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Abstract. Leximin AMODCOP has been proposed as a class of Multiple Objec-
tive Distributed Constraint Optimization Problems, where multiple objectives for
individual agents are optimized based on the leximin operator. This problem also
relates to Asymmetric DCOPs with the criteria of fairness among agents, which is
an important requirement in practical resource allocation tasks. Previous studies
explore only Leximin AMODCOPs on constraint graphs limited to functions with
unary or binary scopes. We address the Leximin AMODCOPs on factor graphs
that directly represent n-ary functions. A dynamic programming method on fac-
tor graphs is investigated as an exact solution method. In addition, for relatively
dense problems, we also investigate several inexact algorithms.

Keywords: distributed constraint optimization, asymmetric, multiple objectives,
leximin, egalitarian

1 Introduction

Multiple Objective Distributed Constraint Optimization Problems (MODCOPs) [1, 7]
have been studied as an extension to DCOPs [8, 12, 2, 16]. With MODCOPs, agents
cooperatively solve multiple objective problems. As a class of MODCOPs, Leximin
AMODCOP, where multiple objectives for individual agents are optimized based on
the leximin operator, has been proposed [15]. This problem also relates to Asymmetric
DCOPs with a criteria of fairness among agents [10, 11, 3]. The fairness among agents
is an important requirement in practical resource allocation tasks [9, 5, 10, 11]. For ex-
ample, in a smart grid, autonomous consumers should share power resource without
unfairness on their preferences considering rlationship among them. Leximin is a well-
known egalitarian social welfare that represents the fairness/unfairness among agents.
Since maximization based on leximin ordering improves equality among agents, the
Leximin AMODCOP is considered as a fundamental class of DCOPs.
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The previous study [15] has proposed the Leximin AMODCOP on constraint graphs
for binary and unary functions. Constraint graphs of Asymmetric DCOPs are repre-
sented as directed arc graphs, where nodes and directed arcs/edges stand for variables
and functions, respectively [3, 9]. Therefore, the direction of edges should be handled
in solution methods. On the other hand, this class of problems is well represented with
factor graphs. In factor graphs, nodes stand for variables or functions while non-directed
edges stand for scopes of functions. Since a function is separately treated as a node in
factor graphs, the function node is owned by an agent, where the function represents
the preferences of the agent. Therefore, there are no directions of edges that represent
ownership of the functions. Namely, asymmetric functions are naturally represented as
factor graphs without any modifications. In addition, factor graphs directly represent
n-ary functions.

In this paper, we evaluate several solution methods to Leximin AMODCOPs on
factor graphs. A dynamic programming method on factor graphs is investigated as an
exact/approximation solution method in conjunction with other inexact algorithms also
applied to the factor graphs.

2 Preliminary

2.1 DCOP

In the following, we present preliminaries of our study. Several definitions and notations
are inherited from the previous literatures [15, 6].

A distributed constraint optimization problem (DCOP) is defined as follows.

Definition 1 (DCOP). A DCOP is defined by (A,X,D, F ), where A is a set of agents,
X is a set of variables, D is a set of domains of variables, and F is a set of objective
functions. The variables and functions are distributed to the agents in A. A variable
xn ∈ X takes values from its domain defined by the discrete finite set Dn ∈ D. A
function fm ∈ F is an objective function defining valuations of a constraint among
several variables. Here fm represents utility values that are maximized. We also call
the utility values of fm, objective values. Xm ⊂ X defines the set of variables that
are included in the scope of fm. Fn ⊂ F similarly defines a set of functions that in-
clude xn in its scope. fm is defined as fm(xm0, · · · , xmk) : Dm0 × · · · × Dmk →
N0, where {xm0, · · · , xmk} = Xm. fm(xm0, · · · , xmk) is also simply denoted by
fm(Xm). The aggregation F (X) of all the objective functions is defined as follows:
F (X) =

∑
m s.t. fm∈F,Xm⊆X fm(Xm). The goal is to find a globally optimal assign-

ment that maximizes the value of F (X).

Each agent locally knows its own variables and related functions. A distributed
optimization algorithm is performed to compute the globally optimal solution.

2.2 Factor Graph, Max-Sum Algorithm and Bounded Max-Sum Algorithm

The factor graph [2] is a representation of DCOPs, and is a bipartite graph consisting
of variable nodes, function nodes and edges. An edge represents a relationship between
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a variable and a function. Figure 1(a) shows a factor graph consisting of three variable
nodes and three function nodes. As shown in the case of a ternary function f2, the factor
graph directly represents n-ary functions.

