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Abstract—P2P social networks defined by user actions (e.g.,
P2P discussion forums) are expected to be ideal environments
for Sybil and false identity attacks (just as in the case of the
similar web based systems: YouTube, etc.). In particular, these
attacks are a significant impediment for meaningful electronic
petition drives since they render impossible the verification of
the eligibility of participants.

While many electronic social networks strive for guaranteeing
the privacy (e.g., by anonymization) of their users, existing sys-
tems for petition drives, like DirectDemocracyP2P.net, encourage
users to disclose their real identities and are meaningless when
users do not follow this request.

We describe a framework and investigate techniques for
running decentralized peer-to-peer census processes that enable
observers to independently verify the identity of participants in
a social network.

I. INTRODUCTION

We address the problem of detecting false identities in
P2P systems for petition drives by gathering census data
using a decentralized, citizen-driven mechanism. While digital
certification from governments could offer an alternative to
solution, most governments are shy to offer such certificates,
and moreover it would also require trust in these governments
(trust that certain governments could use to silence opposing
voices by not delivering them the needed certificates). The
challenge addressed here consists in formalizing the census
problem and developing algorithms applicable in a peer-to-
peer (P2P) approach. The result of the performed census is
expressed in a trust value for the reliability and eligibility of
each identity, value that integrated in processes such as petition
drives, debates and polls targeting well defined populations.

After introducing related work, in section Concepts we
introduce the main definitions. Section Techniques introduces
the experimented algorithms for evaluating user data. We
conclude after discussing experimental results.

II. BACKGROUND

One of the main challenges of large distributed collabora-
tions is that one user can login under as many identities as she
has time and desire to register. The creation and usage of such
duplicated identities is referred in literature as the Sybil attack.
The term Sybil attack was first introduced by [1] in a generic
distributed computing environment. In the presence of a trusted
authority, the resistance to Sybil attacks is either offered by
explicitly certified participation as in Microsoft’s Farsite [2]

Fig. 1. Tree Structure of Neighborhoods (Locations from Gulliver’s Travel).

or by an implicit verification. This implicit verification can
be regarded as too dependent on unsafe assumptions about
underlying systems, as in the Cooperative File System [3].

The concept of regional/neighbor based trust and verifica-
tion is used in the Thawte Web of Trust [2]. There, local trusted
people called notaries can verify one’s credentials and certify
them using a Thawte certificate. Regional/neighbor based trust
and verification is also used with PGP, where people meet
for key signing parties, giving each other an independent
proof of identity after manually inspecting government issued
documents.

Census processes with validation can be successful only
if people are sufficiently connected to provide enough data to
the decision making process. Studies of connectivity between
people have been conducted in relation to existing social
networks. A kind of constituency was discussed in [4].

A reputation system maintains scores inferred from other’s
opinions for participants [5], [6]. Notions of valued trust are
proposed in [7] and extended in [8]. The introduced values can
be used to decide if an entity is sufficiently trustworthy. The
values are inferred from a graph with nodes as entities and
edges as the trust relations. They formalize trust relations of
different types, among which are identification (ID) and trust-



worthiness (PR), and discuss the potential offered by networks
of such relations to model known distributed authentication
protocols. Solutions based on Dynamic Belief Networks are
proposed in [9].

III. CENSUS PROCESS CONCEPTS

The concepts of organization, neighborhood, constituent
and witnessing are introduced in [9]. Now let us introduce
concepts involved in the decentralized census processes.

A. Citizen Interactions

A citizen-driven census requires participation of individual
citizens for actions such as residence declaration and wit-
nessing. As residence declarations, each individual voluntarily
provides census data not only about herself but also about her
neighbors. The neighborhood where a citizen resides is part of
its identity details.

a) Verification: A voting process, called witnessing, is
used to help verify the census data. The verification can be
done both by neighbors, and by volunteers who gather data
about the inhabitants of the given area.

b) Witness Graph: A graph defined by the witness re-
lations between constituents can be generated in the following
way:

• A node is generated for each constituent.

• A directed edge from node A to node B is generated
for each semantic statement that A witnesses for B.

• Each edge has a color (from a set Ω), given by
the type of statement that generated it (ontological
commitment).

• An edge has weight 1 if generated for a favorable
stance and weight 0 if generated for an unfavorable
stance (epistemological commitment).

