
Java tool extensions for supporting multiple
recommenders and distributed bundles1

Marius Silaghi
Department of Computer Sciences and

Cybersecurity
Florida Institute of Technology

Melbourne, Florida 32901
Email: msilaghi@cs.fit.edu

Khalid Alhamed
Information Technology Department

Institute of Public Administration
Riyadh, Saudi Arabia

Email: hamedk@ipa.edu.sa

Ryan Stansifer
Department of Computer Sciences and

Cybersecurity
Florida Institute of Technology

Melbourne, Florida 32901
Email: ryan@cs.fit.edu

Abstract—A JAR (Java Archive) is typically used to incorpo-
rate code and associated resources into one file to distribute Java
software. A cryptographically signed JAR file provides assurance
about the authorship of the contents of the archive. We use Signed
JAR files as part of a recommendation system. In this system
different recommenders will evaluate the same software, and they
need to sign the exact same JAR file. The user wants to verify
that recommendations (i.e., signatures) received independently
from multiple parties, e.g., for a software update, pertain to the
exact same software. Related problems occur when users try to
sign bundles consisting of files maintained on different servers.
The tools in the Java Development Kit do not support this kind
of application.

We propose techniques to enable the signing of distribute bun-
dles and techniques by which recommenders can sign software
independently and such that verifiers are enabled to combine the
recommendations. There changes to the Java jarsigner tool
would avoid special purpose code which duplicates many of the
same capabilities of the existing tools.

Index Terms—security, update, JAR, signature, recommenda-
tion.

I. INTRODUCTION

In this work we refer to enabling the use of JAR files in
a new type of application, namely as a vehicle to transmit
digitally signed recommendations of software updates. A JAR
file is an archive created using the same layout as PKZIP [2]
files. Applets, Java class files (libraries), and stand-alone
appliations are often disseminated using JAR files. Signed
JAR files are used as a mechanism to recommend applets
as trustworthy for accessing resources. Signed libraries are
used for enabling strong cryptography that used to be export-
controlled. Signed applications could be used, in principle, to
enable trust in binaries downloaded from the Internet.

The scenario of the application that we want to enable
consists of independent recommenders of software updates
who, after testing the sources and compiling the software
themselves, sign the resulting JAR files for distribution to
potential adopters.

If the recommenders compile the same sources with the
same compilers and with the same options, then the .class

1Submission Type: Short Paper, Contact Author: Khalid Alhamed, Sym-
posium Acronym: CSCI-ISMC

binaries will differ in their timestamps. Nothing else would
be different. Even if the timestamps of all the files were set
to a fixed value before archiving these binaries, the resulting
JAR files (if they have a manifest) would still differ in
the timestamps and (probably) the CRC2 checkcodes of the
META-INF/ folder and META-INF/MANIFEST.MF file,
as recorded in their local file headers and central directory
record sections in the JAR file. (See Figure 1.) Without these
timestamps, the JAR files could be compared directly or
through their digests to detect changes.

If the JAR file is signed, this is done by adding the .SF
hashes files, .DSA, .EC and .RSA key files in the META-INF/
folder. These meta files further change the overall digest of the
archives, making them no longer directly comparable, and,
thus, difficult to check whether they contain exactly the same
software or not.

On the other hand, the .SF meta-files contain the digests of
the files in the JAR. This is exactly what we want to compare.
Entries in the manifest file have a corresponding section in the
.SF text file. The section consists of the file name and a digest.
This digest is of appropriate lines of text from the manifest
file—typically (1) the file name, (2) the base64-encode digest
of the file contents, and (3) a blank line. However, users have
to unzip the files and to compare the .SF files manually in
order to check whether the content is identical. Since .SF files
may contain only subsets of the archived files, the comparison
has to be based on the content of a MANIFEST.MF file that
describes all files.

II. BACKGROUND

The Oracle distribution of Java provides a tool named jar
that can be used to create and extract files from an archive. Java
code is often distributed using special ZIP archives managed
using the jar tool. JAR archives are special by the fact that
they commonly contain meta-information in a META-INF/
folder containing a text file MANIFEST.MF. This manifest
file is updated each time the JAR file is modified [6]. As a
consequence the JAR file will depend not only on the contents,
but also on when it is made. In the next example we show that

2The limitations and variations of Cyclic Redundant Codes (CRC) check
codes do not concern us here.

creating two JAR files with identical content yields different
files.

$ which jar
/data/jdk/jdk1.8.0_31/bin/jar
$ echo ’Hello World!’ > file.txt
$ jar cfe test1.jar Main file.txt
$ jar cfe test2.jar Main file.txt
$ cmp -l test1.jar test2.jar
11 225 230
72 225 230

291 225 230
350 225 230

The Unix tool cmp reveals that a difference occurs at addresses
11, 72, 291 and 350. Position 11 is part of the file modification
time in the local file header for the folder META-INF,
while position 72 corresponds to a byte in the timestamp
for MANIFEST.MF. The other two locations are bytes in the
timestamps in the central directory file header for the same
files. The layout of these timestamps in the JAR format are
shown in Figure 1 from [2].