The Max-Sum algorithm [2] is a method for solving a DCOP by exploiting its factor
graph. Each node of the factor graph corresponds to an ‘agent’ referred to as variable
node or function node. Each such node communicates with neighborhood nodes using
messages to compute globally optimal solutions. A message represents an evaluation
function for a variable. A node computes/sends a message for each variable that cor-
responds to a neighborhood node. Here the nodes of functions in Fn are called the
neighborhood function nodes of variable node xn. Similarly, the nodes of variables in
Xm are called the neighborhood variable nodes of function node fm. A message pay-
load qxn→fm(xn) that is sent from variable node xn to function node fm is represented
as follows.

qxn→fm(xn) =

{
0 if Fn = {fm}∑
fm′∈Fn\{fm}

rfm′→xn(xn) otherwise (1)

A message payload rfm→xn(xn) that is sent from function node fm to variable node
xn is represented as follows.

rfm→xn(xn) = max
ε∈DXm\{xn}

(
fm(ε, xn) +

∑
xn′∈Xm\{xn}

qxn′→fm(ε∥xn′ )

)
(2)

Here maxε∈DXm\{xn} denotes the maximization for all assignments of variables in
Xm \ {xn}. A variable node xn computes a marginal function that is represented as
zn(xn) =

∑
m s.t. fm∈Fn

rfm→xn(xn). Since zn(xn) corresponds to global objective
values for variable xn, the variable node of xn chooses the value of xn that maximizes
zn(xn) as its solution. See [2] for the details of the algorithm.

In the cases where a factor graph contains cycles, the Max-Sum algorithm is an in-
exact method that may not converge, since the computation on different paths cannot be
separated. In Bounded Max-Sum algorithm [13], a cyclic factor graph is approximated
to a maximum spanning tree (MST) using a preprocessing that eliminates the cycles.
For the computation of MST, the impact of edge eij between function fi and variable
xj is evaluated as weight value wij = maxXi\{xj}

(
maxxj fi(Xi)−minxj fi(Xi)

)
.

When a set of variables Xc
i ∈ Xi is eliminated from the scope of function fi, the func-

tion is approximated to f̃i = minXc
i
fi(Xi). Then, the Max-Sum algorithm is applied to

the spanning tree as an exact solution method. In this computation, a couple of bottom-
up and top-down processing steps based on a rooted tree are performed similarly to
DPOP [12].

2.3 Multiple Objective DCOP for Preferences of Agents

Multiple Objective DCOPs Multiple objective DCOP [1] (MODCOP) is a general-
ization of the DCOP framework. With MODCOPs, multiple objective functions are
defined over the variables. The objective functions are simultaneously optimized based
on appropriate criteria. The tuple with the values of all the objective functions for a
given assignment is called the objective vector.
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Definition 2 (Objective vector). An objective vector v is defined as [v0, · · · , vK ],
where vj is an objective value. The vector F(X) of objective functions is defined
as [F 0(X0), · · · , FK(XK)] , where Xj is the subset of X on which F j is defined.
F j(Xj) is an objective function for objective j. For assignment A, the vector F(A) of
the functions returns an objective vector [v0, · · · , vK ]. Here vj = F j(Aj).

Since there is a trade-off among objectives, objective vectors are compared based
on Pareto dominance [14, 4]. Multiple objective problems generally have a set of Pareto
optimal solutions that form a Pareto front.

Social welfare With a social welfare that defines an order on objective vectors, tradi-
tional solution methods for single objective problems can be applied to choose a Pareto
optimal solution. There are several criteria of social welfare [14] and scalarization meth-
ods [4]. A traditional social welfare is defined as the summation

∑K
j=0 F

j(Aj) of ob-
jectives. The maximization of this summation ensures Pareto optimality. However, it
does not capture the equality on these objectives. Maximin maximizes the minimum
objective value. While maximin improves the worst case, it is not Pareto optimal. Max-
imin is also improved with summation that breaks ties of maximin ordering. See lit-
eratures [14, 4] for the details of above criteria. The study in [9] addresses a multiple
objective Asymmetric DCOP whose social welfare is based on Theil index. This so-
cial welfare also represents inequality/fairness among agents. However, a local search
algorithm is employed to solve the problem, since the social welfare is non-monotonic.

Another social welfare, called leximin, is defined with a lexicographic order on ob-
jective vectors whose values are sorted in ascending order.

Definition 3 (Sorted vector). A sorted vector based on vector v is the vector, where
all the values of v are sorted in ascending order.

Definition 4 (Leximin). Let v and v′ denote vectors of the same length K + 1. Let
[v0, · · · , vK ] and [v′0, · · · , v′K ] denote sorted vectors of v and v′, respectively. Also,
let ≺leximin denote the relation of the leximin ordering. v ≺leximin v′ if and only if
∃t, ∀t′ < t, vt′ = v′t′ ∧ vt < v′t.

The maximization on the leximin ordering ensures Pareto optimality. The leximin is an
‘egalitarian’ criterion, since it reduces the inequality on objectives.

Leximin Asymmetric MODCOP on preferences of agents Leximin Asymmetric
MODCOP (Leximin AMODCOP) [15] is a class of MODCOP, where each objective
stands for a preference of an agent. This problem also relates to extended Asymmetric
DCOPs with fairness or envy among agents [5, 9–11, 3]. Here each agent individually
has its set of objective functions whose aggregated value represents the preference of
the agent. On the other hand, several agents relate each other, since the subsets of their
variables are contained in the scope of the same function. A Leximin AMODCOP is
defined as follows [15].