Inactive nodes are sinks for this graph. This graph can be
used to reason about the eligibility of the declared identities
and implicitly about the census.

c) Distributed Census Problem: The Distributed Cen-
sus Problem (DCP) for an observer Γ can be formalized as a
tuple ⟨NS , I,R,W,MS ,Γ⟩, where:

• NS is the set of neighborhoods NS = {1, ..., d},

• I is the set of person identities,

• R is the set of residence declarations (constituent
items)

• W is the set of witness stances

• MS is a model of the relation between the ground
truth I∗ and NS , I, R and W , as believed by the
observer Γ (e.g., a certain belief network)

I∗ (the ground truth), each having an identity from the set
I. The problem is to approximate the I∗ that best explains
NS , I, R and W based on the model MS .

IV. TECHNIQUES

Here we present the techniques used to address the chal-
lenge of inferring a count of the constituency given a witness
graph.

d) Eligibility: Although anyone can participate in the
census process of an organization, not everyone is eligible to
be counted in the census. In an organization, which is the
context of this study, the definition of eligibility is a function
of the constituent. When the eligibility for a constituent is
based on a subjective view, the census result is relevant only
to the user (or users) sharing this view. Hence, we define the
eligibility as a probabilistic function of several parameters:

• Someone’s interpretation of the witness graph, MS

• Someone’s own definition of the eligibility, Γ(O)
Definition 1: The reference user is the user Γ who cur-

rently computes the census.

Definition 2 (Censable and Ψ): A constituent item C is
censable for an organization if it is eligible and new (never
counted elsewhere). The Γ’s confidence value in whether C is
censable is denoted Ψ(C).

Definition 3 (Witness Reliability and Φ): A constituent
item C is a reliable witness if Γ trusts all the witness stances
that C issues as she trusts her own. Γ may not fully trust the
stances of another constituent C, but only with a confidence
value Φ(C).

Based on the DCP parameters, one can infer a value Ψ for
the confidence that observer Γ can have on whether a given
constituent item C identifies a censable user, and a value
Φ for its confidence on whether C is witness reliable.

Remark 1 (Decision Criteria 1): One approach to com-
pute a census is to declare that an identity is eligible (to be
counted in the census) from the point of view of the reference
user Γ if the value of Ψ surpasses a threshold t where t is
defined by the Γ.

Remark 2 (Decision Criteria 2): Another approach is to
sum the values Ψ for all constituents (once normalized in the
interval [0,1]).

In the next paragraphs, we proposed algorithms to compute
the Ψ value for each node in the witness graph for various
types of models MS .

For a given type of semantic statement, we will use the
following concepts:

• The supporting parents of the node C that witness
C favorably for the quality q, q ∈ Ω, are denoted as
SP q(C).

• The opposing parents of the node C that witness C
unfavorably for the quality q, q ∈ Ω, are denoted as
OP q(C).

• The supported children of the node C are the
children that are witnessed favorably by C for the
quality q, q ∈ Ω, denoted as SCq(C).

• The opposed children of the node C are the children
that are witnessed unfavorably by C for the quality q,
q ∈ Ω, denoted as OCq(C).



• The amortization factor fq, fq ∈ [0, 1], models the
decrease of the confidence during transfer by witness-
ing for quality q. These factors compose as one gets
further from Γ in the transitive chain of trust (along
the “reliable witness” edges in the witness graph).

We introduce the notation Φ to denote the quality reliable
witness when used as superscript or subscript with one of the
notations above (e.g., SCΦ(C)). Similarly we use Ψ to denote
the censable quality when used as superscript or subscript in
these notations (e.g., SCΨ(C)).

Example 1: Given a supporting parent node sp of the
node C, the confidence isp,C propagated (in certain introduced
models) from sp to C is Φ(sp)× fΦ.

Assume that a supporting parent sp of node C has value
Φ(sp)=0.8 and Γ’s fΦ is 0.9, the confidence isp,C transferred
from sp to C is 0.8× 0.9=0.72.

Remark 3: However, amortization may not apply to oppos-
ing parents even as it applies for supporting parents. In certain
introduced models, given an opposing parent node op of the
node C, the confidence iop,C propagated from op to C is 0.

The node representing the reference user Γ and its directly
connected children are treated separately and referred to as
special nodes.

