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Abstract

We merge two popular optimization criteria of Dis-
tributed Constraint Optimization Problems (DCOPs) –
reward-based utility and privacy – into a single criterion.
Privacy requirements on constraints has classically moti-
vated an optimization criterion of minimizing the number
of disclosed tuples, or maximizing the entropy about con-
straints. Common complete DCOP search techniques seek
solutions minimizing the cost and maintaining some pri-
vacy. We start from the observation that for some problems
we could provide as input a quantification of loss of privacy
in terms of cost. We provide a formal way to integrate this
new input parameter into the DCOP framework, discuss its
implications and advantages.

1 Introduction

The distributed constraint reasoning (DCR) framework
addresses problems where a set of agents participate in dis-
tributed problem solving. The agents cooperate for finding
the values of some parameters, X , which optimize an ob-
jective function defined as a sum of a set of weighted con-
straints on X . The agreement of cooperation among agents
is sometimes assumed to be enforced by mechanisms out-
side the DCR, while other times the reward (utility) of find-
ing a solution is specified as an input to the problem. The
weighted constraints are real functions. Some of the con-
straints may be publicly known, while some are secrets of
different participating agents.

We introduce a new framework called Distributed Pri-
vate Constraint Optimization (DPCOP) in which two met-
rics of DCOPs, previously modeled as incomparable, are
redefined and merged under the umbrella of utility theory,
thereby yielding a unique optimization criteria, which facil-
itates analysis. We explicitly model the loss of privacy as
a cost and we assume that this cost is provided as a part of
the input specification. A quantification of privacy loss as
cost allows for better targeted strategies, which may flexi-
bly preserve valuable secrets and reveal less valuable ones.
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This contrasts with the previous approach of maximizing
the entropy by guarding, possibly irrelevant, secrets.

2 DPCOP Framework

In order to extend the DisPrivCSP framework to DCOPs,
we start from the observation that the DCOP constraint
weights, normally utilized in the objective function of the
optimization, may also be considered as a utility – positive
or negative reward (cost) – analogous to the cost induced by
privacy loss. For DCOPs minimizing the sum of the con-
straint weights (i.e., where weights represent a cost with
negative utility), the total cost is given by the sum of the
value of the lost privacy and the cost of the selected solu-
tion. The reward to each agent for solving the problem in
this setting will remain as the previously known, possibly
infinite, value analogous to DisPrivCSPs. A rational par-
ticipating agent abandons the search if its next revelation
would lead to a value of the incremental privacy loss which,
when combined with the lowest bound on the cost of the so-
lution, is larger than the reward for solving the problem.

For maximization DCOP problems that seek a solution
maximizing the sum of the constraint weights (where con-
straint weights represent rewards), privacy loss becomes the
only cost. The utility is then the difference between the re-
ward of the solution and the value of the privacy lost during
the search. A rational agent abandons the search if an incre-
mental privacy loss is larger than the expected total reward
of the solution.

Given a set of secrets, a leaked information about them
is called a revelation.

Definition 1 (Revelation) Given a set of Boolean (proposi-
tional) secrets S and a set of agents A, a possible revelation
R(A, S) is a function R(A, S) : A×S → [0, 1] which maps
each peer agent and a secret to the probability learned by
that agent about the secret.

For example, given three agents: Alice (A), Bob (B),
and Carol (C), and the set of secrets for Carol: Carol rich
(S1), Carol corrupt (S2), a revelation of Carol is:
{R(A,S1)=0.9,R(A,S2)=0.3,R(B,S1)=0.3,R(B,S2)=0.9}.
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Note that this definition of revelation is more general
than the version used by DisPrivCSPs, as it allows us to
model statistical privacy losses [15, 7]. An equivalent defi-
nition adapted to multi-valued secrets [7] is:

R(A, S) : (A× S)→ (D → [0, 1]),

which maps each peer agent and secret to a prob-
ability distribution learned by that agent for each
value (from D) of that secret. An example with S1 in
{not rich (v1), millionaire (v2), billionaire (v3)} and S2