One can see in the following example that the folder’s mod-
ification time is changed when the JAR manifest is updated:

$ echo Class-Path: a.jar > MANIFEST.txt
$ cp test1.jar test3.jar
$ jar ufm test3.jar MANIFEST.txt
$ jar tfv test1.jar | fgrep META

0 Wed May 27 09:11:52 EDT 2015 META-INF/
86 Wed May 27 09:11:52 EDT 2015 META-INF/MANIFEST.MF

$ jar tfv test3.jar | fgrep ME
0 Wed May 27 09:11:52 EDT 2015 META-INF/

105 Wed May 27 09:20:38 EDT 2015 META-INF/MANIFEST.MF

The update to the manifest timestamp is performed even if the
command line manifest update file is empty or contains the
exact same files as the manifest already in the archive.

The Java Development Kit also provides a tool called
jarsigner which creates the signature and signature block
files in the META-INF folders. This signature is generated
for a digest that is a fingerprint of files found in the archive.
This fingerprint is the value of the manifest attribute named x-
Digest-Manifest. Here x stands for a message digest algorithm,
commonly SHA256. Since this attribute is a digest of the
whole signature file, and in its turn this file contains the digest
of each individual file being signed in the per-entry attribute
named x-Digest, it is essential that the fingerprint be of the
whole software bundle in the archive. Note that we refer to an
exact fingerprint, not an approximate one as in [10]. A program
that tests similarity of JAR files are mentioned in [3], but it
does not address the manifest timestamps issue.

The jarsigner tool can be used to add multiple sig-
natures to a JAR file, and can be used to verify each such
signature separately, but it cannot tell whether two different
archives contain the same software [6]. Note that this tool has
an option -tsa for timestamps from authorities, which refers
to a cryptographic protocol unrelated to the problem discussed
here.

III. TOOL DETAILS

In [1] we describe an application where independent rec-
ommenders evaluate and sign software updates.

To simplify the support of independent recommendations of
a software in a JAR file as well as the support of distributed
bundles, we propose to add new options to the jarsigner
and jar tools.

A. Motivation

For example, an application like the DirectDemocracyP2P
in [1] requires recommenders to generate a cryptographic
digital signature for a combination of files maintained on
different servers. These files can define items such as software
packages, assessments, and recommender identity.

Assume that a recommender wants to generate one signature
for the bundle of resources that describe his assessment of a
binary release of the free open source code at github.com/
ddp2p/DDP2P/, namely:

1) http://john.rec.me/identity.id
2) http://ddp2p.net/specs/ddp2p-1.0.3.spec
3) http://mirror.net/updates/ddp2p-1.0.3.jar
4) http://john.rec.me/evals/ddp2p-1.0.3.eval

Then the recommender can generate one digital signature
for the digest of the stream of data obtained by concatenating
the content obtained from these last 4 URLs and can store it
as:
http://john.rec.me/assesments/ddp2p-1.0.3.sign

A verifier can further generate the digest value of the data
from the release described by the 4 URLs and verify the com-
bined data against the signature in ddp2p-1.0.3.sign.

The presence of JAR files introduces a complex problem,
since the recommender cannot easily check that the content
of, say:
http://mirror.net/updates/ddp2p-1.0.3.jar

is the same as the one generated from github sources
for evaluation on a local computer. The problem is that the
default timestamp of the META-INF/MANIFEST file and
folder is the current date, and the content of the obtained
jar-file depends on the date of its creation or of its time of
update [6].

Furthermore, a simple recompilation of the archive in the
mirror would change its content due to the modified timestamp
of its manifest, invalidating all signatures referring to it.

a) Solution with Current Tools: Currently, for a program
Main consisting of files in the list classes.list, JAR files that are
independent of the update and creation time can be obtained
with the following combination of commands:

jar cfme /tmp/archive.jar MANIFEST.txt Main \
@classes.list

cd /tmp
jar xf archive.jar
touch -d ’2009-06-15 13:45:30 Z’ META-INF \

META-INF/MANIFEST.MF
jar cMf archive.jar META-INF/MANIFEST.MF \

@classes.list

These commands still do not solve the problem of inte-
grating multiple recommenders with the jarsigner tool.

offset bytes description
0 4 file header
4 2 version
6 2 flags
8 2 compression method

10 2 last modification time
12 2 last modification date
14 4 CRC-32 of file
18 4 compressed size
22 4 uncompressed size
26 4 length of file name
30 2 length of additional field
32 name of file

extra field
compressed data

All multi-byte values are stored in little-endian byte order

offset bytes description
0 4 directory header
4 2 version made by
6 2 version required to extract
8 2 flags

10 2 compression method
12 2 last modification time
14 2 last modification date
16 4 CRC-32 of file
20 4 compressed size
24 4 uncompressed size
28 2 length of file name
30 2 length of additional field
32 2 length of comment
34 2 disk number
36 2 internal file attributes
38 4 external file attributes
42 4 location of file header
46 name of file

extra field
comment field
compressed data

Fig. 1. Local file and central directory file headers in JAR/PKZIP format [2]