Several of the proposed approaches share the following
assumptions for the value of the special nodes:

Assumption [Self_Trust]

• Ψ(a) = 1, ∀a ∈ SCΨ(Γ)

• Ψ(a) = 0, ∀a ∈ OCΨ(Γ)

• Φ(a) = 1, ∀a ∈ SCΦ(Γ)

• Φ(a) = 0, ∀a ∈ OCΦ(Γ)

The models of approximate reasoning introduced next are:
Max Amortized Support (MAXAS), Adjusted Max Amortized
Support (AMAS), Average Support (AS), Penalized Average
Support (PAS), and Adjusted Support Ratio (ASR).

e) Maximum Amortized Support (MAXAS): The first
model we introduce for computing the Ψ value of each node in
the witness graph is given in Algorithm 1. This model employs
the amortization factor (Line 11) as per Example 1. The values
of fΦ and fΨ are user provided inputs to the algorithm. For each
node, the initial Ψ and Φ are 0 since Γ a priori knows nothing
about it (Line 1).

The reference user, Γ, who computes the census has full
confidence in her witness stances (Lines 2 and 3), as per
the assumption Self_Trust. Further, the algorithm traverses
remaining nodes in the graph in breadth first order. If a node
C has N supporting parents, SPΦ(C), MAXAS computes
Ψ(C) as the maximum out of all the confidence values
transferred from them (Line 11).

An example is given in Figure 2, and we use it next
to illustrate the output of Algorithm 1. In this figure, for
simplicity, a single edge is used to represent all semantic
statements in a witness stance, and all of them are supposed
to have the same weight (epistemological commitment, 1 or

Input: A witness graph g with the starting node Γ and
amortization factor fΦ for the reliable witness
quality and fΨ for the censable quality

1 for each node n in g do Ψ(n)← 0; Φ(n)← 0;
2 Ψ(a)← 1,∀a ∈ SCΨ(Γ); Ψ(a)← 0, ∀a ∈ OCΨ(Γ);
3 Φ(a)← 1, ∀a ∈ SCΦ(Γ); Φ(a)← 0, ∀a ∈ OCΦ(Γ);
4 Add SCΦ(Γ) to queue Q;
5 while Q is not empty do
6 node n ← extract first(Q);
7 foreach c ∈ SCΨ(n) do
8 Ψ(c)← max(Ψ(c), fΨ × Φ(n))
9 end

10 foreach c ∈ SCΦ(n) do
11 Φ(c)← max(Φ(c), fΦ × Φ(n));
12 if c has never been added to Q then
13 add c to the end of the Q
14 end
15 end
16 end
Algorithm 1: Derivation of Ψ(C) and Φ(C) for each
constituent C

Fig. 2. Propagation of (Φ, Ψ) value pairs

0). The amortization factors are also equal: fΦ = fΨ = 0.9.
Initially, each node’s Ψ value is set to 0 (Line 1). Node S is the
reference user Γ and the shown graph captures her data about
other nodes (A, B, C, etc). The nodes are labeled with the
confidence in their witness reliability that S infers from this
graph. One can see that she trusts herself (Φ(S) = 1, Line 2),
and does not considers itself censable, (Ψ(S) = 0). S also
trusts those for whom she issues stances as favorable reliable
witness (A, B and D, Φ(A) = Ψ(A)=1, Φ(B) = Ψ(B)=1,
Φ(D) = Ψ(D)=1, Line 2). A, B and D are added to queue
Q in this order. For node C, since Φ(C)=0 we stop the
distribution of trust to C’s children, hence do not infer anything
about F (Ψ(F ) and Φ(F ) remain 0). A is then dequeued from
the head of the queue (Line 6). Since A has a favorable witness
on D, now Φ(D) is evaluated to be max(1, 0.9)=1 (Line 11).
We do not add D to the queue, since it is already in it. Then B
is dequeued, but it has no favorable witness on its only child
E. Ψ(E) is not changed. Then D is dequeued. Since D has
a favorable witness on E, Ψ(E) = Φ(E)=max(0.9, 0)=0.9
(Line 11) and E is added to Q. C and F are never added to
the queue.

