2 shows that refraining from sending too many
optional nogoods messages, as done in ADOPT-Aos and
ADOPT-Dos, is comparable to ADOPT-pon in terms of to-
tal number of messages, while maintaining the efficiency in
cycles comparable to ADOPT-aos and ADOPT-dos.

Another experiment, whose results are shown in Table 4,
is meant to evaluate the impact of the guarantees that the
ordering on agents is compatible with some short DFS tree.
We evaluate this by comparing ADOPT-aos with an order-
ing that is compatible with the DFS tree built by ADOPT,
versus a random ordering. The results show that random or-
derings are unlikely to be compatible with short DFS trees
and that verifying the existence of a short DFS tree compat-
ible to the ordering on agents to be used by ADOPT-ing is
highly recommended.

Table 3 clearly show that the highest improvement in
number of cycles is brought by sending valued nogoods to
other ancestors besides the parent. The use of the struc-
tures of the DFS tree makes slight improvements in number
of cycles (when nogoods reach all ancestors) and slight im-
provements in total message exchange. To obtain a low total

6

Agents ADOPT aos Aos dos Dos
14 1591 674.56 704.96 656.24 669.44
18 4666.4 1777.44 1815.6 1727.84 1765.16
30 *58459.1 16707.48 17618.48 16097.36 17154.4
40 * 96406.76 90747.6 93678.76 90951.56

Table 3. Cycles at density .3. Entries with * show algorithm h ad to be interrupted.

Agents 16 18 20 25 30 40
DFS compatible 839.92 1777.44 1711.84 7499.32 16*103 96*103

random order 461*103 1.5*106 3.7*106 48*106 128*106 —

Table 4. Impact of choice of order at density .3.

message traffic and to reduce computation at agent level, we
found that it is best not to announce any possible valued no-
goods to each interested ancestor. Instead, one can reduce
the communication without a penalty in number of cycles
by only announcing valued nogoods to the highest priority
agent to which they are relevant (besides the communica-
tion with the parent, required for guaranteeing optimality).

4 Conclusions

The Asynchronous Distributed Optimization with no-
goods (ADOPT-ing) algorithm is revisited and its space
complexity is reduced by one factor without a negative im-
pact on efficiency. Its proof is generalized to allow for ex-
tensions of its nogood storage schemes. Previous experi-
mentation with ADOPT-ing has shown that it is important
for an agent to infer and send in parallel several valued no-
goods to different higher priority agents [11]. That conclu-
sion was drawn by experimenting with the two extreme set-
tings: 1) where no optional message with valued nogoods is
sent (similar to ADOPT), and 2) where any inferred valued
nogood is sent to all ancestors able to handle it. The first
extreme was found to be an order of magnitude better than
the other extreme in terms of total number of messages. The
second extreme is an order of magnitude better than the first
one in length of the longest causal chain of messages.

Experiments show that an intermediary setting has the
advantages of both extremes. If each inferred valued no-
good is sent only to the highest priority agent that can han-
dle it (its target), than the protocol is comparable to ADOPT
in the total number of messages and comparable to the other
extreme in length of longest causal chain of messages.

We determined the importance of precomputing and
maintaining a short DFS tree of the constraint graph, or
at least of guaranteeing that a DFS tree is compatible with
the order on agents, which is almost an order of magnitude
in our problems. Choosing a strategy of medium aggres-
siveness for sending valued nogoods to predecessors brings
slight improvements in terms of length of the longest causal

chain of messages (measured as number of cycles of the
simulator). It brings an order of magnitude improvements
in the total number of messages, as in ADOPT.

References

[1] S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques
for accelerating the DCOP algorithm ADOPT. InAAMAS,
2005.

[2] A. Chechetka and K. Sycara. No-commitment branch and
bound search for distributed constraint optimization. InAA-
MAS, 2006.

[3] P. Dago and G. Verfaillie. Nogood recording for valued con-
straint satisfaction problems. InICTAI, 1996.

[4] R. Dechter. Enhancement schemes for constraint pro-
cessing: Backjumping, learning, and cutset decomposition.
AI’90, 1990.

[5] R. Greenstadt, J. Pearce, E. Bowring, and M. Tambe. Ex-
perimental analysis of privacy loss in dcop algorithms. In
AAMAS, pages 1024–1027, 2006.

[6] Y. Hamadi and C. Bessière. Backtracking in distributedcon-
straint networks. InECAI’98, pages 219–223, 1998.

[7] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and
P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed event scheduling. InAA-
MAS, 2004.

[8] R. Mailler and V. Lesser. Solving distributed constraint opti-
mization problems using cooperative mediation. InAAMAS,
pages 438–445, 2004.

[9] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with qual-
ity guarantees.AIJ, 161, 2005.

[10] A. Petcu and B. Faltings. ODPOP: an algorithm for
open/distributed constraint optimization. InAAAI, 2006.

[11] M.-C. Silaghi and M. Yokoo. Nogood-based asynchronous
distributed optimization. InAAMAS, 2006.

[12] R. Wallace and E. Freuder. Constraint-based multi-agent
meeting scheduling: Effects of agent heterogeneity on per-
formance and privacy loss. InDCR, pages 176–182, 2002.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization
and algorithms.IEEE TKDE, 10(5):673–685, 1998.

7

