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Abstract—Drivers are not expected to vote while driving, but
VANETs are an excellent media for dissemination of pre-recorded
support/opinions on regional issues in a decentralized deliber-
ative petition drive or opinion poll. We propose and evaluate
heuristics for scheduling messages in a VANET broadcasting-
based dissemination of data for decentralized petition drives
among self-interested participants. The goal of the heuristics
is to increase dissemination of the citizen initiatives questions
and results under the given assumptions. The self-interest of the
participants is assumed to be manifested by selectivity in the
storage and forwarding of raised issues and positions for those
issues.

Here we describe the concepts enabling the fully decentralized
organization of the petition drives and polls. The underlying
protocol that we implemented for fully decentralized polling of
opinions over VANETs is also introduced and evaluated.

I. INTRODUCTION

A protocol is proposed for dissemination of data for de-

centralized deliberative petition drives and opinion polls over

wireless, Vehicular Ad-hoc Networks (VANETs). When re-

gional citizen initiatives and opinion polls are organized in a

decentralized fashion, vehicle to vehicle (V2V) communica-

tion can be exploited for exchanging pre-recorded petitions

and support on issues in neighborhoods (without the drivers

being required to interact while driving).

VANETS are composed of wireless devices found in moving

cars. Each of these devices can communicate with other

devices found in its proximity. Common devices with powerful

receivers can record messages sent from emitting devices

found hundreds of meters away. A fully decentralized petition

drive or poll can be based on a decentralized authentication

and census mechanism (see Figure 1). Each device is owned by

a self-interested user and we assume that the system is open,

which implies that a user has full control over her device and

its software.

Since they have full control, self-interested participants can

refuse to store and forward information related to petitions or

polls in which they are not interested. They can also refuse to

store and disseminate opinions that they do not share. The

communication model assumes that each device broadcasts

data it wants to disseminate and simultaneously listens and

processes data broadcast by passing-by devices. A challenge

is to design heuristics for selecting what to emit in order to

maximize dissemination of polling data under the working

assumptions.

We evaluate heuristics that broadcast data either with uni-

form randomness, or favoring certain types of items such as:

Fig. 1. Usage Vision: Decentralized Petition Drives

new votes, personal votes, votes similar to the personal votes

or the intersection between the interests of the sender and the

ones of potential receivers. Some input for these heuristics may

come from information about interests of peers, and potentially

their GPS location and velocity (bearing and speed). For

efficiency, once packed, data can be broadcast several times.

A set of queues are maintained to implement these heuristics.

To enable comparison between the described heuristics, a

utility model is introduced where the dissemination of each

item is associated with a numerical utility value. For example,

the utility value for disseminating personal votes and opinions

can be considered to be the highest, followed by the utility

value for disseminating votes with choices similar to the

personal ones. The average utility value for disseminating

opposing opinions is assumed smaller, but for various users it

can be either positive or negative (based on whether they want

their choice to succeed by any mean, or they are principled and

ready to submit to the opinion of others, or they are open and

willing to learn from other’s justifications and to potentially

change their minds). The utility for disseminating votes on

which the current user abstains can be assumed in certain

experiments to have an average value between the utility for

similar opinions and opposing opinions. The impact of the

actual numerical ranges of these utilities on results can also



be evaluated.

After presenting the background and related work, we

continue by introducing a sample application performing de-

centralized deliberative petition drives or polling and a sample

data model for the storage of each node. Subsequently we

present the protocol for broadcasting data in terms of message

components and their semantic. In section Heuristics we

discuss the tested techniques and the involved data structures.

After describing the preliminary experimental settings and

results, we end with conclusions.

II. BACKGROUND

The use of broadcast in high traffic areas is known to

be challenging due to high rates of transmission collisions

between data packets. This problem is known as the broadcast

storm problem [1]. Several broadcasting protocols (such as

DV-CAST) have been proposed to increase the performance

of data transfer in various traffic scenarios for VANET ap-

plications [2], [3], [4]. A statistical study of broadcasting

between mobile nodes based on requests is available in [5]

and implemented in Bluetella.