In the context of Algorithm 1, and when the census is



estimated with the mechanism in Remark 1, in order to be
counted, a node has to be within a certain support distance
from the root s. The distance is determined by the used
amortization factor and threshold. The smaller the factor, the
smaller the required distance. In the example given by Figure 2,
assume we choose the census threshold t as 0.95, S, A, B and
D are counted. Note that E is not counted because its support
path exceeds the distance of 1=1 + ⌊logf t⌋ edges from S.

f) Adjusted Max Amortized Support (AMAS): In this
second model, to enable the increase of Ψ for a constituent
when it gets extra support, we let Ψ(C) take values between
M(C) and N(C) (Ψ(C) ∈ [M(C), N(C)]) where:

M(C) = max
n∈SPΨ(C)

Φ(n)× fΨ

N(C) = max
n∈SPΨ(C)

Φ(n)

The algorithm we use to compute the Φ value here is
similar to Algorithm 1. We do not repeat the algorithm and
only address the difference. In Algorithm 1, the Ψ value of a
constituent item C is computed as M(C). This model assumes
Equation 1:

Ψ(C) = M(C) +
(N(C)−M(C))×min(fw,W )

W
(1)

In Equation 1, fw is the total number of favorable
censable witnesses (|SPΨ(C)|) for C and W is a user-
defined parameter. The closer W grows towards |SPΨ(C)|,
the closer Ψ(C) approaches to M(C). If C has more than W
favorable witnesses from its parents, Ψ(C) becomes M(C).

g) Average Support (AS): In the first two approaches,
note that Ψ(C) is only inferred from the supporting parents.
For the opposing parents, the propagation is stopped, i.e.,
the inputs from the opposing parents to the children nodes
are 0s. In this approach and the next one, we employ the
inputs from the opposing parents into computing the Ψ
value of a node in the witness graph. AS can be seen as
an extension with amortization factors of an interpretation of
the method to combine recommendation trust proposed in [8],
where recommendation values are replaced by the confidence
in the witness reliability of constituents witnessing an entity. .

The AS model computes the Ψ value using Equation 2
where |SPΨ(C)| is the number of favorable witnesses for C
and |OPΨ(C)| is the number of unfavorable witnesses for C.

Ψ(C) =

fΨ ×max

(
0,

∑
n∈SPΨ(C)

Φ(n)−
∑

n∈OPΨ(C)

Φ(n)

)
|SPΨ(C)|+ |OPΨ(C)|

(2)

The trust associated with a constituent item is also com-
puted using a similar expression:

Φ(C) =

fΦ ×max

(
0,

∑
n∈SPΦ(C)

Φ(n)−
∑

n∈OPΦ(C)

Φ(n)

)
|SPΦ(C)|+ |OPΦ(C)|

(3)

Constituent Ψ(C) Counted Constituent
C1 2.75 Passed
C2 2.0
C3 2.0
C4 4.0 Passed
... ... ...

TABLE I. SAMPLE OUTCOME WITH MODEL ASR FOR Sw=6, Ow=4,
t=2

h) Penalized Average Support (PAS): In the fourth
discussed model, we build on the AS model but reduce the
penalty introduced by opposing parents to only the part in the
denominator of the fraction.

Ψ(c) =

fΨ
∑

n∈SPΨ(C)

Φ(n)

|SPΨ(C)|+ 1 + fΨ
∑

n∈OPΨ(C)

Φ(n)
(4)

The Φ value is also computed with a similar expression, just
using the SPΦ, OPΦ and fΦ, instead of the corresponding
values for Ψ in Equation 4.

i) Adjusted Support Ratio (ASR): This last non-
probabilistic approximate model is much simpler than previous
ones. The heuristic used here is that the identity of a constituent
is more likely to be considered censable by others if she
has relatively more SPΨ than OPΨ. An equation reflecting
this value is:

Ψ(C) =
|SPΨ(C)|
|OPΨ(C)|

(5)

As computed in Equation 5, Ψ(C) is respecting the heuris-
tic in the sense that a larger SPΨ indicates a larger Ψ(C)
and well as a smaller OPΨ. However, division by zero has
to be avoided, and the obtained range of Ψ(C) may need to
be adjusted for a given data. Hence Sw and Ow are added as
user specified parameter to allow users to adjust the range of
Ψ(C). A sample output of the census process using Decision
Criteria 1 is shown in Table I.

Ψ(C) =
|SPΨ(C)|+ Sw

|OPΨ(C)|+Ow
(6)

V. EXPERIMENTS

To evaluate the power of the studied DCP models to
represent users reasoning about census, as well as to study
the impact of interactions between constituents , we perform a
sets of preliminary experiments based on a set of volunteers.