Boolean is {R(A,S1)=[P(v1)=0.2, P(v2)=0.7, P(v3)=0.1],
R(A,S2)=[P(t)=0.2, P(f)=0.8], R(B,S1)=[P(v1)=0.4,
P(v2)=0.2, P(v3)=0.4], R(B,S2)=[P(t)=0.4, P(f)=0.6]}

A simpler version used in our benchmarks is:

R(A, S) : A→ PS(S),

which maps each peer agent to the element of the power-
set of the set of secrets, PS(S), that he learns, thereby ac-
counting only for completely revealed secrets. An example
is: {[A→ {S1}];[B→ {S1, S2}]}.
Definition 2 (DPCOP) A (minimization) Distributed Pri-
vate Constraint Optimization Problem (DPCOP) is de-
fined by a tuple (A, X, D, C, P, U). A is a set of agents
{A1, ..., AK}. X is a set of variables {x1, ..., xn}, and D
is a set of domains {D1, ..., Dn} such that each variable
xi may take values only from the domain Di. The vari-
ables are subject to a set C of sets of weighted constraints
{C0, C1, ..., CK}, where Ci = {φ1

i , ..., φ
ci

i } holds the se-
cret weighted constraints of agent Ai, and C0 holds the
public constraints. Each weighted constraint is defined as a
function φi : Xi → IR+ where Xi ⊆ X . The value of such
a function in an input point is called constraint entry, and
each Ci can be seen as a set Ci of such constraint entries. P
is a set of privacy loss cost functions {P1, ..., PK}, one for
each agent. Pi defines the cost inflicted to Ai by each reve-
lation r of its secrets, i.e., Pi(r) : R(A, Ci) → IR+. U is a
set U1, ..., UK . Ui is the reward received by Ai if a solution
is found (used for deciding to abandon the search).

A solution is an agreement between agents in A on a tu-
ple ε∗ of assignments of values to variables that minimizes
the total cost:

ε∗ = argminε

∑

i

(
∑

j

φj
i (ε)) + Pi(Πi(ε))

where Πi(ε) is the revelation R(Ci, A) during the process
leading to the agreement on the assignments ε.

The set of rewards U can be used to qualitatively com-
pare DCOP solvers based on which solves more problems
without any agent abandoning the process [13]. Formally,
the agent, Ai, abandons the search if:

Pi(r∗)− Pi(r) + W≥Ui

where r is the revelation by Ai up to this moment, r∗ is the
revelation after the next planned sequence of actions, and
W is a lower bound on the cost of the expected solution.

Many approaches consider a simplified version of DCOP
(equivalent in expressive power) where each agent owns
some variables, and agents enforce only those constraints
with variables assigned by previous agents [19]. In this
case, each weighted constraint is defined as a function,
φj

i : Xi → IR+ where Xi ⊆ {x1, ..., xi}.
Maximization DPCOPs are defined without the element

U . The solution is:

ε∗ = argmaxε

∑

i

(
∑

j

φj
i (ε))− Pi(Πi(ε)).

A rational agent abandons the maximization search if:

W − (Pi(r∗)− Pi(r))≤0

where r is the revelation performed by Ai up to this mo-
ment, r∗ is the revelation after the next planned sequence
of actions, and W is an upper bound on the quality of the
expected solution.

Example As a complete example of a (minimization) DP-
COP, consider the case of the agents of two consultants, Al-
ice (A1) and Bob (A2), trying to schedule a meeting, at one
out of two possible dates, T1 and T2. At this meeting the
consultants plan to exchange experience estimated by Alice
at $200, and estimated by Bob at $300. The costs to travel
on the two dates are known only to the corresponding agent:
$600 and $800 for Alice, $600 and $300 for Bob. These
costs reflect both the ticket price, as well as the value of the
wage the consultants would receive on those dates if they
would work. These wages are secret (as each consultant
does not want the other to know the value of his contract).
Alice is ready to pay $30 to hide the real amount he is paid
for each of the task scheduled on date T1, respectively $50
for the task on day T2. Bob would pay $40 and $20 for the
corresponding privacy.

