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Abstract

Privacy has been a major concern for agents in distributed
constraint reasoning. In this work, we approach this issue in
distributed constraint reasoning by letting agents compromise
solution quality for preserving privacy, using utility theory.
We formalize privacy in the context of distributed constraint
reasoning, detail its different aspects, and present model and
solvers, as well as their properties. We then show how dis-
tributed constraint reasoning with privacy requirements can
be modelled as a planning problem, and more specifically as
a stochastic game.

Introduction
In Distributed Constraint Reasoning (DCR), agents have to
find values to a set of shared variables while respecting given
constraints (frequently assumed to have unspecified privacy
implications). To find such assignments, agents exchange
messages until a solution is found or until some agents detect
that there is no solution to the problem. Thus, commonly
agents reveal information during the solution search process,
causing privacy to be a major concern in DCR (Yokoo et al.
1998a).

Here we approach the problem by assuming that privacy
has a utility that can be aggregated with the utility value of
solving the problem. The availability of a value from the do-
main of a variable of the DisCSP in the presence of the con-
straints of an agent, is the kind of information that the agents
want to keep private. The artificial intelligence assumption
is that utility-based agents are able to associate each state
with a utility value (Wooldridge and Jennings 1995). As
such each action is associated with the difference between
initial and final utilities. In our extended algorithms, agents
may stop their participation if the utility of the privacy ex-
pected to be lost overcomes the reward for finding a solution
of the problem. Extensions to basic solvers are investigated
to preserve privacy. Then, we recast the problem as a reiter-
ated stochastic game, and show how approaches from other
fields can be used to let agents preserve privacy in DCR.

Next section discusses previous research concerning pri-
vacy for distributed constraint reasoning. Further we for-
mally define the concepts involved in Utilitarian Distributed

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Constraint Reasoning (UDCR). Next section introduces
some extensions to common DisCSP solvers that let agents
preserve privacy. After a presentation of the properties of
our extensions, we show how UDCR can be modelled as re-
peated stochastic games. Last section concludes this paper.

Background on Privacy
Privacy has been an important aspect for DCR. Privacy is the
concern of agents to not reveal their personal information. In
this work, we define privacy as follows:

Definition 1. Privacy is the utility that agents benefit from
conserving the secrecy of their personal information.

Contrary to the standard rewards in DCR, privacy costs
are proper to each individual agent. Therefore, the compu-
tation is now performed by utility-based and self-interested
agents, whose decisions aim at maximizing a utility func-
tion. The objective is then to define a policy associating
an expected utility maximizing action (communication act
or computation) to each state, where the state includes the
belief about the global state). In existing works, several
approaches have been developed to deal with privacy in
DCR (Greenstadt et al. 2006; Léauté and Faltings 2013).

Privacy Categorization
We choose to deal with privacy by embedding it into agents’
decision-making. Other approaches use various metrics and
frameworks to quantify privacy loss. According to previous
works (Grinshpoun 2012), agents privacy may concern the
four following aspects:

• Domain privacy: Agents want to keep the domain of their
variable private. The common benchmarks and some al-
gorithms assume that all the domains are public, which
leads to a complete loss of domain privacy. In the original
DCR approach, a form of domain privacy is implicit.

• Constraint privacy: Agents want to keep the information
related to their constraints private (Silaghi et al. 2000).
If variables involved in constraints are considered to be-
long to only one agent, we can distinguish the revelation
of information to agents that participate in the constraint
(internal constraint privacy) and the one to other agents
(external constraint privacy).



• Assignment privacy: Agents want to keep the assigned
values to their variables private. The revelation of as-
signed values concerns the assignment of the final solu-
tion, as well as the ones proposed during search (Silaghi
et al. 2005).

• Algorithmic privacy: Even though it is commonly as-
sumed that all agents run the same algorithm during the
solving, agents may modify the value of some parameters
guiding the search process for some personal benefit (e.g.,
the likelihood of updating its value). This can be achieved
by keeping the message structure and contracts of certain
existing solvers to be used as communication protocols
rather than algorithms, as introduced in (Silaghi and Falt-
ings 2002), where protocols obtained in such ways are
compared with respect to the flexibility offered for agents
to hide their secrets.