The Local Peer Group (LPG) clusters neighboring nodes

to restrict dissemination range [6]. P2P sharing of content

over VANETs based on data popularity is introduced in the

Roadcast simulator [7]. It simulates delivery of relevant data

(such as MP3 audio files) based on peer queries by applying

information retrieval mechanisms. A VANET P2P file sharing

protocol called SPAWN (gossiping) is introduced by [8].

Implementing CarTorrent in a real world scenario is reported

in [9] which describes field tests for the SPAWN protocol and

exchanges file chunks based on the AODV protocol.

A set of so called Road-Based Vehicular Traffic (RBVT)

routing protocols on city roads use current traffic data to

initiate the end-to-end communication paths [10]. VANET

data dissemination can provide vehicles with parking spots

availability [11]. The Traffic View [12] project uses VANET

communication to share traffic information among cars moving

on roads. It can disseminate road assessments (such as foggy

weather) helping to find the best route to a destination. The

system aggregates data in packets, to increase efficiency.

CodeTorrent [13] is another protocol for P2P file sharing

over VANETs. It aims to decrease file downloading time.

The Segment-Oriented Data Abstraction and Dissemination

(SODAD) [14], aims to increase the communication range be-

tween vehicles for exchanging traffic safety data, and utilities

information (e.g. locating gas stations). SODAD is used in the

Self-Organizing Traffic Information System SOTIS.

III. SAMPLE APPLICATION

The proposed ideas are experimented within the framework

of a P2P social network called DirectDemocracyP2P [15].

The system makes possible a fully decentralized deliberative

petition drive or opinion polling process. In this application,

information is linked to entities called peers and organizations.

Definition 1 (Peer): The set of software agents that coordi-

nate publicly to represent a given user is referred here as peer.

A peer may have agents running on various devices (laptops,

desktops, phone of a user) and which share the same public

and secret key pair. The peer is globally identified by its public

key.

Definition 2 (Organization): An organization is an entity

defining the mechanism whereby an authority is defined for

specifying and controlling eligibility for voting on a set of

issues. An organization is defined by the unchangeable set

of parameters describing its governance and function. This

unchangeable characteristic is captured in its global identifier.

Each organization describes rules for deciding who is ex-

pected to interact (the constituency) and the relevant issues (ju-

risdiction) that should be raised and supported in the respective

group. The organization can be authoritarian, where an ini-

tiator controls the definition, interpretation and application of

these rules, or grassroot where the definition is fixed while the

interpretation and application of the rules is enforced directly

by participants via collaborative filtering [16]. Scalability of

the reciprocal verification of members of a constituency (via

witness stances) is enhanced by organizing these members

in hierarchical neighborhoods. False identities and repeated

voting are mitigated using the decentralized census process

based on these witness stances [16].

In DirectDemocracyP2P, issues raised and for which support

is sought are called motions. Constituents can disseminate both

endorsement and opposition signatures for motions (while peer

agents typically only store the last signature submitted by each

constituent for each given motion). Each signature may refer to

one justification, while one justification can be referred to by

multiple signatures. Each of the aforementioned types of stand-

alone entities: peers, organization, constituent, neighborhood,

witness stance, motion, justification, and signature (aka vote),

has an identifier that can uniquely distinguish it from other

entities, and can be separately exchanged among peers in

atomic (i.e., self-contained) messages. Other entities exist,

such as: news, translation, tester, mirror, plugin data.

A. Data Model

Each self-interested software agent stores the data related

to its own interest into a local database. The agent stores the

received data if it refers to organizations, neighborhoods, con-

stituents and motions of interest. If so configured as default,

received definitions of peers and definitions of organizations

received from non-blocked peers are stored. This gives users

an opportunity to inspect and define their interest about them.

The database schema allows for storing the following types

of items that have a stand-alone semantic and that are digitally

signed, individually, by the entity generating them: peer,

organization, neighborhood, witnessing, motion, justification,

signature. We sometimes refer a signature item as vote to avoid

confusions with the digital signature of generated items.

Each item, is tagged with three user controlled flags:

blocked, broadcastable, interest. These flags

control the communication as described in the next section.