This can be represented as a DPCOP with a single
variable, x1, specifying the time. A1 has a constraint
φ1

1 specifying its cost to travel on each of the two dates:
{φ1

1(T1)=$600,φ1
1(T2)=$800}. The costs for A2 are

specified by φ1
2: {φ1

2(T1)=$600,φ1
2(T2)=$300}. P1

is {P1(A2,{φ1
1(T1)})=$30, P1(A2,{φ1

1(T1)})=$50}.
The privacy cost functions are assumed addi-
tive, i.e., P1(A2,{φ1

1(T1), φ1
1(T2)})=$80. P2 is

{P2(A1,{φ1
2(T1)})=$40, P2(A1,{φ1

2(T1)})=$20}. This
implies that P2(A1,{φ1

2(T1), φ1
1(T2)})=$60.

The rewards for meeting are U1=$200, and U2 = $300.
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3 Baseline DPCOP Solvers

Any of the existing DCOP techniques can be used to
solve DPCOPs. Techniques using cryptographic methods,
such as the ones in [16, 4], can guarantee optimality with
minimal privacy leak. Other techniques may offer more ef-
ficiency at the expense of optimality. We evaluate simple al-
gorithms for solving DPCOPs. Probably the simplest tech-
nique consists of an agent consecutively asking each pub-
licly possible tuple one after another, while the other agents
answer with their costs. This is an adaptation to optimiza-
tion of the technique proposed in [3]. The agent asking the
questions in this 1-leader version is called the leader. In
the N-leaders variant, the search space is distributed be-
tween agents (related to [5]), and each agent asks costs for
his part. The baseline version we evaluate in the N-leaders
version is even simpler, with agents acting in turn rather
than simultaneously, each question also delegates the leader
for the next question. At the end, the agents publish the
best tuples for their sub-parts, and the best overall tuple is
selected.

procedure leader do
foreach next tuple ε with better local weight than cur-
rently best tuple do

decide next leader // only N-leaders version;
send ask(ε,next leader);
set next leader // only N-leaders version;
wait answers;
update identity of best tuple;

procedure slaves do
when ask (ε, next leader) do

compute local cost for ε;
send answer(ε, cost) to leader;
recompute privacy loss;
leader := next leader // only N-leaders version;
if (leader = myself) then

change to leader mode // N-leaders version;

Algorithm 1: Baseline (1-leader and N-leaders versions)

Leaders may propose tuples that are suboptimal (with
worse local cost than their currently best tuple), lying to
increase privacy (lying occurs also in [1]).

4 RPS Stable Matchings Benchmarks

It is easy to learn a secret weight of a constraint entry for
an agent when a message sent by this agent is based solely
on the weight of that secret constraint entry. If an agent con-
trols a single secret constraint, each message that the agent
sends in response to a leader’s challenge reveals a secret

weight. If an agent holds several secret constraints, a mes-
sage is an aggregation of secrets from those constraints, and
learning the component secrets is sometimes possible, but
more computationally involved (solving the corresponding
systems of equations, when they are determined). First we
perform an experimental study for the simpler case where
each agent enforces a single private constraint.

Stable matching Distributed stable matching consist in
matching m participants of a type to m participants of an-
other type.

We developed a generator for DPCOP models of sta-
ble matching between m agents of a type and m agents
of another type. The first m agents are of one type, and
the last m agents are of the second type. To model secret
preferences we introduce a variable P i

j,k for each pair j,
k, 0 ≤ j < k ≤ m [16, 12]. In a version with 2 pref-
erences, variable P i

j,k has one of two values (0 meaning
that Ai prefers A2m−j to A2m−k, and 1 meaning that it
does not prefer A2m−j to A2m−k. Each agent Ai receives
m ∗ (m − 1)/2 private unary constraints on the variables
P i

j,k. In a version with 3 preferences, a private variable
has one of three values: 0 meaning that Ai prefers A2m−j

to A2m−k, 1 meaning that it equally prefers A2m−j and
A2m−k, and 2 stands for the remaining situation.

