
Distributed Simulated Annealing
Muhammad Arshad∗and Marius C. Silaghi

Florida Institute of Technology
{marshad,msilaghi}@cs.fit.edu

Abstract. Distributed Constraint Satisfaction is a framework for modeling and solving
distributed problems. Research on the topic intensified during the last ten years when
mainly systematic techniques were thoroughly explored. A revival of attention for
Distributed Stochastic Algorithms (DSA) was marked by the work of [3, 4, 13, 7, 5].
Remarkably, it was proven that Distributed Stochastic Search is a competitive tech-
nique. Here we review current DSAs and their intrinsic properties. We also describe a
remarkable new algorithm, Distributed Simulated Annealing (DSAN). We show theo-
retically and experimentally how it compares with DSA. Experimental evaluation on
synchronous versions shows that with current heuristics DSAN competes with the pre-
vious winners, DSA-B and DSA-C. Depending on the parameters selected for DSA,
DSAN may offer marginally better quality solutions than DSA-B or DSA-C for hard
and over-constrained problems. For easy problems DSAN may not lock on the solution
and use of termination detection is required.

1 Introduction

Constraint satisfaction has proven to be a successful paradigm for approaching combinatorial
problems like resource allocation, scheduling, or planning in centralized settings. A constraint
satisfaction problem (CSP) is given by:

• a set of variables {x1, x2, ..., xn},

• a set of domains, {D1, D2, ..., Dn}, associated with the variables, and

• a set of constraints, {C1, C2, ..., Ck}, each of them involving a subset of the set of vari-
ables,

The solution to a CSP is an assignment of values from the corresponding domains to each
variable such that the obtained combination is allowed by each constraint. A distributed CSP
(DCSP) arises when variables are distributed among agents so that each variable can only
be assigned values by a single agent [12]. This is the definition exploited in our technique,
even if DSA/DSAN can be easily extended to other frameworks of distributed CSPs, notably
where assignments for each variable can be proposed by several agents [8].

Distributed Constraint Satisfaction can model and solve naturally distributed problems.
Research on DCSPs has accelerated during the last years when complete techniques as well
as techniques based on tight organization were thoroughly explored. Attention was drawn to
Distributed Stochastic Algorithms (DSA) by the work of [3, 4, 13, 7, 5]. Remarkably, it was
∗Undergraduate student at FIT.

2 Muhammad Arshad and Marius C. Silaghi

reported in [14] that Distributed Stochastic Search performs better on coloring graphs com-
pared with Distributed Breakout, previously known as particularly efficient. Five versions of
DSA are compared in [13]: DSA-A, DSA-B, DSA-C, DSA-D, and DSA-E. DSA-B was found
to be the best in this family, for solving certain types of problems like graph-coloring [15]
(but according to a personal communication from its authors, DSA-C is sometimes better).

Here we review existing DSAs and address their well known intrinsic problems: DSA has
no chance to get out of local minima. We also describe solutions and show theoretically how
these solutions can provide a relevant alternative to DSA. Experimental evaluation on syn-
chronous versions shows that with current heuristics only DSAN competes with the previous
winners, DSA-B and DSA-C. DSAN offers marginally better quality solutions than DSA-B
for hard and over-constrained problems. For easy problems DSAN may not reach the solu-
tion if the random walk probability schedule (aka temperature) doesn’t descend to zero, and
if termination is not detected.

The ’anytime’ behavior of DSAN depends on its initial temperature and a fast decreas-
ing schedule was needed to achieve behaviors competitive with good DSA. For very remote
agents, when only the cost of communication matters, DSA-B has a better ’anytime’ behav-
ior than DSAN. The local effort of an agent in DSA-B is higher than in DSAN with a factor
linear in the domain size.

Cycle A1(NY,LA,W) A2(D,LA,P,W) A3(W) A2(LA,W,D)
NY D W LA

1 (∆ = 1 > 0) =>
W,LA(p)NY (1 −
p)

(∆ = 1 > 0) =>
W,LA(p)D(1− p)

(∆ = 0) =>
W

(∆ = 1 > 0) =>
W,D(p)LA(1− p)

NY LA W D
NY LA W D

2 (∆ = 1 > 0) =>
W,LA(p)NY (1 −
p)

(∆ = 1 > 0) =>
D,W (p)LA(1− p)

(∆ = 0) =>
W

(∆ = 1 > 0) =>
LA,W (p)D(1− p)