Each received data item is also associated with the arrival time,

which is the date of the latest registered change to the digitally



signed parameters of the item. The signed parameters of each

item contain the creation time, which is the data when the

signature was issued. The creation time is used to compare and

select the newest item among items whose parameters change

over time, such as active constituent, vote, and authoritarian

organization.

For the case where an attacker or mistake leads to two

distinct versions of the same item claiming the same creation

time, the comparison is made on the hash of the data. This is

used to prove that at convergence all participants have coherent

databases.

In this paper we describe how such entities can be ex-

changed between peers on devices traveling in vehicles and

connected via Ad-Hoc wireless connections.

IV. PROTOCOL

Let us now describe the structure of the exchanged mes-

sages. Software agents found on wireless enabled devices

with ad-hoc capabilities are assumed to broadcast messages

continuously (potentially with short pauses).

a) Communication control: The default settings of our

current implementations assume that a self-interested receiver

normally refuses to store items about unknown organizations,

as well as items relating to organizations, constituents, neigh-

borhoods or motions that are specifically blocked by the user.

To refuse items about unknown organizations, newly received

organizations are blocked by default. Organizations where the

user registers are automatically unblocked.

By default, all the stored data about items that are not

blocked is made available for broadcasting, but that behavior

can be manually controlled for each item using a flag called

broadcastable.

For example, if an organization is blocked, then we store

only its parameters but any extra data associated with it (e.g.,

constituents, neighborhoods, motions) are discarded. Similarly

we handle blocked constituents, neighborhoods, or motions.

Messages received can refer to the GID of an unknown

item (constituent, neighborhood, motion, justification). If users

decide to store the item referring to unknown GIDs, then

temporary items are created for each of the unknown GIDs, to

enable their control (blocking, broadcastability). The enabling

of certain temporary items, such as temporary constituents,

open the door for Storage Attacks, namely where attackers

attempt to fill users databases with data that is more difficult

to verify. If temporary data is enabled, then remaining data for

temporary items can be advertised as requested in subsequent

broadcast messages. Various mechanisms (such as references

to source peers) can be used to mitigate these attacks.

Items of particular interest to the user, such as motions, con-

stituents or organizations that the user is particularly involved

with, can be announced as interests in broadcast messages.

This feature can inform cooperating peers, which can thereby

give priority in sending such data back to the user. To enable

this feature, each stored item is associated with the interest

flag that the user can manually set and that the system can use

to generate the corresponding interest information in messages.

b) Messages: Each broadcast message contains a self-

contained information. The two most complex types of mes-

sages are the ones carrying votes and the ones carrying witness

acts (since they include data about many other types of items

but are not included in other types of data).

A message containing a witness act consists of a tuple

〈p, o, cs, Ns, cd, Nd, w〉 describing the definition of the rele-

vant organization o, the definition p of the peer that created

the organization, the definition cs of the constituent making

the witness stance, the definition cd of the constituent for

which the witness stance is made, the definition w of the

witness stance. It also contains the set of definitions of ancestor

neighborhoods Ns of the neighborhood of cs and the set of

definitions of ancestor neighborhoods of the neighborhood of

cd.

A message containing a vote consists of a tuple

〈p, o, c,N,m, j, v〉 describing the definition of the relevant

organization o, the definition p of the peer that created the

organization, the definition c of the voting constituent, the

definition m of the motion, the definition j of the justification

and the definition v of the vote. It also contains the set of

definitions of ancestor neighborhoods N of the neighborhood

of the c.

Each broadcast message is also attaching a set of interest

hints. This set contains some of the GIDs of the organizations,

neighborhoods, constituents and motions that the user has

marked with the interest flag.

Probabilistically, the data concerning the details of the

organization, the peer or the constituent can be dropped from

a vote message or a witness message to reduce some of the

replication, with the risk of rendering some messages useless

(as those messages may be dropped by receivers missing

one of the items required for storing it: its organization,

neighborhood, etc.).

c) Handling: Here we describe reference procedures for

handling received messages. In Algorithm 1 we introduce the

method used by a software agent to manage the knowledge

it has about interests of peers found in passing-by cars. An

interest consists of the GID of an organization, neighborhood,

constituent, or motion. Whenever indication of a particular

interest is received from a peer, it is stored locally, tagged

with the GID of the sending peer and an expiration time.