Definition 5 (Leximin AMODCOP). A Leximin AMODCOP is defined by
(A,X,D, F ), where A, X and D are similarly defined as for the DCOP in Defi-
nition 1. Agent i ∈ A has its local problem defined on Xi ⊆ X . ∃(i, j) s.t. i ̸=
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Fig. 1. AMODCOP on factor graph

j,Xi ∩ Xj ̸= ∅. F is a set of objective functions fi(Xi) for all i ∈ A. The func-
tion fi(Xi) : Di0 × · · · × Dik → R represents the objective value for agent i based
on the variables in Xi = {xi0 , · · · , xik}. For an assignment A of variables, the global
objective function F(A) is defined as [f0(A0), · · · , f|A|−1(A|A|−1)]. Here Ai denotes
the projection of the assignment A on Xi. The goal is to find the assignment A∗ that
maximizes the global objective function based on the leximin ordering.

In general cases, Leximin AMODCOPs are NP-hard, similar to DCOPs.
The operations in the solution methods for DCOPs are extended for the leximin.

The evaluation values are replaced by the sorted objective vectors, and the comparison
on objective values is extended with the leximin. Also, the addition of objective values
is extended as a concatenation operation of objective values. The ‘addition’ of sorted
vectors is defined as follows [15].

Definition 6 (Addition on vectors). Let v and v′ denote vectors [v0, · · · , vK ] and
[v′0, · · · , v′K′ ]. The addition v ⊕ v′ of the two vectors gives a vector v′′ =
[v′′0 , · · · v′′K+K′+1] where each value in v′′ is a distinct value in v or v′. Namely, v′′

consists of all values in v and v′. As a normalization, the values in v′′ are sorted in
ascending order.

In Bounded Max-Sum algorithm and our proposed method, partial solutions and
related evaluation values are aggregated in a bottom up manner on a tree structure. This
aggregation can be naturally extended for the leximin based on the similar operation
whose correctness has been proven in [15].

Figure 1(a) shows a factor graph of the (Leximin) AMODCOP, where each agent i
has a variable xi and a function fi. Since factor graphs directly represent n-ary func-
tions, any asymmetric problems are well figured using this graph structure. Note that
scope Xi of fi should contain xi. On the other hand, Figure 1(d) shows the constraint
graph of the same problem. It requires directed arcs to represent the ownership of the
functions. Solution methods for such constraint graphs have to handle the direction of
edges. Moreover, a hyper-edge is necessary to represent an n-ray (ternary) function f2.

For cyclic factor graphs, the traditional Max-Sum algorithm is inexact. Namely,
an objective value is redundantly aggregated via different paths [2, 17]. A possible ap-
proach to avoid the redundant aggregation is the computation based on a spanning tree
of the factor graph, similar to the Bounded Max-Sum algorithm [13]. However, this
approximation is not very promising, since it eliminates several relationships between
functions and variables. That may decrease the actual minimum objective value and the
solution quality on leximin ordering.We therefore employ different types of algorithms.
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3 Solution methods for Leximin AMODCOPs on Factor Graphs

As an exact solution method for Leximin AMODCOPs, we introduce a dynamic pro-
gramming algorithm based on pseudo trees of factor graphs. Then, we also introduce
an approximation method and a local search algorithm. Here we assume that there are
communication channels between any pairs of agents.

3.1 Dynamic programming based on pseudo tree

Several solution methods employ pseudo trees [8, 12] to decompose problems on con-
straint graphs. On the other hand, there are a few similar studies for factor graphs [6].
We employ a solution method based on pseudo trees on factor graphs 5.

Pseudo trees on factor graphs A pseudo tree on a factor graph is constructed in a
preprocessing of the main optimization method. Here we employ a DFS tree for a factor
graph. The DFS graph traversal is initiated from a variable node and performed for all
nodes ignoring their types. Edges of the original factor graph are categorized into tree
edges and back edges based on the DFS tree. Figure 1(b) shows a pseudo tree for the
factor graph of Fig. 1(a). Based on the factor graph and DFS tree, several related nodes
are defined for each variable/function node i as follows.

– Nbri: the set of i’s neighborhood nodes.
– Nbrhi/Nbrli: the set of i’s neighborhood nodes in higher/lower depth.
– prnti: the parent node of i.
– Chldi: the set of i’s child nodes.
– Sepi the set of separators: i.e., the variables related both to the subtree rooted at i

and to i’s ancestor nodes.
– Sepi: the set of non-separator variables that i has to consider in addition to the

separators.
– Sephi

j : the set of function nodes that are higher neighborhood nodes of variable
node j. Here j is contained in Sepi.

The separators and non-separators are defined for variable node i as follows.