LA LA W W
LA LA W W

3 (∆ = 1 > 0) =>
W (p)LA(1− p)

(∆ = 1 > 0) =>
W (p)LA(1− p)

(∆ = 0) =>
W

(∆ = 1 > 0) =>
LA(p)W (1− p)

W LA W LA
W LA W LA

4 (∆ = 1 > 0) =>
LA(p)W (1− p)

(∆ = 1 > 0) =>
W (p)LA(1− p)

(∆ = 0) =>
W

(∆ = 1 > 0) =>
W (p)LA(1− p)

W W W W
W W W W

5 (∆ = 0) => W (∆ = 0) => W (∆ = 0) =>
W

(∆ = 0) => W

W W W W

Figure 1: Successful trace of the problem with DSA-B. For each cycle, the first row show the result of the
exchange stage, the second row show the parameters for the (stochastic) decision step, and the third row show
the outcome of the decision i.e. the chosen value.

Distributed Simulated Annealing 3

2 Distributed Stochastic Algorithm

The properties of distributed algorithms that express ideal behaviors are: uniformity, simplic-
ity, robustness, efficiency, and privacy [11]. Distributed stochastic search algorithms (DSA)
offers three of these properties. Uniformity is the property of a distributed algorithm where all
processes have equal priority for every act. This also implies that they do not need identities
to distinguish one another for breaking ties. An uniform algorithm does not need a central
authority and it is simple to launch or to restart [10]. There are very few known uniform algo-
rithms as most algorithms are almost uniform, meaning that all but one of the processes are
identical [2].

Algorithm 1: The algorithm performed by all agents for DSA
procedure DSA do

Randomly choose a value;
while (no termination condition is met) do

if (a new value is assigned) then
send the new value to neighbors;

end
collect neighbors’ new values, if any;
select and assign the next value (See Figure 2)

end
end do.

Second, DSA is a very simple algorithm [13]. The single procedure of DSA is shown in
Algorithm 1. The agents start picking random values for their variables. Then they enter a
loop until the termination condition is met. At the beginning of each cycle, each agent sends
its variable value to its neighboring agents. The value is sent only in the first cycle or if it
was changed at the end of the previous cycle. Simultaneously each agent listens and gets
the changes of the states, i.e. value assignments, of the neighbors. After all exchanges were
made, each agent decides whether to change the current value for its variable. The decision
can be taken either deterministically or stochastically. The values are changed according to a
min-conflict behavior, aiming to reduce the number of constraints that are not satisfied.

The existing versions of DSA are synchronous. This means that the agents start each cycle
in a synchronized way and also take a decision only after making sure that all exchanges of
the current cycle have been terminated, e.g. by an additional synchronization. Note that each
DSA cycle has two stages: value exchange, respectively decisions for changing values. These
synchronizations actually mean that no message sent by an agent in a certain stage of a cycle
reaches another agent in another cycle or even in another stage of the same cycle.

The existing versions of DSA differ in the way an agent decides the next value. The
decision is based on its current state and the values received from the neighboring agents.
The state of an agent is quantified by its current value and by the number of conflicts it
knows between its value and other values. An agent only changes its value if this does not
increase the number of conflicts it knows. If there exists a value that improves or maintains
state quality, the agent may or may not change to the new value. The decision is based on
a stochastic scheme, depending on the chosen strategy. Figure 2 [13] shows the schemes
defining the five existing versions of the DSA algorithm. C stands for conflict, ∆ is the best
possible conflict reduction between two steps, v is the value for which ∆ was obtained. p is
the probability to change the current value. It was noticed that p has a relation to the intensity

4 Muhammad Arshad and Marius C. Silaghi

of the computation and therefore it is called the degree of parallel executions. “-” in the
Figure 2 means that the value is not changed. ∆ > 0 implies that there exists a conflict, since
an improvement is possible.

Here are the differences between the five versions:

A Whenever the current state can be improved, the change is made stochastically. Otherwise
no change is made.

B DSA-B is like DSA-A but agents also change their values if they know conflicts and
changing the values does not increase the number of conflicts.

C DSA-C allows agents to change their value in the same conflict conditions as DSA-B.
Additionally. DSA-C allows the agents to change their value if there is no conflict and
they introduce no conflict by their change.

D DSA-D is a version of DSA-B where the probability to move when ∆ > 0 is 1.

E DSA-E is a version of DSA-C where the probability to move when ∆ > 0 is 1.