The expiration time is computed based on the arrival time of

the message containing this interest, the available information

about the relative speed between that peer and the vehicle of

the users, and an estimation of the maximal distance within

which the two devices can communicate.

When the devices are not equipped with GPS (as in the

experiments reported here), then the computation simply re-

turns the estimated expiration time as the sum between the

current time and a constant life_span (Line 1.3). In our

experiments this constant is set to 1 second. Note that each

time that a message is received from the same peer, the

expiration time of its interests is updated, thereby accounting

for devices that are reachable for a longer period of time than

the selected life_span constant.



A variable min_interest stores the current time, up-

dated on the clock (Line 1.5) and any interests with higher

expiration time is removed at that moment (Line 1.6).

Algorithm 1: Management of interest without GPS

1.1 procedure handle interests (Peer, interests) do

1.2 for i in interests do

1.3 set interest-value(i, min interest+life span);

1.4 procedure on clock() do

1.5 min interest++;

1.6 drop expired interests;

Next we describe the algorithms used to handle received

witness and vote messages (Algorithms 2 and 3). Similar and

simpler algorithms are used to handle messages carrying other

types of items.

Algorithm 2: Receiving and Handling a Witness

2.1 On witness(Peer, interests, (p, o, cs, Ns, cd, Nd, w))
handle interests(Peer, interests);

2.2 if !verifySignature(p) then return store-or-update(p);

2.3 if (blocked(p)) then return

2.4 if !verifySignature(o) then return store-or-update(o);

2.5 if (blocked(o)) then return

2.6 for n in Ns do

2.7 if verifySignature(n) then

2.8 store-or-update(n);

2.9 if (blocked(n)) then return

2.10 for n in Nd do

2.11 if verifySignature(n) then store-or-update(n)

2.12 if !verifySignature(cs) then return store-or-update(cs);

2.13 if (blocked(cs)) then return

2.14 if !verifySignature(cd) then return store-or-update(cd);

2.15 if verifySignature(w) then store-or-update(w)

The algorithms for handling messages employ the pro-

cedure handle_interests() defined in Algorithm 1,

and a procedure verifySignature(item) that checks

the signature of the item passed in parameter, quitting on

failure. The procedure store-or-update(item) verifies

whether a previous version of the item is already available and

whether its creation date is newer than the received item. On

failure it store the item (if no other version was found), or

updates it (if a version with earlier date or identical date but

lexicographically smaller digest value is found);

Before handling any item, first the software agent checks

whether the item is not blocked by the user (i.e., by being

generated by a blocked peer, or constituent, or for a blocked

organization, neighborhood, motion, justification, or choice for

the motion).

The procedures to handle messages start by handling first

the more basic types of items before handling the ones that

Algorithm 3: Receiving and Handling a Vote

3.1 On vote(Peer, interests, (p, o, c,N,m, j, v))
handle interests(Peer, interests);

3.2 if !verifySignature(p) then return store-or-update(p);

3.3 if (blocked(p)) then return

3.4 if !verifySignature(o) then return store-or-update(o);

3.5 if (blocked(o)) then return

3.6 for n ∈ N do

3.7 if verifySignature(n) then

3.8 store-or-update(n);

3.9 if (blocked(n)) then return

3.10 if !verifySignature(c) then return store-or-update(c);

3.11 if (blocked(c)) then return

3.12 if !verifySignature(m) then return store-or-update(m);

3.13 if (blocked(m)) then return

3.14 if !verifySignature(j) then return store-or-update(j);

3.15 if verifySignature(v) then store-or-update(v)

are based on them. The typical order is: peer, organization,

constituent, neighborhood, motion, justification, vote. Note

that there can be a circular relation between constituent and

neighborhood since a constituent may reside in a neighborhood

and the neighborhood is supported/created by a constituent

(potentially the same). In this case the two are stored only

either if they are simultaneously available, or if storage of

temporary items is enabled (as discussed earlier).