Our Approach
An agent revealing an assignment to another agent, incurs
a cost. While some previously described frameworks do
model the details of our example, it has until now been an
open question as to how they can be dynamically used by
algorithms in the solution search process. We propose to de-
fine a framework which, while potentially being equivalent
in expressing power to existing DisCSP extensions, would
nevertheless explicitly specify the elements of the corre-
sponding family of planning problems. We introduce the
Utilitarian Distributed Constraint Reasoning (UDCR). Un-
like previous DCR frameworks, besides constraint satisfac-
tion, we are also interested in the solution process. A policy
is a function that associates each state of an agent with an
action that it should perform (Russell and Norvig 2010).

We define an agreement as a set of assignments for all
the variables with values from their domain, such that all the
constraints are satisfied.
Definition 2. A UDisCSP is formally defined as a tuple
〈A, V,D,C, U,R〉 where, A,V,D,C are standard DisCSP pa-
rameters, and U,R are:
• U = {u1,1, ..., un,d} is a matrix of costs where ui,j is the

cost of agent Ai for revealing whether j ∈ Di.
• R = 〈r1, ..., rn〉 is a vector of rewards, where ri is the

reward agent Ai receives if an agreement is found.
The state of agent Ai includes the subset of Di that it has
revealed, as well as the achievement of an agreement. The
problem is to define a set of communication actions and a
policy for each agent such that their utility is maximized.
Example 1. Suppose a meeting scheduling problem be-
tween three participants, a professor and two students
(called A1, A2 and A3). They all consider to agree on a
time slot to meet on a given day, having to choose between
8 am, 10 am and 2 pm. Professor A1 is unavailable at 2 pm,
Student A2 is unavailable at 10 am, and Student A3 is un-
available at 8 am.

There can exist various reasons for privacy. For example,
A2 does not want to reveal the fact that it is busy at 10 am.
The value that A2 associates with not revealing the 10 am
unavailability is the salary from a second job ($ 2,000). The

utility of finding an agreement is for each student the stipend
for their studies ($5,000). For A1, the utility is a fraction
of the value of its project ($4,000). This is an example of
privacy for absent values or constraint tuples. Further A3

had recently boasted to A2 that at 8 am it interviews for a
job, and it would rather pay $1,000 than to reveal that it
is not. This is an example of privacy for feasible values of
constraint tuples.

The DisCSP is extended to UDisCSP by specifying the
additional parameters U,R:
A = {A1, A2, A3}
V = {x1, x2, x3}
D = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
C = {x1 = x2 = x3, x1 6= 3, x2 6= 2, x3 6= 1}
U = {u1,1 = 1, u1,2 = 2, u1,3 = 4,

u2,1 = 1, u2,2 = 2, u2,3 = 4,
u3,1 = 1, u3,2 = 2, u3,3 = 4}.

R = 〈5, 4, 4〉.

Illustration on Standard Solvers
Now we discuss how the basic ABT and SyncBT algorithms
are adjusted to UDCR (Yokoo et al. 1992; 1998b; Zivan and
Meisels 2003). The state of an agent includes the agent
view. After each state change, each agent computes the
estimated utility of the state reached by each possible action,
and selects randomly one of the actions leading to the state
with maximal expected utility.

In our algorithms, an information used by agents in their
estimation of expected utilities is the risk of one of their as-
signments being rejected. This risk can be re-evaluated at
any moment based on data recorded during previous runs
on problems of similar parameters (e.g, problem density). It
calculates the risk for a solution to not lead to the termina-
tion of the algorithm, called agreementProb.

When ok? messages are sent, the agent has the choice
of which assignment to propose. When a nogood message
is scheduled to be sent, agents also have choices of how to
express them. Before each ok? or nogood message, the
agents check which available action leads to the highest ex-
pected utility. If the highest expected utility is lower than the
current one, the agent announces failure. The result is used
to decide the assignment, nogood, or failure to perform.

To calculate the estimated utility of pursuing an agree-
ment (revealing an alternative) assignment, the agent con-
siders all different possible scenarios of the subsets of values
that might have to be revealed in the future based on possi-
ble rejections received, together with their probability (see
Algorithm 1). The algorithm assumes as parameters: (i) the
computed agreementProb, (ii) the possible values D, and,
(iii) the probability of having to select from D. The algo-
rithm then recursively calculates the utility of the next pos-
sible states, and whether the revelation of the current value
v leads to the termination of the algorithm, values stored in
variables costRound and costNonTerminal. The algo-
rithm returns the estimated cost of privacy loss for the future
possible states currently, called estimatedCost. Solving
this problem with ABTU is depicted in Figure 1, respec-
tively.