Sepi =

{
{ } if i is the root node
{i} ∪

∪
j∈Chldi

Sepj otherwise (3)

Sepi =

{
{i} if i is the root node
{ } otherwise (4)

Sephi
i =

{
{ } if i is the root node
Nbrhi otherwise (5)

5 While the previous study employs cross-edge pseudo trees and a search algorithm [6], we
employ DFS trees and dynamic programming methods for the sake of simplicity. The pseudo
trees based on DFS trees have no cross-edges and do not need a dedicated technique in [6].
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Sephi
k =

∪
j∈Chldi

Sephj
k, where k ∈ Sepi ∧ k ̸= i ∧ (i is non-root node). (6)

The set of separators Sepi is empty in the root node, while other nodes aggregate their
own variable and separators of child nodes (Eq. (3)). Only root node i has non-separator
i (Eq. (4)). Non-root nodes set thier own Sephi

i as Nbrhi (Eq. (5)). For other nodes k
in separators Sepi, node i sets Sephi

k aggregating Sephj
k of child nodes j (Eq. (6)).

For function node i, the separators and non-separators are defined as follows.

Sepi =

Nbrhi ∪
∪

j∈Chldi

Sepj

 \ Sepi (7)

Sepi = {l | l ∈ Nbrli, Seph
′i
l = { }} (8)

Seph′i
k =


( ∪

j∈Chldi,k∈Sepj

Sephj
k

)
\ {i} if k ∈ Nbrli∪

j∈Chldi,k∈Sepj

Sephj
k otherwise

(9)

Sephi
k = Seph′i

k , where k ∈ Sepi. (10)

Each node sets separators Sepi aggregating Nbrhi and separators of child nodes. Then,
non-separators Sepi are eliminated from Sepi (Eq. (7)). Here non-separators in Sepi
are the variable nodes whose topmost neighborhood function node is i (Eq. (8) and (9)).
For child nodes j and nodes k in separators Sepj , node i aggregates Sephj

k. Then, i is
eliminated if k is i’s neighborhood variable (Eq. (9)). After Sepi is set, Seph′i

k is also
used to set Sephi

k for k in Sepi (Eq. (10)). In above equations, if function node i is
the highest neighborhood node of variable node k, then k is not included in Sepi. This
computation is performed in a bottom-up manner from leaf nodes to the root node. It is
possible to integrate the computation into the backtracking of the DFS traversal for the
pseudo tree. Figure 1(c) illustrates separators of the pseudo tree shown in Fig. 1(b). For
i = f1, Sepf1 = { }, Sepf1 = {x1} and Sephf1

x1
= { }. For i = x2, Sepx2 = {x2},

Sepx2 = { } and Sephx2
x2

= {f2}. For i = f2, Seph′f2
x2

= { }, Sepf2 = {x2},
Sepf2 = {x0, x1}, Sephf2

x0
= { } and Sephf2

x1
= { }. For i = x1, Sepx1

= {x0, x1},
Sepx1 = { }, Sephx1

x1
= {f0} and Sephx1

x0
= { }. Similar computations are performed

for the other nodes.

Dynamic programming Exploiting the pseudo tree on a factor graph, a dynamic pro-
gramming method consisting of two phases is performed. The computation of the first
phase is represented as follows.

g∗i (Sepi) = maxleximin
Sepi

gi(Sepi ∪ Sepi) (11)

gi(Sepi ∪ Sepi) =


⊕

j∈Chldi

g∗j (Sepj) if i is a variable node

fi(Xi)⊕
⊕

j∈Chldi

g∗j (Sepj) otherwise (12)
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Note that the above expressions include the cases such that Sepi = { } (the root vari-
able node) or Sepi = { } (non-root variable nodes and leaf function nodes). In expres-
sion (12), for each assignment A of Sepi∪Sepi, compatible assignments Ai of Xi and
ASepj of Sepj are aggregated. This computation is performed in a bottom-up manner.
As a result, each node i has its optimal objective vectors g∗i (Sepi) for the assignments
of its separators and the subtree rooted at i.

The computation of the second phase is performed in a top-down manner. The opti-
mal assignment d∗i of the root variable node i, that is also represented as A∗

Sepi
= {d∗i },

is determined so that g∗(A∗
Sepi

) = g(A∗
Sepi

∪ A∗
Sepi

). Namely, g∗({}) = g(A∗
Sepi

).
The optimal assignments of other variable nodes are determined by their parent or an-
cestor node. For each child node j of i, its optimal separator Sepj is determined by i
so that A∗

Sepj
⊆ A∗

Sepi
∪ A∗

Sepi
, where g∗(A∗

Sepi
) = g(A∗

Sepi
∪ A∗

Sepi
). Note that the

above expressions also include the cases such that Sepi = { } or Sepi = { }. In the
actual computation of the first phase, each agent i propagates g∗i (Sepi) to prnti. Then,
in the second phase, each agent i propagates A∗

Sepj
for each j in Chldi.

This solution method inherits most parts of the correctness and the time/space com-
plexity from conventional methods based on dynamic programming such as DPOP [12]
and Bounded Max-Sum [13]. The overhead of operations on sorted vectors for leximin
can be estimated as almost O(n) for a sequential comparison of values of vectors, where
n is the size of sorted vector. The sorting of values can be implemented as red-black
tree whose time complexity is O(log n) [15].