V. HEURISTICS

To model incentives and their relation with the behavior of

the users, we formalize the utility of a message. In practice

each item has its own utility for a given user, and different

utility for different users.

Definition 3 (Utility of messages): Each user draws a certain

utility for learning an item, depending on that item. A user also

gains a given utility for disseminating an item.

In the following we assume that the utility of storing items

is flat for the items in an organization, while the utility of

forwarding an item depends of its similarity with the items

generated by the user (and therefore describing her values).

Uninformed heuristics: Heuristics for broadcasting correspond

to an assumption that hints received from peers are not trusted,

and transmission is made based on an a priori model of

frequency for encountering vehicles with peers traveling in

the two directions. With uninformed heuristics, all peers are

assumed to be interested in all items that the current peer

has, and to be able to store all messages that they receive

from this user. Such a model assumes that a number of A

reachable vehicles travel in the same direction with a relative

speed vA while a number of B reachable vehicles travel at

each moment in opposite direction with relative speed vB . The

local computer is able to load new items from a local database

with an efficiency of M messages a second. Messages (each

with utility uM ) can be emitted at a speed of vM messages



a second from a sending queue of size Bs, the buffer of the

queue being reloaded from database at a period of time:

Preload ≥
Bs

min(vM ,M)
. (1)

If D is the double of the communication range of the device

(distance in the system of reference linked to one vehicle

on which it can communicate with a second vehicle) then

TA = D

vA
is the duration for which a car traveling in the same

direction is reachable, and TB = D

vB
is the similar duration

for the opposite direction. We also assume that the queues of

preloaded messages used for sending data are long enough to

provide data for the whole time TB, i.e.,

Bs

vM
≥

D

vB
. (2)

Then, the utility of sending data during time TA is:

UTA
= uM ·A·Bs·⌈

TA

Preload

⌉+ uM ·B·
TA

TB

·TB·vM

where the first part of the right hand expression refers to the

utility obtained by sending items to cars in the same direction

(cars that each receive the content of ⌈ TA

Preload

⌉ full buffers

of messages, each of size Bs). Note that in this equation we

assume that the reminder of Preload : TA is larger than Bs

vM
.

The second part of the expression is the utility from the items

transmitted to cars driving in opposite direction. There are TA

TB

road segments of size D with such cars that travel in opposite

direction, each holding B cars, and each of these cars receives

vM ·TB messages.

If one sets Preload to the closest (smaller) divisor of TA,

then the utility rate per unit of time that the agent gets for

broadcasting from a given queue of messages in this condition

is approximated to (obtained by dividing UTA
by TA):

∂U

∂t
= uM

(

A·Bs

Preload

+B·vM

)

(3)

The current peer has a number NP of personal items, a

number NS of similar items, a number NO of other items and a

number NF of opposing opinions of positive utility (opposing

opinions of negative utility are not sent). An assumption is

that NP ≪ NO. Based on this model we search for the best

policy in terms of number of times that items with high utility

should be broadcast before broadcasting some items with a

lower utility.

Informed heuristics: Assume that peers announce their inter-

ests as sets of GIDs for organizations, constituents, neighbor-

hoods, motions or justifications for which they want to get

related items, and that they drop any other messages. Senders

thereby build special queues with data of interest to these

peers and give these messages priority over other items. In

our experiments, agents broadcast only data relevant to current

peers and found in current queues.

Each message loaded in sending queues is tagged with

information about contained organizations, constituents, neigh-

borhoods, motions, justification (and potentially vote choice),

to help efficiently retrieve those of interest to current peers.

While our experiments were run with laptops that were not

provided with GPS sensors, such sensors can provide extra

information as to when the peers travel in the same direction or

in opposite direction, and for how long the peer be reachable.

Fig. 2. Architecture of the Peer

Our utility model can be combined with the statistical model

of the efficiency of communication described at uninformed

heuristics (as shown in the Experiments section), to decide the

policy of transmission for each type of data (what percentage

of each type of data should be sent at each moment of time).