Algorithm ∆ > 0 C, ∆ = 0 no C, ∆ = 0
DSA-A v with p - -
DSA-B v with p v with p -
DSA-C v with p v with p v with p
DSA-D v v with p -
DSA-E v v with p v with p

Figure 2: Alternatives of existing DSA differ in their value selection. Here is the exhaustive list of their de-
tails [13].

DSA-B has the best performance on graph-coloring problems [13, 15]. This can be ex-
plained by the fact that agents may change their current state even if it does not bring im-
provements directly. Even if the improvements are not made directly, the change may enable
a neighbor to find a descent out of the local minima. The agents may have been in a global
state where two or more changes were required for an improvement and they do not require
any increase of the conflicts in the intermediary steps. DSA-C tries to extend this behavior
for states with no conflict but no clear advantage was found. DSA-D and DSA-E make an
improvement whenever they can, but this was proven not to be wise: The fact that all agents
make many changes in parallel, activates the conditions foreseen in [2] to lead to long/infinite
loops and used as argument against uniform techniques.

3 Synchronous and asynchronous versions of DSA

As mentioned before, one can easier understand DSA by analyzing it as a synchronous al-
gorithm. Nevertheless, asynchronous versions can be obtained very easily and are robust to
message delays [9]. The Algorithm 2 gives an example where synchronizations are replaced
with a timeout. It is assumed that an additional thread collects incoming messages while the
agent is found in the second stage.

Distributed Simulated Annealing 5

Cycle A1(NY,LA,W) A2(D,LA,P,W) A3(W) A2(LA,W,D)
NY D W LA

1 (∆ = 1 > 0) =>
W,LA(p)NY (1− p)

(∆ = 1 > 0) =>
W,LA(p)D(1− p)

(∆ = 0) => W (∆ = 1 > 0) =>
W,D(p)LA(1− p)

NY LA W D
NY LA W D

2 (∆ = 1 > 0) =>
W,LA(p)NY (1− p)

(∆ = 1 > 0) =>
D,W (p)LA(1− p)

(∆ = 0) => W (∆ = 1 > 0) =>
LA,W (p)D(1− p)

LA LA W LA
LA LA W LA

3 (∆ < 0) => LA (∆ < 0) => LA (∆ = 0) => W (∆ < 0) => LA
LA LA W LA

Figure 3: Less successful trace of the problem with DSA-B. A local minima and deadlock is reached after 2
cycles with an unfortunate chance.

Algorithm 2: An asynchronous version of DSA
procedure DSA do

Randomly choose a value;
while (no termination condition is met) do

if (a new value is assigned) then
send the new value to neighbors;

end
set alarm;
at alarm collect neighbors’ new values

received since the last alarm, if any;
select and assign the next value;

end
end do.

4 Local Minima

This section highlights an issue obvious for all AI researchers but that escapes people from
other areas, mainly due to the fact that it isn’t mentioned in other reports on DSA.

Let us now analyze the following problem with the best of the previous techniques, DSA-
B: Four agents, A1, A2, A3, and A4 want to meet and will choose a city. Each of them has the
constraint of wanting to be with the others: x1 = x2, x1 = x3, x1 = x4, x2 = x3, x2 = x4,
x3 = x4. In fact A1 only evaluates the constraints x1 = x2, x1 = x3, x1 = x4. Evaluating any
of the other constraints could only switch us from the last column in Figure 2, no C, ∆ = 0, to
the previous column: C, ∆ = 0. (Note that this would lead to behaving according to DSA-C
instead of DSA-B.) Similarly, A2 only evaluates: x1 = x2, x2 = x3, x2 = x4. A3 evaluates:
x1 = x3, x2 = x3, x3 = x4. A4 evaluates x1 = x4, x2 = x4, x3 = x4.

Agent A1 can only go to New York (NY), Los Angeles (LA), or Washington DC (W) i.e.
x1 ∈ {NY,LA,W}. Agent A2 can only go to Dallas (D), Los Angeles (LA), Pittsburgh (P),
or Washington DC (W) i.e. x2 ∈ {D,LA, P,W}. Agent A3 can only go to Washington DC
(W) i.e. x3 ∈ {W}. Agent A4 can only go to Los Angeles (LA), Washington DC (W), and
Dallas (D) i.e. x4 ∈ {LA,W,D}.