3.2 Approximation method

In the above exact dynamic programming method, each node i computes a table of
objective vectors g∗i (Sepi) for corresponding separators Sepi. Therefore, the solution
method is not applicable for the large number of separators. In such cases, several ap-
proximation methods can be applied to eliminate several back edges and corresponding
separators. However, if the relationship between a variable and a function is completely
eliminated, the value of the variable is determined ignoring the actual values of other
variables in the scope of the function. As a result, the actual minimum objective value
cannot be well controlled. That may decrease the quality of solutions, since leximin
ordering is very sensitive to the minimum objective value. Here we employ another
approach that fixes several values of variables. To eliminate separators, we define a
threshold value maxnsep for the maximum number of separators. Based on the thresh-
old value maxnsep, the approximation is iteratively performed as multiple rounds.
Each round consists of the following steps.

– (Step 1) selection of the node with the maximum number of separators (Fig. 2(a)).
– (Step 2) selection/fixation of the variable of the largest impact in the separators

(Fig. 2(b)).
– (Step 3) notification of the fixed variable (Fig. 2(c)).

In Step 1, each node i reports the number of separators in Sepi and its identifier. In
actual computation, the computation is initiated by the root node in a top-down manner
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(Fig. 2(1)). The information of the number of separators is then aggregated in a bottom-
up manner (Fig. 2(2)). Based on the aggregated information, an agent j who has the
maximum number is selected to eliminate one of its separators. If |Sepj | is less than or
equal to the threshold value maxnsep, the iteration of rounds is terminated. Otherwise,
the root node notifies j so that j eliminates a separator (Fig. 2(3)).

In Step 2, node j eliminates a separator by fixing its value. First, for each separator
xk in Sepj , node j requests the variable node of xk to evaluate the impact of variable xk

(Fig. 2(4)). Then, for each neighborhood (function) node of fl in Nbrk, each variable
node k of separator xk requests function node of fl to evaluate its impact (Fig. 2(5)).
Each function node of fl then returns the information of f⊥

l (xk) = minXi\{xk} fi(Xi)

to variable node of separator xk (Fig. 2(6)). f⊥
l (xk) represents the lower bound of fl

for xk. Then, for each fl, the boundaries are aggregated into sorted vectors so that
h⊥
k (xk) =

⊕
fl∈Nbrk

f⊥
l (xk). Then, lower bound h⊥⊥

k = minleximinxk
h⊥
k (xk) and

upper bound h⊥⊤
k = maxleximinxk

h⊥
k (xk) of h⊥

k (xk) are computed. Variable node of
xk returns h⊥⊥

k and h⊥⊤
k to node j (Fig. 2(7)). Now, node j determine the separator xk̂

to be fixed so that k̂ = argminleximink h
⊥⊥
k .

Note that the length of sorted objective vectors h⊥⊥
k can be different. In such cases,

∞ is employed as a padding value. As a result, a longer vector that affects more func-
tions is selected in the case of a tie. We infer from the above expression that xk̂ is a
‘risky’ variable, since it’s choice may be restricted to yield lower objective values in
future computations of the approximation. Therefore, we prefer to fix this variable in
advance. The value of xk̂ is fixed to dk̂ so that h⊥⊤

k̂
= h⊥

k̂
(dk̂). Here we prefer the value

corresponding to the maximum lower bound.
In Step 3, node j propagates the information of Dk̂ = {dk̂} to its parent node and

child nodes (Fig. 2(8)). The propagation is terminated when Sepi or Sepj s.t. j ∈ Chi

in a node i do not contain xk̂. Then, the information of termination is returned to node j
(Fig. 2(9)). Then, node j notifies the root node of the termination of a round (Fig. 2(10)).

Note that the above algorithm is a base line to clarify the flow of information. We
believe that there are several opportunities to optimize the message paths. This approx-
imation method is a heuristic algorithm focusing on the worst case. Such a pessimistic
approach is relatively reasonable for leximin ordering, since the minimum objective
value has a major influence on the quality of the solutions. The upper bound objective
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1 Preprocessing:
2 let Nbr−xi

denote (Nbri of xi) \ {fi}. let Nbr−fi denote (Nbri of fi) \ {xi}.
3 ANbrxi ←

∪
j(the owner agent of fj in Nbr−xi

).
4 ANbrfi ←

∪
j(the owner agent of xj in Nbr−fi). ANbri ← ANbrxi ∪ANbrfi .

5 send ANbri to j in ANbri. receive ANbrj from all j in ANbri.
6 BANbri ← ANbri ∪

∪
j∈ANbri

ANbrj .

8 Main procedure:
9 choose the initial assignment dcuri of xi. // locally maximize fi.

10 until(cutoff){
11 send dcuri to all agents j in ANbrxi . receive dcurj from all agents j in ANbrfi .
12 Acur

i ← {(xi, d
cur
i )} ∪

∪
xj in Nbr−

fi

(xj , d
cur
j ).

13 vcuri ← fi(Acur
i ). send vcuri to agents j in ANbri. receive vcurj from agents j in ANbri.

14 vcur
i ← {vcuri } ⊕

⊕
j in ANbri

{vcurj }.
15 choose the new assignment dnew

i under Acur
i \ {(xi, d

cur
i )}.