In general someones preferences may not be transitive
(as in rock/paper/scissors mating patterns [17]). For such
problems it is possible that P i

j,k and P i
k,t are both 0, but P i

j,t

is 1. We call this version RPS Stable Matching Problems,
and remark that instances of such problems may not have
any stable solution.

The definition of the problem is based on m additional
variables, xi, each of them with m values. The value of xi

give the index of the participant that is matched with Ai in
a stable solution. The conditions of stability and the fact
that each agent can be matched with exactly one agent of
the other type, are specified using a set of public quaternary
constraints. A quaternary constraint is created between each
quadruplet xi, xj , P i

u,v, and Pu
j,i. This constraint specifies

that:
“If Ai is matched with A2m−u and Aj is matched with

A2m−v, then u must be different from v; and if Ai prefers
A2m−u to A2m−v, then A2m−v prefers Aj to Ai.”

In the generated DPCOP models, the private constraints
are hard constraints (with weights in {0,∞}), to anchor in
reality the evaluation of a solution. The public constraints
are soft constraints, each unstable matching having cost 1.
The fact that each agent is matched with exactly one other
agent of the opposite type remains a hard constraint. The re-
wards generated for reaching a solution with minimization
DPCOPs are infinite.

A pseudocode of the RPS-SM problem generator is
given in Algorithm 2.
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print the number of variables;
print the variables with their domains;
print total number of constraints;
foreach participant Ai do

foreach participant pair (Ak, Aj) of opposite type do
print i’s unary secret constraint on P i

k,j ;

foreach guadruple: (xi, xj , P i
u,v , Pu

j,i) do
print the public constraint xi, xj , P i

u,v , and Pu
j,i. This

constraint specifies that, if Ai is matched with A2m−u

and Aj is matched with A2m−v, then u must be differ-
ent from v; and if Ai prefers A2m−u to A2m−v , then
A2m−v prefers Aj to Ai.

Algorithm 2: Random RPS Stable Matching generator

Privacy Leaks For problems with m = 2 the number of
private constraints per agent is 1, and therefore secrets are
lost each time that they are used for answering to a leader
with a cost (weight).

For problems with more participants, one positive (0
weight) answer in any of the two baseline techniques will
reveal all three secrets involved, but a infinite weight an-
swer contains an aggregated information about a set of se-
crets. It reveals one secret only if the remaining secrets ag-
gregated with it are revealed by finite weight answers, and
requires additional data storage for reconstructing shadow
COPs [18].

The inference technique is shown in Algorithm 3.

shadow constraint← unknown;
list of∞ cost answers← ∅;
when finite cost answer do

set values in shadow COP to 0;
remove assignments of newly learned unary con-
straints from∞ cost answers;
revisit∞ cost answers becoming unary;

when∞ cost answer do
remove variables of known constraints from answer;
if answer less than k-ary then

add answer to list of∞ cost answers;

revisit∞ cost answers becoming unary;

procedure revisit∞ cost answers becoming unary do
set shadow tuples in unary∞ cost answers to infinity;
remove the cost answer from the list of answers;

Algorithm 3: SMI: Stable Matching Inference of secrets

This algorithm creates in each agent a shadow of each
secret unary constraint of the other agents. This shadow is
filled with each new information received from the corre-
sponding agent. Each time a finite weight is received from

Algo DPCOP Size Pref Cost Cycles Time
HP STM 4 2 3 14 1.47
BL STM 4 2 257 9.6 0.85
BL RPSM 4 2 249 8.8 0.56
BL RPSX 4 2 310 27.6 0.82
BL RPSX 4 3 443 116.7 0.7
BL RPSX 6 2 1502 9.6*105 5822

Table 1. Stable matching versions.

an agent for a given assignments tuple, the projection of the
tuple on the variables of the secret unary constraints of that
agent are marked as having cost 0. Whenever an infinite
cost is received for a tuple, the set of projections of the tuple
on the variables in the secret unary constraints of the sender
is enqueued in the list of∞ cost answers (if the number of
unknown secrets involved is smaller than a bound k, used to
bound the space complexity). Each time that a set from this
list contains a known infinite cost element, it is removed.
Any 0-cost element is removed from its set. When a set
from this list contains a single unknown element (is unary),
we infer that this element has infinite weight.