Algorithm 1: estimateCostDisCSP
Input: agreementProb, D ′

self , probD
Output: estimatedCost
valueId = j | (Dself [j] = D ′

self [1]);
if (|D ′

self | = 1) then
return (

∑j=valueId
j=1 ud(self,j)) ×probD;

else
v ← D ′

self [1] ;
costRound← estimateCostDisCSP

(agreementProb, {v},
agreementProb× probD);
costTemp← estimateCostDisCSP
(agreementProb, D ′

self \ {v},
(1− agreementProb) × probD);
estimatedCost← costRound+ costTemp;
return estimatedCost;

Example 2. Continuing with Example 1 (whose a possi-
ble trace is illustrated by Figure 1), at the beginning of the
solving, Agent A1 has to decide for a first action to per-
form. We suppose the agreementProb learned from pre-
vious solvings is 0.5. To decide whether it should propose
an available value or not, it calculates the corresponding
estimatedCost by calling Algorithm 1 with parameters:
the learned agreementProb = 0.5, the set of possible so-
lutions (D ′

1 = {1, 2, 3}) and probD = 1.
For each possible value, this algorithm recursively sums

the cost for the two scenarios corresponding to whether the
action leads immediately to termination, or not. Given pri-
vacy costs, the availability of three possible subsets of D ′

1
may be revealed in this problem: {1}, {1, 2}, and {1, 2, 3}.
Each set of size S consists of S first elements of the list so-
lution based on this initial order.

The estimatedCost returned is the sum of the costs for
all possible sets, weighted by the probability of their feasibil-
ity being revealed if an agreement is pursued. At the function
call: costRound = ud(1,1) × 0.5 = 1 × 0.5 = 0.5. At the
next recursion: costRound = (ud(1,1) + ud(1,2))× 0.25 =
(1+ 2)× 0.25 = 0.75. At the last recursion: costRound =
(ud(1,1) + ud(1,2) + ud(1,3))× 0.25 = (1+ 2+ 4)× 0.25 =
1.75. The algorithm returns the sum of these three values:
estimatedCost= 0.5 + 0.75 + 1.75 = 3.
The expected utility of pursuing a solution being positive
(reward−estimatedCost= 4 − 3 = 1), the first value is
proposed.

Other works evaluate this utilitarian approach on state of
the art problems and compared obtained privacy loss with
the one occurring during standard DisCSP solving (Savaux
et al. 2016; Mandiau et al. 2014). Next section present
properties of UDCR.

Utilitarian Approach Properties
Generalities
Proposition 1. UDCR is sound, terminates, is correct.

Professor A1 Student A2 Student A3

M1(OK?(x1 = 1))
M2(OK?(x2 = 1))

M3(OK?(x1 = 1))

M4(BT (x2 = 1))
M5(BT (x1 = 1))

M6(OK?(x2 = 3))
M7(OK?(x1 = 2))

M8(OK?(x1 = 2))

M9(BT (x1 = 2))

Figure 1: Interactions between agents during ABT

Proof. Note that UDCR guarantees soundness, termination,
and correction on condition that the DCR solver used does
as well.

• UDCR is sound, as any solution to a problem with privacy
requirements it computes is also a solution to the same
problem modelled using standard DCR models.

• Moreover, UDCR guarantees the termination of the solv-
ing, like standard DCR. Any detection of unsolvability in
DCR leading to termination is also detected by UDCR.

• Finally, UDCR is correct, as we can show that each solu-
tion to UDCR is also a DCR solution. More specifically,
proposed extensions do not modify the generation of a so-
lution.

Proposition 2. UDCR does not guarantee completion.

Proof. As privacy requirements modify the nature of the
problem, some of the solutions that can be found with DCR
may not be found with UDCR. Note that some DCR solvers
do not guarantee completion as well. Still, with certain pa-
rameters (all privacy costs being null), UDCR solving will
be similar to DCR one, and completion will be guaran-
teed.

Complexity
Proposition 3. Compared to DisCSP solving, UDisCSP ex-
tensions increase computation of a time linear with domain
size.

Proof. Agents compute estimated utilities by building a bi-
nary tree corresponding to the succession of solution pro-
posal, with the two different outcomes (solution acceptance
or rejection). DCR are already NP-hard problems, and
UDCR are therefore NP-hard also.

Proposition 4. UDCR increase space complexity with a cost
linear with standard DCR data size.