In Figure 1 is given a successful trace of DSA-B for our problem. As it can be seen, 4
cycles with DSA-B and acceptable outcomes of the random generators used for randomizing

6 Muhammad Arshad and Marius C. Silaghi

the decisions lead to convergence. With this example, it happens that sometimes two distinct
values offer simultaneously the best ∆ > 0. In this case we change the value with probability
p and the next value is chosen with equal probability among those offering the improvement
∆. To distinguish this version of the DSA-B algorithm, we denote it by DSA-B. Similarly
one can get DSA-A, DSA-C, DSA-D, DSA-E.

But let us notice how fragile our success was. In Figure 3 is given a trace where the
outcome of the used random generators in cycle 2 moves us into a bad minima. It is therefore
clear that for many problems, DSA can converge to suboptimal minima with high probability.

5 Improvements to DSA

Algorithm ∆ > 0 C, ∆ = 0 no C, ∆ = 0 C, ∆ < 0
DSA-A1 gv with p1/g, ov with p2/o ov with p2/o ov with p2/o ov with p2/o
DSA-B1 gv with p1/g, ov with p2/o gv with p1/g, ov with p2/o ov with p2/o ov with p2/o
DSA-C1 gv with p1/g, ov with p2/o gv with p1/g, ov with p2/o gv with p1/g, ov

with p2/o
ov with p2/o

DSA-D1 gv gv with p1/g, ov with p2/o ov with p2/o ov with p2/o
DSA-E1 gv gv with p1/g, ov with p2/o gv with p1/g, ov

with p2/o
ov with p2/o

Figure 4: Alternatives of DSA1 algorithms. gv is any of the values resulting in the best ∆. ov is any of the other
values than the current value or an gv. g is the number of gv values and o is the number of ov values. p1 and p2

are two probabilities.

Algorithm ∆ > 0 C, ∆ = 0 no C, ∆ = 0 C, ∆ < 0

DSA-A2 gv with p1/g ov with p2/o ov with p2/o ov with p2/o
DSA-B2 gv with p1/g gv with p1/g, ov with p2/o ov with p2/o ov with p2/o
DSA-C2 gv with p1/g gv with p1/g, ov with p2/o gv with p1/g, ov with p2/o ov with p2/o

Figure 5: Alternatives of DSA2 algorithms. The notation is similar to the one for DSA1 strategies.

DSA1/DSA2 There are two obvious improvements to be brought to the DSA family. The
first is to allow the agents to move up the hill, i.e. to increase the number of conflicts (even
when an improvement exists) with an acceptable low probability. This version is called DSA1.
The strategies for DSA1 are shown in Figure 4. They correspond to the mentioned strate-
gies for DSA, but uphill moves taken with small probability allow agents to get out of local
minima. For example, in the trace of Figure 3 the agent A4 has a chance (p2/2) to change its
proposal back toW and later the trace can develop as in Figure 1. Another alternative, DSA2,
consists of allowing the agent to move towards more conflicts only when ∆≤0 (see Figure 5).
The drawbacks of these versions are obvious for AI researchers: it is always too probable to
jump out of a good solution.

Distributed Simulated Annealing (DSAN) The drawback of both DSA1 and DSA2 is
that the probability p2 has to be chosen very low to avoid that the system leaves too easily the

Distributed Simulated Annealing 7

global optima. But choosing it too low reduces the chance of passing any sufficiently high
barrier towards the global/better optima. This is not a lost war, and a principled solution has
been found much time ago [6, 1]. The solution is to follow the example of physical annealing
by simulating it with the search. Note that Distributed Simulated Annealing (DSAN) is closer
to the real phenomena than the description in [6]. All that has to be changed to DSA is to use
a decreasing schedule of temperatures T = {t1, t2, ...} in each agent and to move in cycle
i to a randomly selected next value with the famous probability e∆/ti when ∆ < 0, or with
probability 1 otherwise. Here ∆ is the improvement that would be brought by the new value
(see Algorithms 3, 4).

In the described experiments we have chosen a schedule of temperatures given by ti =
const/ik, where we used k = 2. In one set of tests we used const = 1000, while in another
we have const = 1. 1000 is also the maximum number of iterations that we run. Following
our experiments we conclude that a sequence of subsequent iterations without uphill moves
(temperature zero) should follow at the end. For const = 1000 this schedule also starts with
a too high temperature which leads to poor ’anytime’ properties, but const = 1 gave results
comparable with DSA-B.

Note that extensive work exists in the field of Simulated Annealing. Still, the only non-
centralized versions that we have found in literature so far were limited to parallelizations
that let several processors pursue the same whole problem with different heuristics (initial
values and formulations, random number generators, seeds, etc.) [1].