16 Anew
i ← {(xi, d

new
i )} ∪

∪
xj in Nbr−

fi

(xj , d
cur
j ). vnew

i ← fi(Anew
i ).

17 send dnew
i to all agents j in ANbrxi . receive dnew

j from all agents j in ANbrfi .
18 foreach(xk in Nbr−fi ){
19 Anew

i,k ← {(xi, d
cur
i )} ∪ (xk, d

new
k ) ∪

∪
xj in Nbr−

fi
\{xk}

(xj , d
cur
j ). vnew

i,k ← fi(Anew
i,k ).

20 send vnew
i,k to the owner agent of xk.

21 }
22 receive vnew

j from all agents j in ANbrxi .
23 vnew

i ← {vnew
i }⊕

⊕
j in ANbrxi

{vnew
j } ⊕

⊕
k in ANbri\ANbrxi

{vcurk }.
24 if(vcur

i ≺leximin vnew
i ){ vdifi ← max(0, vnew

i − vcuri ). }else{ vdifi ← 0. }
25 send vdifi to all agents j in BANbri. receive vdifj from all agents j in BANbri.
26 if(vdifi = max

j in BANbri∪{i} v
dif
j ){ dcuri ← dnew

i . } // tie is broken by agent IDs.
27 }

Fig. 3. local search (procedures of node i)
value of each function, whose related variables are fixed, is calculated by maximizing
its objective values for the fixed variables. However, the upper bound objective vector
of an approximated solution cannot be directly calculated, since the objective values are
evaluated on leximin ordering. Instead of that, the upper bound objective vector can be
solved as the optimal solution of an approximated problem with the upper bound values
of the functions. It also means that the technique of Bounded Max-Sum to calculate
upper bound objective values is unavailable for leximin ordering.

3.3 Local search

Another inexact approach is based on local search methods. Here we employ a lo-
cal search method from a previous study [9]. While the original method is designed
for constraint networks, we adapt the method to (Leximin) AMODCOPs with factor
graphs. This local search is cooperatively performed by each agent with its neighbor-
hood agents. Since each agent i has its own variable node xi and function node fi, the
neighborhood agents ANbri of agent i are defined as a set of agents who have a neigh-
borhood node of xi or fi. Note that we denote the neighborhood nodes of xi and fi
as Nbri and Nbri, respectively. In addition, each agent i has to know its second order
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neighborhood agents BANbri. BANbri is referred in decision making among agents.
Since the variable of i’s neighborhood agent j affects the functions of j’s neighbor-
hood agents including i, agent i should agree with agents within two hops. The above
computations are performed in a preprocessing (Fig. 3, lines 1-6).

After the initialization (Fig. 3, line 9), the local search is iteratively performed as
multiple rounds (lines 10-27). Each round consists of the following steps.

– (Step 1) notification of current assignments (lines 11 and 12).
– (Step 2) evaluation of current assignments (lines 13 and 14).
– (Step 3) proposal of new assignments (lines 15-17).
– (Step 4) evaluation of new assignments (lines 18-23).
– (Step 5) update of assignments (lines 24-26).

In Step 1, each agent i notifies the agents, whose functions relate to xi, of the cur-
rent assignment dcuri of its own variable xi. Then, agents update the related current
assignments. In Step 2, each agent i evaluates the value of its own function fi for the
current assignment. The valuation of fi is announced to neighborhood agents. Then,
agents update the current valuations. In addition, using the valuations, a sorted vector
is generated. These valuations are stored for future evaluation. In Step 3, each agent i
chooses its new assignment dnewi that improves the valuation of fi under the current
assignment of other variables. Agent i then announces the new assignment dnewi to the
agents whose functions relate to xi. In Step 4, each agent i evaluates the value of its own
function fi assuming that an assignment dcurk in the current assignment is updated to
dnewk by an agent who has xk. Agent i then returns the valuation to the agent of xk. This
process is performed for all variables in the scope of fi. Each agent of xk receives and
stores the valuation for dnewk . Then, using the valuations, xk generates a sorted vector
for the case of dnewk . In Step 5, each agent i compares the sorted vectors for the cases of
dcuri and dnewi . If the sorted vector for dnewi is preferred, the improvement ddifi of the
valuation of its own function fi is evaluated. Otherwise, ddifi is set to 0. Then, agent i
notifies agents, within two hops, of the improvement ddifi . When its own improvement
ddifi is the greatest value in the agents BANbri, dcuri is updated by dnewi .

4 Evaluation

4.1 Settings

Example problems and evaluation values We experimentally evaluated the proposed
method. A class of Leximin AMODCOPs is used to generate test problems. The prob-
lems consist of n agents who have a ternary variable xi (|Di| = 3) and a function fi of
arity a. Objective values of the functions were randomly set as follows. g9 2: a rounded
integer value based on a gamma distribution with (α = 9, β = 2), similar to [13]. u1-
10: an integer value in [1, 10] based on uniform distribution. Results were averaged over
25 instances of the problems. We evaluated the following criteria for a sorted objective
vector v. scl: a scalarized value of v shown below. sum: the total value of values in
v. min: the minimum value in v. wtheil/theil: WTheil social welfare and Theil index
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shown below. As a normalization, each criterion (except ‘theil’) is divided by the cor-
responding criterion of the upper limit vector. The upper limit vector is defined as the
vector consisting of maxXi

fi(Xi) for all agent i.