Proof. Agents have to store the costs of privacy for revealing
the different information of their local problem, and keep
track of the already proposed solutions. More specifically,
for a problem with n variables, d values per domain, and



c constraints, each agent has to store (2d + c) values for
revealing domain values , assignments and constraints.

Proposition 5. In the worst case, the number of messages
exchanged between agents during UDCR solving cannot ex-
ceed that of DCR solving.

Proof. If privacy requirements are too constraining, agents
do not investigate other solutions and do not exchange mes-
sages with each other. The number of exchanged messages
may be zero. Agents then focus on solving their local prob-
lem, which is relevant with multi-variable problems (i.e.,,
timetabling problems). On the opposite in worst case, pri-
vacy requirements are insignificant compared to standard
DisCSP solving. In this case, UDCR solving then requires
an equivalent number of exchanged messages as does DCR
solving .

Privacy Properties
Proposition 6. UDCR guarantees a correct privacy mea-
sure.

Proof. UDCR guarantees to keep track and to measure all
revelation of information. UDCR assigns a cost to each rev-
elation of information, as defined by the content of the com-
munication protocols defined by the solvers. Also, UDCR
keeps track of all communication and measures the corre-
sponding privacy loss. In UDCR, agents only perceive infor-
mation through communication with each other. Therefore,
privacy loss measurement is correct, and no privacy loss can
occur without being measured.

Proposition 7. UDCR preserves data (domain, constraint,
assignment) privacy to the same extent as DCR does.

Proof. In standard DisCSP as well as in UDCR, data pri-
vacy is degraded each time a solution is proposed. How-
ever, UDCR does not degrade domain privacy more than
DisCSP does. Indeed, privacy requirements do not mod-
ify constraints between variables, nor the domains of vari-
ables.

Proposition 8. UDCR preserves algorithmic privacy for
different agents.

Proof. Agents do not share with each other any information
about their utility function used to define which decision
to take at each step, as well as the resulting valuation for
each action. Moreover, information observed and recorded
used to guide search are kept private. Thus we conclude that
UDCR preserves algorithmic privacy.

Stochastic Game Modelling
Earlier works already proposed to recast UDCR with privacy
requirements as Partially Observable Markov Decision Pro-
cesses (POMDPs) (Savaux et al. 2016). Hybrid approaches
using both DCOP and Dec-POMDP have also been investi-
gated to deal with multi-agent teamwork (Zhang and Lesser
2011). As Partially Observable Stochastic Games (POSG)
can be seen as generalizations of POMDPs, we propose in
this section to recast UDCR as POSG. Indeed, we can note

CSP

Cost Functions

Revealed Information

Utilities

Rewards

Communication Actions

Agreement Probabilities

States

Rewards

Actions

Transition Functions

UDCR POSG

Figure 2: Relation between UDCR and POSG elements

that commmunication protocols in UDCR can be seen as
the cooperating action in game theory, while refusing to
communicate in order to preserve privacy can be seen as
game theory deceiving actions. Relation between UDCR
and PSOG elements is depicted in Figure 2, for each agent,
where CSP refers to basic parameters of DCR, i.e., variables,
domains, and constraints.

Then, during UDCR solving, each solution proposal can
be interpreted as a game, when proposing a solution incurs
privacy loss, and may imply a reward if the agent receiving
the proposal accepts to communicate and accepts the solu-
tion. Complete UDCR solving can be therefore recast as a
reiterated stochastic game.

Example 3. Suppose a Distributed Meeting Scheduling
problem with two participants, Alice and Bob, who have to
choose a location where to meet among two possibilities,
London and Madrid. We refer to Alice and Bob as agents
A and B, respectively. We refer to the locations London and
Madrid as their identifier 1 and 2, respectively. Note rx,y ,
the reward for agent x to attend the meeting at location y.
Note also that px,y is the privacy loss for agent x to propose
location y. rx,y and px,y are dictated by the problem. t, the
probability for a solution proposal to be accepted. By de-
fault, t = 0.5. Ux is the utility for agent x after the first step.
U ′
x is the utility for agent x after the second step. MUx is

the marginal utility for agent x to perform the considered
action.