Algorithm 3: The algorithm performed by all agents for DSAN
procedure DSAN do

Randomly choose a value;
i←0;
while (no termination condition is met) do

i←i+ 1;
if (a new value is assigned) then

send the new value to neighbors;
end
collect neighbors’ new values, if any;
select randomly a value and adopt it with

probability e∆/ti when ∆≤0,
or with probability 1 otherwise;

end
end do.

6 Experiments

A set of tests has been run where we are comparing DSAN, DSA1, DSA2, and DSA-B
for different values of p, p1, and p2. For DSAN with I = 1000 iterations, one schedule of
temperatures at iteration i was chosen as given by the function ti = I

i2
, and another one by

using ti = 1
i2

.
We have generated randomly binary CSPs with 100 variables and 10 values per domain.

The density arcs was chosen of 30% of the total number of possible arc. The tightness, prob-
ability of a tuple being feasible for an existing arc, was between 10% and 50%. We tested

8 Muhammad Arshad and Marius C. Silaghi

Algorithm 4: An asynchronous version of DSAN
procedure DSAN do

Randomly choose a value;
i←0;
while (no termination condition is met) do

i←i+ 1;
if (a new value is assigned) then

send the new value to neighbors;
end
set alarm;
at alarm collect neighbors’ new values

received since the last alarm, if any;
select randomly a value and adopt it with

probability e∆/ti when ∆≤0,
or with probability 1 otherwise;

end
end do.

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

steps

co
nf

lic
ts dsan

dsab
dsab1
dsab2

Figure 6: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 averaged on 100 problem instances with tightness 20%.

100 problem instances randomly generated for each of the tightness values 10%, 20%, 30%,
40%, 50% (500 randomly generated problem instances).

Each problem was solved with DSAN, DSA-B, DSA-B1, DSA-B2 and the maximum
iterations number was always set to 1000. In the first set of tests, p and p1 were set to 20%
while p2 was set to .5%.

First set of tests Figures 6-9 show for const=1000 that DSA-B, DSA-B1, DSA-B2 prove
a very good anytime behavior descending quickly in about 100 steps almost to their final
solution. DSA-B1 and DSA-B2 have a very irregular curve due to their probability p2 of
jumping out of the best solution and consistently lie significantly higher than the curve of
DSA-B. DSA-B gets trapped into a local minima after 300-500 steps.

DSAN starts much worse than than DSA, mainly also due to its high initial temperature.
It approached DSA only after 100 steps, this is when the temperature is close to 1. However

Distributed Simulated Annealing 9

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900 1000

steps

co
nf

lic
ts dsan

dsab
dsab1
dsab2

Figure 7: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 averaged on 100 problem instances with tightness 30%.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 100 200 300 400 500 600 700 800 900 1000

steps

co
nf

lic
ts dsan

dsab
dsab1
dsab2

Figure 8: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 averaged on 100 problem instances with tightness 40%.

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 100 200 300 400 500 600 700 800 900 1000

steps

co
nf

lic
ts dsan

dsab
dsab1
dsab2

Figure 9: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 averaged on 100 problem instances with tightness 50%.

10 Muhammad Arshad and Marius C. Silaghi

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

steps

co
nf

lic
ts dsan

dsab
dsab1
dsab2

Figure 10: DSAN vs DSA-B vs DSA-B1 vs DSA-B2 averaged on 100 easy problem instances with tightness
10%.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

steps

co
nf

lic
ts 0.5

0.4
0.3
0.2
0.1

Figure 11: DSAN averaged on 100 problem instances for each tightness 10% to 50%.

Distributed Simulated Annealing 11

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 100 200 300 400 500 600 700 800 900

steps

co
nf

lic
ts dsac 50

dsan 1
dsab 50

Figure 12: DSAN vs DSA-B(p=50) vs DSA-C averaged on 100 easy problem instances with tightness 50%.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 100 200 300 400 500 600 700 800 900

steps

co
nf

lic
ts dsac 50

dsan 1
dsab 50

Figure 13: DSAN vs DSA-B(p=50) vs DSA-C averaged on 100 easy problem instances with tightness 40%.

soon after that, at about 200 steps, it reaches better solutions that DSA-B. The improvement
in the solution offered by DSAN vs. the one of DSA-B is visible in hard regions of phase
transition between easy and hard problems, which in our case is at tightness of 20%-30%.
There the improvement is of about 2% less conflicts with DSAN than with DSA-B.