One can select the ratio of data of each type such as to

maximize the expected utility of the sender. Rather than using

the model resulting in Equation 3, one can introduce utilities

in decisions based on the statistical models in [5].

VI. AGENT ARCHITECTURE DETAILS

We performed experiments with our implementation of

a VANET platform, based on agents running on laptops

that are located in moving vehicles. We allocate an Ad-

Hoc wireless cell based on the open (unencrypted) SSID

DirectDemocracy at Frequency 2.462 GHz resulting in the

cell 46:32:D1:F2:88:67. The architecture of the server is

depicted in Figure 2. Ideally the broadcast can be performed

at link protocol level, network level 2 (Ethernet). In fact, the

protocol can also run over other media, such as Bluetooth.

In experiments reported here, each agent starts a server

bound to local port UDP/54321 and accepting broadcast

messaged. Our experiments were done with the Network ID

of the network card set to “10/8”. The local Host ID part of

the IP is set to a random value. If the random part of the IP

is considered insufficient to avoid IP collisions between peers,

an additional random identifier is also generated to uniquely

detect the agent, and messages tagged with this identifier can

be discarded assuming that their source is the agent of the

server. When the device has more than one wireless card, the

agent can be configured to only use a subset of them for this

protocol. Each agent has a client that broadcasts messages on

the network interfaces allocated to our protocol, sending them

to the address “10.255.255.255:54321” from a set of queues

prepared with preloaded messages. A small pause (e.g. 5 ms)

can be introduced between the transmission of packets, as this



was found to slightly improve transmission rates as well as

CPU load (see the section Experiments).

Each of the queues with preloaded messages has a special

policy as to the type of contained items (personal, similar

to personal, recent, random, round-robin, requested) and its

mechanisms for loading and reloading. The broadcast client

picks items from the various existing queues based on a

probability distribution that can be specified by the user.

We experiment with various heuristics for specifying these

probabilities. To maximize its dissemination efficiency, the

probability of sending items of interest must grow with the

number of receivers having expressed that interest (potentially

serving only the items of interest to most current peers).

Before broadcasting a message, the client prepends to it a

header describing: the interests of the current user, its random

identifier, and available GPS data about current location and

velocity. Potentially this header can include extra information

about the content of the body of the message (such as GIDs

of organizations, motions, etc) to help receivers decide faster

on storing or dropping messages that are not of interest.

The existence of peers that drop messages not tagged with

interest could push self-interested agents to provide this extra

information (which otherwise reduces their bandwidth).

The servers may not be fast enough in handling and storing

all the data they can receive in real time and therefore

incoming data is stored in buffers. Our server has a receiving

buffer of size Br set to 20000 messages (average message

size being measured to be 5kB in the current experiments).

The server extracts the interests advertised by peers from the

header of received messages and enqueues all the message

bodies deemed new based on their size (or hash). A separate

storing thread is used to dequeue received messages and to

store their data based on the aforementioned algorithms.

If the receiving buffer is full, until the internal storing thread

frees some entries, the server drops new incoming messages

except if they are tagged in their header with information

specifying that they contain items of interest to the receiver

(in which case these messages are used to replace untagged

messages from the buffer).

VII. EXPERIMENTS

Our implementation can run on Linux, Windows, and Ma-

cOS. The network configuration is automated on Linux and

Windows and is performed manually on MacOS.

For the reported measurements, the databases of the agents

were filled with 60000 votes for 10 organizations (O1 to O10)

and 3816 motions, 9094 justifications, 629 constituents, and

4486 witness stances. These numbers were chosen based on

our estimation of the ratio of the various types of items in

a deployed system. To generate these items we implement

a simulator that allocates each new generated vote proba-

bilistically. First we manually generated a certain number of

organizations. Then, each generated vote is allocated to a new

organization with probability 10−5, otherwise it is uniformly

assigned to one of the existing organizations. Similarly, each

vote is allocated with probability 10−2 to a new constituent.
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Fig. 3. Experiments measuring the speed of messages transmitted (vM ).
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The size of the text of each artificially generated motion

(petition) is 1000 characters and the size of each justification

is 300 characters (disseminating votes and witness stances).