Scalarization of Sorted Vectors (scl) To visualize sorted vectors, we introduce a scalar
measurement. The scalar value represents the location on a dictionary that is compatible
with a lexicographic order on the leximin. Here the minimum objective value v⊥ and
the maximum objective value v⊤ are given. With these limit values, for a sorted vec-
tor v, a scalar value s(v) = s(v)(|A|−1) that represents v’s location on the dictionary
is recursively calculated as s(v)(k) = s(v)(k−1) · (|v⊤ − v⊥| + 1) + (vk − v⊥) and
s(v)(−1) = 0. Here vk is the kth objective value in sorted vector v. Since we consider
the values in [v⊥, v⊤] as the characters in {c0, · · · , cv⊤−v⊥} that construct a word in
the dictionary, |v⊤ − v⊥| + 1 is considered as the number of characters in the ‘alpha-
bet’. In the case where |v⊤ − v⊥| and the number of variables are large, we can use
multiple precision variables in the actual implementation. Below, we simply use ‘scl’
that denotes s(v).

Social welfare based on Theil Index (wtheil/theil) In a previous study [9], a social
welfare based on Theil Index has been employed. Originally, Theil index is a criterion
of unfairness defined as T = 1

N

∑i
N

(
xi

x ln xi

x

)
. Here x denotes the average value for

all xi. T takes zero if all xi are equal. The social welfare is defined as WTheil = xe−T

so that the average (summation) is integrated to the fairness. We compared the results
with Theil Index and WTheil.

Bounded Max-Sum algorithm As addressed in Subsection 2.3, the Bounded Max-
Sum algorithm can be adapted to leximin optimization problems. We evaluated such a
Bounded Max-Sum (Bounded Max-Leximin) algorithm. While there are opportunities
to modify the impact values of edges for minimum spanning trees, we found that other
types of impact values were not very effective. Therefore, we simply employed the
spanning trees of the original algorithm.

4.2 Results

First, we compared different criteria of optimization. In this experiment, we employed
exact algorithms based on dynamic programming, except the case of WTheil as shown
below. The aggregation and maximization operators of the solution method were re-
placed by other operators similar to the previous study [5]. Those operators are cor-
rectly applied to the dynamic programming based on pseudo trees. Table 1 shows the
results of the comparison. Here ‘ptmaxleximin’ denotes the proposed method based on
pseudo trees. Compared methods maximize the summation (‘ptmaxsum’) and the min-
imum value (‘ptmaximin’), respectively. Additionally, ‘ptmaximinsum’ is a improved
version of ‘ptmaximin’ that maximizes the summation when two minimum values are
the same. Moreover, we also evaluated an exact solution method that maximizes WTheil
(‘maxwtheil’). Since WTheil cannot be decomposed into dynamic programming, we
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Table 1. Comparison with different optimization
criteria (n = 15, a = 3)

prb. opt. criteria scl sum min wtheil theil
g9 2 maxwtheil 0.563 0.815 0.637 0.799 0.031

ptmaximin 0.698 0.735 0.752 0.730 0.017
ptmaximinsum 0.699 0.769 0.752 0.763 0.019

ptmaxsum 0.513 0.818 0.596 0.797 0.037
ptmaxlexmin 0.699 0.759 0.752 0.755 0.016

u1-10 maxwtheil 0.636 0.888 0.668 0.879 0.010
ptmaximin 0.688 0.840 0.722 0.832 0.010

ptmaximinsum 0.691 0.882 0.722 0.874 0.009
ptmaxsum 0.599 0.888 0.632 0.878 0.013

ptmaxlexmin 0.692 0.875 0.722 0.869 0.008
* Problems were solved by exact algorithms.
* scl, sum, min and wtheil are ratio values to the upper limit vector.
* To be maximized: scl, sum, min, wtheil. To be minimized: theil.

Table 2. Size of pseudo tree (a=3)
n depth #leafs avg. max. max.

#branches |Sepi|
∏

k∈Sepi
|Dk|

10 16 3 1.15 6 1558
20 30 7 1.18 11 447460
30 42 11 1.20 15 462162351
40 55 14 1.20 19 1.165E+11
50 65 18 1.21 25 1.156E+13
* Each factor graph consists of n variable nodes and
n function nodes.

employed a centralized solver based on tree search. Due to the time/space complexity
of the solution methods, we evaluated the case of n = 15 and a = 3.

The results in Table 1 shows that ‘ptmaxleximin’ always maximizes sorted vectors
on leximin ordering (‘scl’). Similarly, ‘ptmaxsum’ and ‘maxwtheil’ always maximize
summation (‘sum’) and wtheil, respectively. ‘ptleximin’, ‘ptmaximin’ and ‘ptmaximin-
sum’ maximize the minimum value (‘min’). While ‘ptmaximinsum’ relatively increases
‘scl’ in average, Theil index (‘theil’) of ‘ptleximin’ is less than ‘that of ptmaximinsum’.
Therefore, it is considered that ‘ptleximin’ improves fairness among agents. Table 2
shows the size of pseudo trees in the case of a = 3. Due to the size of |Sepi|, even in
the case of n = 20, the exact solution method is not applicable. Therefore, we did not
compared exact methods and approximate methods.