For non-RPS Stable Matching problems, where pref-
erences present transitivity properties, one can also apply
Floyd-Warshall to compute the transitive closure of these
preferences, recovering additional secrets.

Privacy loss avoidance Inferred shadows for the secret
constraints of other participants are used by the leader to
predict the answers of other agents and to even skip asking
the question if the prediction proves that the current tuple is
suboptimal (e.g., one of the other agents have preferences
that make a matching unstable).

Experimental Results For stable matching problems, re-
sults averaged over 25 instances are given in Table 1.
The cases are: RPS stable matching with soft con-
straints (RPSX), RPS stable matching with hard constraints
(RPSM), classic stable matching with transitive preferences
(STM). Results are given for the baseline algorithm with
one leader (BL), and for the (HP) cryptographic implemen-
tation of the [12] technique. The cryptographic algorithm
leaks only the secrets implied by the fact that the solution
is stable (if an agent A prefers another than its match in the
solution, that other did not prefer A to his match).

Some cryptographic solvers are guaranteed to find opti-
mal solutions for DPCOPs, at the expense of efficiency [16].
Assuming that no two agents exchange information about
peers, there exist partially cryptographic solvers that are
quite efficient but may, rarely, leak information due to solu-
tion vulnerabilities [4].
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5 Related Work

Privacy has been a fundamental concern in distributed
constraint optimization, since the beginning of the field [19,
9]. An early quantitative measurement of privacy loss was
based on simply counting the number of disclosed tuple
values [2, 3]. Some attention has been given to privacy
in distributed constraint optimization (DCOP) [7]. How-
ever, this work considers all secrets to be equally important,
and does not use prior knowledge about the utility of se-
crecy. Problems with privacy requirements are treated as
multi-criteria optimization problems, where the constraint
weights are of a different nature from privacy (e.g., per-
ceived from an information theoretic perspective). Some
common algorithms for solving DCOPs are ADOPT [10],
DPOP [11], and DisAO [8]. There also exist DCOP opti-
mization techniques using cryptographic protocols [4, 14]
that preserve privacy.

A closely related framework is the Distributed Pri-
vate Constraint Satisfaction Problems (DisPrivCSPs) [13],
which focuses on distributed constraint satisfaction prob-
lems. DisPrivCSPs label each secret with a number cor-
responding to its importance, provided as an input to the
problem. DisPrivCSPs also utilize cost of privacy loss, but
not integrated with the cost of the agreement tuples.

The innovation in DPCOPs as compared to previous re-
search in DCOPs is:

• DPCOPs unify the metric for cost of privacy loss with
the metric used for specifying weights of constraints.
In DisPrivCSPs they were modeled as incomparable
and treated distinctly.

• As in [7], revelation in DPCOPs allows for statistical
and non-additive privacy loss costs. Unlike [7], DP-
COPs also model varying importance of secrets.

Among smaller differences, while with DisPrivCSPs an
agent Ai will abandon the search when incremental costs
are higher than Ui, with maximization DPCOPs there may
be no finite limit on the reward of the agent. While inte-
gration of efficiency criteria into the utility framework was
already addressed in the general agent framework in [6], its
specialization to DPCOP may raise additional interesting
issues in future research.

6 Conclusion

We present a new framework of DPCOP where privacy
loss and weight of constraints in DCOPs are measured with
the same unit (utility) and integrated into a single optimiza-
tion criteria. DPCOPs allow us to model problems with
complex privacy requirements. We note that existing DCOP
solvers apply to DPCOPs, and we provide some bench-
marks.
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