In the experiments based on volunteers we asked 10 people
living within an area of a few square kilometers to register
themselves as active constituents and to also register others
10 friends as inactive constituents of a regional organization.
Each of these volunteers had the opportunity to witness for the
other constituent items that they knew. We also introduced 2
obviously wrong constituents at an address that most partici-
pants knew to not exist. A snapshot of the interactions between
constituents is shown in Figure 3 where the thick edges
represent favorable witness stances, the thin edges represents
unfavorable witness stances, the nodes represents constituents
and size of node is proportional to the in-degree. Red nodes
denote active constituents and blue nodes denote inactive ones.
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Fig. 3. Visualization of constituents and the witness relation between them

After the P2P witnessing process reached quiescence, we
asked 5 of the participants (who were available) to use the wid-
gets implementing each of the available five non-probabilistic
DCP models for deciding on a census based on the available
constituent items. Each of these constituents ranked the five
models in terms of how well they were able to capture their
own opinion on the censable status of each item and on
their correctness. A score between 0 and 10 was assigned to
each model. These scores are detailed in the Table II. While
the size of the sample is small and deviation of these scores
is high, currently the winner is the Penalized Average Support
model (PAS). It is remarkable that the ASR, which is a very
simple computation performed also acceptably well.

Constituent C1 C2 C3 C4 C5 Average
MAXAS 8.5 5 10 3 7 6.7
AMAS 9.5 3 10 5 7 6.9

AS 8.5 5 10 6.5 7 7.4
PAS 9 8 10 6 7 8
ASR 10 2 6 8 9 7

TABLE II. MODELS AND THEIR SCORES. THE PREFERRED
PARAMETERS FOR MAX ARE t = 0.5, f = 0.5, FOR AS ARE t = 0.65,
f = 0.7, FOR PAS ARE t = 0.43, f = 0.82, FOR ASR ARE |Sw| = 6,

|Ow| = 4, AND t = 2.

VI. CONCLUSIONS

We address the problem of detecting false identities in
action-based P2P social networks. The handling of these
false identities is particularly important for the verification of
eligibility in applications such as petition drives. Given the
common assumptions of correct revelation of identities for
these application, we observe that a census process of the
social network base can be employed to mitigate this problem.
While the real census and certification of certain countries
could be contributed by governments, that is not possible
for all organization, and legal issues could stop others from
helping. Moreover, while population census is an important
process with large implications in the distribution of public
funds and security of elections from vote stuffing, it is currently
an expensive process outside the reach of external verifiers and
was identified as a threat to stability in certain regions.

To enable a decentralized citizen-driven population census,
we employ a set of concepts such as: grassroot organization,
constituent, witnessing. The grassroot organization is a set of
rules (constitution) that specifies mechanisms to define eligi-
bility of constituents. Constituents can witness (vote) on each
other’s qualities, such as: eligibility and witnessing reliability.

The concept of neighborhood is introduced and formal-
ized in order to improve the scalability of peer verification.
Neighborhoods group constituent addresses in a tree structure.
For large organizations, the constituency is organized in a tree
of neighborhoods to help with census organization. Census
results can be verified separately for each neighborhood and it
is reasonable to expect most users to be able to verify the
existence of the immediate child neighborhoods of all the
nodes on the path from their own address to the root. This
enables a distributed verification of the existence of declared
neighborhoods (and thereby of addresses).

Items for these concepts are identified by global identifiers
guaranteed to be unique and that are disseminated among peers
based on P2P protocols (current experiments being based on
the DirectDemocracyP2P platform). A peer is a user acting
under one name and public key via multiple agents (e.g., one
agent per device that she uses).

A set of five efficient but approximate models of relations
between witness stances and properties of constituents are
proposed and empirically evaluated. We have also proposed
and analyzed theoretically a probabilistic model based on
Bayesian Networks that can be used to address the problem in
a principled way [9]. Markov Chain Monte Carlo inferences
are found to converge within few seconds for reasonable
sized neighborhoods, and scale linearly with the input size.
Preliminary experiments with volunteers are used to rank these
models, while experiments with large simulated data show
that robustness to attackers is possible when there exists a
reasonable kernel of honest active constituents.
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