At the first step, suppose A chooses solution 2, as this
solutions maximizes its expected marginal utility (EMU).
A gets the reward r, weighted by the probability for the
solution to be accepted t, diminished by the cost for
revealing information p. Indeed:{

EMUA,2 = t× rA,2 − pA,2, EMUA,1 = t× rA,1 − pA,1

EMUA,2 > EMUA,1

MUA = −pA,2

Similarly, B chooses solution 1, as:
EMUB,1 > EMUB,2. MUB = −pB,1.
The reached state is {A = 2, B = 1}. However, agents
have proposed different solutions and have not reached an
agreement. Therefore, they have revealed information but
have not gained any reward. Their utilities are:



{
U ′
A = −pA,2

U ′
B = −pB,1

At the second step, agents have to decide which action to
make. Each one can participate and can change their value,
or not participate (deceive) and keep their current value. No
matter its action, an agent does not know beforehand what
action the other agent will make. Four scenarios are then
possible:

• 〈deceive, deceive〉: no agent changes its value

• 〈participate, deceive〉: A changes its value

• 〈deceive, participate〉: B changes its value

• 〈participate, participate〉: A and B change their value

Let us study them in more details. EMUX,Y represents
the estimated marginal utility Agent X gets from doing ac-
tion Y , where Y can be null when no action is done.

deceive, deceive: no more action is performed. Therefore
there is no more reward or privacy loss for any agent. How-
ever, an agent does not know the behavior of the other, so a
reward may be expected.{

EMUA,null = t× rA,2, EMUB,null = t× rB,1

MUA = 0 (a),MUB = 0 (b)
U ′
A = MUA − pA,2, U

′
B = MUB − pB,1

participate, deceive: A changes its value for the one pro-
posed by B. Both agents get the corresponding reward but A
has to reveal a second solution. Since B proposed Solution
1, reward for revealing the solution 1 is guaranteed for A.{

EMUA,1 = t× rA,1 − pA,1, EMUB,null = t× rB,1

MUA = rA,1 − pA,1 (c),MUB = rB,1 (d)
U ′
A = rA,1 − (pA,1 + pA,2), U

′
B = rB,1 − pB,1

deceive, participate: B changes its value for the one pro-
posed by A. Both agents get the corresponding reward, but B
has to reveal a second solution. Since A proposed Solution
2, reward for revealing the solution 2 is guaranteed for B.{

EMUA,null = t× rA,2, EMUB,2 = t× rB,2 − pB,2

MUA = rA,2 (e),MUB = rB,2 − pB,2 (f)
U ′
A = rA,2 − pA,2, U

′
B = rB,2 − (pB,1 + pB,2)

participate, participate: both agents change their values.
Then, the two solutions have been proposed by each agent.
Each one is available as the final one. If Solution 1 is chosen:{

EMUA,1 = t× rA,1 − pA,1, EMUB,1 = t× rB,1 − pB,2

MU ′
A = rA,1 − pA,1 (g),MU ′

B = rB,1 − pB,2 (h)
U ′
A = rA,1 − (pA,1 + pA,2), U

′
B = rB,1 − (pB,1 + pB,2)

If Solution 2 is chosen:{
EMUA,2 = t× rA,2 − pA,1, EMUB,2 = t× rB,2 − pB,2

MU ′
A = rA,2 − pA,1 (i),MU ′

B = rB,2 − pB,2 (j)
U ′
A = rA,2 − (pA,1 + pA,2), U

′
B = rB,2 − (pB,1 + pB,2)

Each agent has two possibilities: participate or deceive.
Participating or deceiving actions correspond to different
communication protocols. The solver used dictates what ac-
tion is expected if they participate. The marginal utilities
of the four possible scenarios are depicted in Table 1 (with
payoffs values). Such a scenario is verified when:

If the solver chooses Solution 2:
(t× rA,2) > t× (rA,1 − pA,1) + (1− t)× rA,1 and
(t× rB,1) > t× (rB,1 − pB,2) + (1− t)× (rB,2 − pB,2)

If the solver chooses Solution 2:
(t× rA,2) > t× (rA,2 − pA,1) + (1− t)× rA,1 and
(t× rB,1) > t× (rB,2 − pB,2) + (1− t)× (rB,2 − pB,2)

Table 1: Payoffs matrix
participate deceive

participate 1:g = rA,1 − pA,1 e = rA,2

h = rB,1 − pB,2 f = rB,2 − pB,2

2:i = rA,2 − pA,1

j = rB,2 − pB,2

deceive c = rA,1 − pA,1 a = 0
d = rB,1 b = 0

In the situations considered here, p is always positive. In-
deed, agents have no interest in revealing their information.
Each revelation has a cost, but cannot give a reward to the
agents. p is also always lower than r. Indeed, only solutions
whose cost of revelation is lower than the reward are consid-
ered. Therefore, UDCOP solving may contain steps that can
be represented as a chicken game (Rapoport and Chammah
1966).