The second set of tests With the lesson from the first set of preliminary tests we run a
second one comparing only DSA-B, DSA-C, and DSAN for temperature schedules 1/i2.
This time we use for DSA-B and DSA-C a degree of parallel execution p = 50%, which
proved to run sensibly better on our problems than the p = 20% used in the first stage.

For this set of 100 tests per type of problem, the ’anytime’ behavior of DSAN is similar
to ones for DSA-B and DSA-C (see Figures 12-14). Nevertheless DSA-B with p = 50%
reached solutions that were sometimes better than the ones of the corresponding DSAN. In
this second preliminary set of tests DSA-C reached the weakest solutions, except at tightness
50%. The differences in the quality of the solution between these three techniques were in
average less than one conflict.

12 Muhammad Arshad and Marius C. Silaghi

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900

steps

co
nf

lic
ts dsac 50

dsan 1
dsab 50

Figure 14: DSAN vs DSA-B(p=50) vs DSA-C averaged on 100 easy problem instances with tightness 30%.

In simulator, DSA-B, DSA-B1, and DSA-B2 are all about an order of magnitude slower
in time than DSAN (10 being the domain size), meaning that in simulator DSAN solved prob-
lems much quicker than DSA-B. This measure has no influence on distributed runs where the
agents are remote and the cost of messages is high compared to local constraint checks.

7 Conclusions

Distributed Stochastic Search Algorithm (DSA) is an important new family of algorithms
that has been quickly imposed due to its simplicity and efficiency. The algorithm is uniform,
i.e. all the agents perform identical functions and there is no need of names to break ties [3,
4, 13, 7, 5]. We discovered that even the best among the versions of DSA has a high risk to
get caught in local minima. Moreover, none of the existing DSA variants have any means or
chance to get out of such minima. We find that versions offering chances to get out of such
minima are possible and we propose a few such variants. The centralized techniques already
classified such techniques as more promising than the strict descent. For example, Simulated
Annealing [6] is so important that it became a field by itself. Distributed Simulated Annealing
may have the same destiny.

References

[1] Emile Aarts and Jan Korst. Simulated Annealing and Bolzmann Machines. John Wiley & Sons, 1989.

[2] Z. Collin, R. Dechter, and S. Katz. Self-stabilizing distributed constraint satisfaction. Chicago Journal of
Theoretical Computer Science, 2000.

[3] M. Fabiunke. Parallel distributed constraint satisfaction. In PDPTA, pages 1585–1591, 1999.

[4] S. Fitzpatrick and L. Meertens. An experimental assessment of stochastic, anytime, descentralized, soft
colourer for sparse graphs. In Symp. on Stohastic Algorithms: Foundations and Applications, pages 49–64,
2001.

[5] X. Jin and J. Liu. Efficiency of emergent constraint satisfaction in small-world and random agent networks.
In IAT, 2003.

Distributed Simulated Annealing 13

[6] S. Kierkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 220:671–
680, 1983.

[7] J. Liu, H. Jing, and Y.Y. Tang. Multi-agent oriented constraint satisfaction. Artificial Intelligence, 136:101–
144, 2002.

[8] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggregations. In Proc. of
AAAI2000, pages 917–922, Austin, August 2000.

[9] M.-C. Silaghi, D. Sam-Haroud, and B.V. Faltings. Consistency maintenance for ABT. In Proc. of
CP’2001, pages 271–285, Paphos,Cyprus, 2001.

[10] G. Tel. Multiagent Systems, A Modern Approach to Distributed AI, chapter Distributed Control Algorithms
for AI, pages 539–580. MIT Press, 1999.

[11] R. Wallace and M.C. Silaghi. Using privacy loss to guide decisions in distributed CSP search. In
FLAIRS’04, 2004.

[12] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for formalizing
distributed problem solving. In ICDCS, pages 614–621, June 1992.

[13] W. Zhang, G. Wang, and L. Wittenburg. Distributed stochastic search for constraint satisfaction and
optimization: Parallelism, phase transitions and performance. In PAS, 2002.

[14] Weixiong Zhang and Lars Wittenburg. Distributed breakout revisited. In Proc. of AAAI’2002, Edmonton,
July 2002.

[15] Weixiong Zhang and Xing Zhao. Distributed breakout vs. distributed stochastic: A comparative evaluation
on scan scheduling. In Distributed Constraint Reasoning, pages 192–201, 2002.