We performed experiments with transitive dissemination

across several vehicles, validating the fact that data can be

disseminated between cars that do not have direct contact. First

we report numerical results about the measured characteristics

of the communication between immediately connected nodes.

We measure the speed of communication vM between two

nodes in ideal conditions (when the nodes are placed far

from other wireless devices). Communication is measured

between an HP G62-111EE with 3GB RAM and an Acer

Aspire P5WE0 with 4GB RAM running Ubuntu 12.04 on

an I3 processor. Preliminary measurements were made with

different pause duration (0, 3, 5, 10, 15, 250, 500, 750, 1000

ms) between transmitted packets. This pause impacts on the

number of packet collisions, and therefore on the transmission

efficiency. More extensive measurements were performed on

the values that showed promise (3, 5, 10 ms). Measurements

were taken over 25 minutes of communication for each pause

duration and for each of the following two cases: when both

devices transmit data. and when only one device transmits

data. The results, averaged over a sliding window of size 30

seconds, are displayed in Figure 3. The maximum value of

26.7 messages per second for one direction broadcasting at 5

ms pause duration is used as reference.

roads speed TB M = vM ·TB

Parking lot – crowded 15 15 158

Street – open area 40 4.3 50

Street – school area 35 2.6 15

Highway – free 70 6.3 91

Highway – trucks 70 4.5 34

TABLE I
AVERAGE TIME OF ENCOUNTER (SECONDS) AND NUMBER OF EXCHANGED

MESSAGES FOR VARIOUS VEHICLE SPEEDS (MPH) AND ENVIRONMENTS,
WITH COMMUNICATION IN ONE DIRECTION (5 MS PAUSES)

We measure an estimate of the distance of communication

D and of the time TB during which two devices are able to
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Fig. 4. Received items for cars A and B in the chain and triangle topologies.
The ratio votes to witness stances is approx 2:1.

communicate. These measurements are performed with laptops

found in two vehicles moving in opposite direction in several

scenarios: in a parking lot (crowded) at 15 mph, on a city

street in an open area (10 wireless networks) with median

strip at 40 mph, on a city street close to a school (35 wireless

networks) with median strip at 35 mph, on an empty highway

with median strip at 70 mph, and on the same highway (with

trucks separating the communicating cars). The measurement

in the parking lot and on the city street were averaged over 10

encounters. The numbers of messages successfully transmitted

in the three scenarios are shown in Table I, as well as the

duration TB estimated from logs. Notice that the speed of

communication between devices is strongly influenced by the

number of wireless networks in that area.

To have all messages available for a peer encountered while

driving in opposite direction in a crowded parking lot, the

sender needs queues of size Bs≥
D·vM

vB
, which correspond to

the maximum number of messages M in Table I.

Dissemination over chains of vehicles: To evaluate and confirm

empirically the dissemination between vehicles that do not

meet each other but communicate via other intermediary

vehicles, we run experiments with three cars: A, B, and C.

The car C contains a device with a preloaded database (as

per the previous experiments) while the devices in the other

two cars are initially empty. We evaluate two topologies of

communication patterns between these vehicles: chain and

triangle. For each topology the vehicles have a fix trajectory

that they repeat 20 times, synchronized in such a way that

pairs of vehicles meet at the same location. We evaluate the

impact of the studied heuristics and of the user interests on

the efficiency of dissemination.

The curves in the diagram in Figure 4 show the number

of new data items received and stored in each of the two

cars during 20 rounds of encounters with the chain topology.

We remark that the Car A chain curve shows that its device

receives approximately 60% of what is received by the device
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S

E

S

S

E

E

S

E

S

E

Fig. 5. Trajectories in the triangle topology. Areas of communication for each
meeting point start at the S point and end at the E point.
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Fig. 6. Comparison of efficiency with and without advertisement of interests.

in car B (see Car B chain). It is nevertheless logical to expect

that the ratio would decrease with time and rounds due to the

expected decrease in overlap between messages received by B

from C, and messages sent by B when her database increases.