However, when the values v respect the following prop-
erty, it corresponds to a prisoners’ dilemma:

v(d,p) > v(p,p) > v(d,d) > v(p,d) (1)

In the context of a distributed constrained problem, pre-
sented in Table 1, this corresponds to the following equation:
rA,2 > rA,1 − pA,1 > 0 > rA,1 − pA,1 (with Solution 1)
rA,2 > rA,2 − pA,1 > 0 > rA,1 − pA,1 (with Solution 2)

This equation is never verified with the hypothesis requir-
ing p to be lower than r. However, in future works, we can
suppose than revealing information does not only have a cost
(related to privacy loss) but can also have a reward. For ex-
ample, malicious agents can reveal fake information in order
to make other agents waste computation time, or to mislead
them (Marsh 1994). In such cases, p can be greater than
r, and UDCOP solving can be interpreted as a prisoners’
dilemma.

Now that UDCR are recast as POSG, for future works
we plan to use standard game theory strategies, (e.g.,, tit for
tat) in order to let agents decide if they should participate in
the solving of if they should not communicate and preserve
their privacy. Comparing this approach with standard DCR
approaches can lead to interesting results, without having to
develop complex models or solvers.

Conclusions
In this work, we propose an approach to deal with privacy
in Distributed Constraint Reasoning, using utilities, Utili-
tarian Distributed Constraint Reasoning (UDCR). We for-
malized privacy in this context, and present works extending
standard DCR models and solvers considering privacy. We
then proove theretical properties of our approach, and show
that interactions and communication protocols in UDCR
has similarities with game theory concepts. We then recast
UDCR as Partially Observable Stochastic Games and show
how our approach can lead to significant privacy preserva-
tion.
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Mandiau, Toshihiro Matsui, Katsutoshi Hirayama, Makoto
Yokoo, Shakre Elmane, and Marius-Calin Silaghi. Discsps
with privacy recast as planning problems for self-interested
agents. In Web Intelligence (WI), 2016 IEEE/WIC/ACM In-
ternational Conference on, pages 359–366. IEEE, 2016.
Marius-Calin Silaghi and Boi Faltings. A comparison of
distributed constraint satisfaction techniques with respect to
privacy. In Proceedings of the 3rd workshop on distributed
constraints reasoning (AAMAS - DCR-02). Bologna, Italy,
2002.
Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Falt-
ings. Distributed asynchronous search with private con-
straints. In Jeffrey S. Rosenschein Carles Sierra, Maria Gini,
editor, AGENTS 2000 Proceedings of the fourth interna-
tional conference on Autonomous agents, Barcelona, Spain,
June 3-7, 2000, pages 177–178. ACM, 2000.
Marius-Calin Silaghi, Amit Abhyankar, Markus Zanker, and
Roman Barták. Desk-mates (stable matching) with privacy
of preferences, and a new distributed CSP framework. In
Proceedings of the Eighteenth International Florida Artifi-
cial Intelligence Research Society Conference, Clearwater
Beach, Florida, USA, pages 671–677, 2005.
Michael Wooldridge and Nicholas R. Jennings. Agent theo-
ries, architectures, and languages: A survey. 1995.
Makoto Yokoo, Toru Ishida, Edmund H Durfee, and
Kazuhiro Kuwabara. Distributed constraint satisfaction for
formalizing distributed problem solving. In Proceedings

of the 12th IEEE International Conference on Distributed
Computing Systems, June 9-12, 1992, Yokohoma, Japan,
pages 614–621. IEEE, 1992.
Makoto Yokoo, Edmund H Durfee, Toru Ishida, and
Kazuhiro Kuwabara. The distributed constraint satisfaction
problem: Formalization and algorithms. Knowledge and
Data Engineering, IEEE Transactions on, 10(5):673–685,
1998.
Makoto Yokoo, Edmund H Durfee, Toru Ishida, and
Kazuhiro Kuwabara. The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Transactions
on knowledge and data engineering, 10(5):673–685, 1998.
Chongjie Zhang and Victor R. Lesser. Coordinated
multi-agent reinforcement learning in networked distributed
pomdps. In Proceedings of the Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011, 2011.
Roie Zivan and Amnon Meisels. Synchronous vs asyn-
chronous search on discsps. In Proceedings of the First
European Workshop on Multi-Agent Systems (EUMAS), De-
cember 18-19, Oxford, England, 2003.