Next, we evaluated approximate methods and local search methods. Figures 4-7
show the results in the case of g9 2 and a = 3. Here we evaluated the following meth-
ods. bms: the original Bounded Max-Sum algorithm. bmleximin: a Bounded Max-Sum
algorithm whose values and operators are replaced for leximin. lsleximin100/1000: the
local search method shown in Subsection 3.3, where the cutoff round is 100 or 1000. pt-
maxleximin1/4/8: the approximation method shown in Subsection 3.2, where the maxi-
mum size of |Sepi| is 1, 4 or 8. ptmaxleximin8 ub: the upper bound of ‘ptmaxleximin8’
that is addressed in Subsection 3.2. While we also evaluated a local search which em-
ploys WTheil, the results resemble that of ‘lsleximin’. It is considered that the both
criteria resemble and only work as a threshold in the local search. Therefore, we show
the results of ‘lsleximin’. Figure 4 shows the result of ‘scl’. The values of ’bms‘ and
’bmleximin‘ are relatively low, since those algorithms eliminate edges of factor graphs.
As a result, actual values of several variables are ignored by other nodes. That de-
creases the minimum objective value and ‘scl’. However, the results of ’bmleximin‘ are
slightly better than that of ‘bms’. When the maximum size of |Sepi| is sufficient, ‘pt-
maxleximin’ is better than other methods. On the other hand, with the number of fixed
variables, the quality of solutions decreases. The local search method outperforms ‘pt-
maxleximin’ around thirty agents. Also, the local search method is better than Bounded
Max-Sum/Leximin methods. Figures 5 and 6 show the results of ‘sum’ and ‘min’. The
results show that ‘min’ mainly affects the quality of ‘scl’. Figure 7 shows the results of
Theil index. Even if ‘ptmaxleximin’ loses the best quality on leximin ordering, it still
holds relatively low unfairness.
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Fig. 9. scl (g9 2, n=50)

Figures 8 and 9 show the results for different arities. Basically, the quality of solu-
tions decreases with arities. On the other hand, the influence on ‘ptmaxleximin’ is not
monotonic in the case of n = 20. It is considered that the heuristic of approximation
is affected both of arity and the number of nodes. Figures 10 and 11 show the cases of
u1-10 and a = 3. While the results resemble the cases of g9 2 and a = 3, ‘ptmaxlex-
imin’ is slightly better. It is considered that relatively uniform objective values mitigate
the influence of the approximation.

While we presented base line approximation algorithms for the sake of simplicity,
we evaluated the total number of synchronized message cycles and the total number
of messages. Note that the current evaluation is not in the main scope of this study.
Tables 3 and 4 show the results of ‘lsleximin’ and ‘ptmaxleximin’, respectively. While
the approximation method requires relatively large number of cycles, the total number
of messages is less than that of local search, where agents basically multicast messages
to their neighborhood agents.
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Table 3. Total number of cycles/messages (g9 2, n=50, a=3, lsleximin)
cutoff #converg. #cyc. #cyc. in converg. #msg. #msg. in converg.
round min. ave. max. min. ave max.

100 4 457 121 254 436 119903 31590 66249 113990
1000 6 3886 121 372 676 1017571 31590 98736 181640

Table 4. Total number of cycles/messages (g9 2, n=50, a=3, ptmaxleximin)
lmt. #cyc. #msg.

|Sepi| step1 step2 step3 DP total step1 step2 step3 DP total
1 4303 129 1386 128 5946 6639 3184 2075 198 12097
8 2480 73 936 128 3617 3829 2729 1422 198 8178

5 Related Works and Discussions

While pseudo trees on factor graph have been proposed in [6], we employ the factor
graphs to eliminate the directions of edges in the cases of Asymmetric DCOPs on con-
straint graphs [3]. As a result, the obtained solution methods do not handle the direction
of edges that was necessary in the previous studies [3, 10]. In addition, the factor graph
directly represents n-ary functions.

Theil based social welfare WTheil has been proposed in [9]. However, that social
welfare cannot be decomposed into dynamic programming. We evaluated exact algo-
rithms that optimize leximin and WTheil, relatively. In our experiment, the result shows
that leximin is better than WTheil on the criteria of leximin, maximin and Theil Index.

6 Conclusions

We propose solution methods for the leximin multiple objective optimization prob-
lems with preferences of agents and employing factor graphs. A dynamic programming
method on factor graphs is employed as an exact/approximation solution method in con-
junction with other inexact algorithms also applied to factor graphs. The experimental
results show the influences brought by the approximation method on the leximin social
welfare and factor graphs.

Our future research directions will include improvement of solution quality, detailed
evaluations of different criteria of fairness, and application of the proposed method to
practical problems instances.
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