The usage of queue handled (containing data recently received

from other peers) is meant to mitigate this effect.

A comparison is made with the situation when the three cars

communicate according to a triangular topology (see Figure 5).

We see that the number of messages received by the car B (and

car A) in this topology is approximately 50% more than the

number of messages received by car B in the chain topology.

Impact of Interests on Efficiency: We count the number of

messages of interest to the receiver, successfully transmitted

to a given peer, in scenarios with the studied peer expressing

interests in two organizations, while other peers also express

their interests. The graph in Figure 6 shows the number of

received messages given the number of different interests con-

sidered by the sender. It can be observed that the efficiency for

the receiver decreases with the number of interests submitted

by neighboring peers. The other straight horizontal line in the

graph shows the efficiency of the receiver when no interests

are advertised by anybody and the sender transmits randomly

data from its 10 organizations. Note that the efficiency of the

server is given by the sum of the efficiency of its receivers,

being expected to grow monotonically with the number of

peer vehicles receiving its data. The efficiency of the sender
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in disseminating its data without advertisement of interest is

smaller than with advertisement, except when all the available

data is of equal interest to receivers.

When we use a single sending queue with randomly picked

data or with round-robin transmission, the occurrence of

personally generated items has a negligible probability and

the utility is practically equivalent to sending only messages

of type “other”. Assuming that the transmission of each item

has a utility of 1¢ for the sender and the utility of a personally

generated item is 10¢, the obtained utility per second with

A = 2 vehicles driving in the same direction and B = 2
vehicles traveling in opposite direction on a highway is ≈107 ¢

s

(based on Equation 3). For the case NP = 10, on a highway,

the speed of sending messages with personal items has to be

vP
M

≥ Bs

TB
= 10

3.4
≈ 3. Therefore the speed of sending the other

types of messages (assumed to be all of type “other”) can be

vmax
M

− vP
M

≈ 23.7. The total utility with this configuration is

117 + 95 = 212 ¢
s

(117 ¢
s

for personal messages). This proves

that it is useful to separate messages into queues of specialized

types (gaining 212 ¢
s

rather than 107 ¢
s
).

Empirical Results with Interests: We ran experiments with the

three cars (A, B, and C) where A is only interested in storing

and forwarding the organizations O1 to O7, and B is only

interested in storing and forwarding organizations O4 to O10.

The impact of advertising their interests is shown in Figure 7,

with an improvement of 28%, proportional with the ratio of

interest in the available organizations. It can be seen that,

when devices filter received data based on their interests, car A

eventually receives a lower fraction (36%) of the data received

by B than in the absence of such filtering (54%, see Figure 4).

Advertisement of interests compensates for this difference.

VIII. CONCLUSION

A set of techniques for dissemination of data in delib-

erative petition drives, citizen initiatives, or decentralized

opinion polls via a Vehicular wireless Ad-hoc Network of

self-interested peers is proposed and evaluated. For comparing

heuristics we compute the utility of achieved dissemination

from the perspective of a given sender. The long term goal is

to find the behavior at equilibrium of self-interested senders.

A utility model is discussed where the highest utility is for

items generated by the sender, followed by items with similar

opinion, while the least utility is assigned to items of opposing

opinion (potentially negative utility).

Based on a set of experiments with our VANET imple-

mentation we compute the parameters of a model for the

vehicle to vehicle interaction. Strategies for broadcasting based

on several queues are evaluated as well as percentages of

broadcast time to allocate to different types of data items.

The tested heuristics can be uninformed or informed with data

received from peers such as their interests, identity, position

and relative speed and bearing. Interests of peers are expressed

in terms such as opinion (vote choice), issues (motions), voters

(constituents), or topics (organization).

Separate outgoing queues can be maintained for data of

different types (random, generated by sender, similar with

sender, opposing senders, others). Cars traveling in opposite

direction should get the most valuable data (generated by this

sender). Cars traveling in the same direction and in contact

for a long time should eventually fully synchronize with the

sender on all items with positive utility and of interest to them.
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