To compare two archives signed by two independent recom-
menders with aliases alice and bob, one can use the next
combination of commands:
mkdir clean; cd clean
jar xf ../archive_alice.jar
rm -r META-INF
jar cMf ../archive_base_alice.jar *
cd ..; rm -rf clean
mkdir clean; cd clean
jar xf ../archive_bob.jar
rm -r META-INF
jar cMf ../archive_base_bob.jar *
cd ..; rm -rf clean

if \
jarsigner -verify archive_alice.jar alice & \
jarsigner -verify archive_bob.jar bob & \
cmp -l archive_base_alice.jar archive_base_bob.jar\
; then echo success ; fi

B. Option for jar

We propose to extend the jar tool with an option T which
specifies a timestamp for the created manifest file. Without
specifying this option, the default timestamp is the current
date, and the content of the obtained jar-file depends on the
date of its creation or of its update [6].

The parameter of the T option, inserted in the list of
arguments in the order of the appearance of T relatively to
options emf, can consist of any time format [9], [5], or as the
list of 16 hexadecimal values for the 4 bytes in the time and
date fields of the local file header for ZIP files [4].

Example calls to jar with the new options are:

jar cfTe archive.jar 2009-06-15T13:45:30 Main \
@classes.list

jar cmTef archive.jar MANIFEST.txt \

2009-06-15T13:45:30 Main archive.jar \

@classes.list

JAR files created with the proposed option T and with the
same command line and with input files having the same
timestamps are identical—regardless of when the JAR file
is created. Such JAR files have the advantage that they can
be freely combined with other systems into a data stream
that can be digitally signed only once, as we require for
recommendation systems.

C. Digest option for jarsigner

We also propose to extend the jarsigner tool with an
option -digest x, to be used as:
jarsigner -digest x jar-file [base-name]

The parameter x is expected to be the standardized name of
a java.security.MessageDigest algorithm. With this
option, the tool would be expected to print, without modifying
the file, the digest it would generate for the attribute x-Digest-
Manifest.

When called with an optional parameter base-name, then
the tool prints the digest of the manifest associated with
the signature file base-name.SF. This is equivalent to the
sequence of command:

zip -q -s archive.jar META-INF/base-name.SF \
| grep Digest-Manifest:

However, the -digest option also displays a digest for
JAR files that are not signed, which cannot be done now
with the above commands. With this option made available,

applications as the one mentioned in motivation can include
the digest obtained in this way instead of the content of a
JAR, when computing the digest to be signed for a distributed
bundle.

D. URL option for jarsigner

To enable the inclusion of the signature for a distributed
bundle inside the JAR archive, an attribute:

Include-URLs: http://john.rec.me/identity.id

http://ddp2p.net/specs/ddp2p-1.0.3.spec

http://mirror.net/updates/ddp2p-1.0.3.jar

http://john.rec.me/evals/ddp2p-1.0.3.eval

can be added to the main attributes in the manifest of the
signature JAR. The digests for digital signature would then be
computed by concatenating the streams obtained from these
URLs to the content of the current JAR file.

Since URLs tend to change names, an alternative to this
solution is to list the current name for URLs in the desired
order on the command line at creation and verification of the
signature, using the option -URL:

jarsigner -URLs http://john.rec.me/identity.id

-URL http://ddp2p.net/specs/ddp2p-1.0.3.spec

-URL http://mirror.net/updates/ddp2p-1.0.3.jar

-URL http://john.rec.me/evals/ddp2p-1.0.3.eval

ddp2p-sign-john.jar alias-john

E. Merge option for jarsigner

To better support multiple independent recommenders, we
propose to extend the jarsigner tool with an option
-merge jar-file2, to be used as:
jarsigner -merge jar-file2 [-options]

jar-file

b) Test 1:: With such a call, the jarsigner would first
check that the main attributes [7], [8] of the two jar files would
be identical, (i.e., having the same x-Digest-Manifest-Main-
Attributes attribute, if such an attribute would be computed).

c) Test 2:: Then, the files with the same path in
jar-file2 and in jar-file are checked to have the
same content: (i.e., the same x-Digest attribute, if such an
attribute would be computed). A failure occurs if the manifests
use different digest algorithms.

d) Operation: Finally, the signature and signature block
files in jar-file2 are added to jar-file. If signature files with the
same base file name were present in both jar files, but with
different sets of signed files, then the base file name of the
version in jar-file2 is modified by adding a numerical suffix
that does not generate conflicts with the signatures in jar-file.

On failure of the first test, the jarsigner tool quits with
error code −1. If a failure happens during the comparison at
Test 2 an error code specifying the index of the failing entry
in the generated manifest of the jar-file.

IV. CONCLUSIONS

We have discussed problems that occur when trying to sign
distributed bundles consisting of files maintained on different
servers, as well as when trying to combine recommendations
(i.e., digital signatures) generated independently for the same
JAR files by distinct recommenders.

A solution was shown which is based on current version
of the Java tools. We have proposed a set of alternative
modifications to the Java tools jar and jarsigner which
can make it possible to easily digitally sign distributed bundles
and to combine independently generated signatures for JAR
files.

REFERENCES

[1] Khalid Alhamed, Marius-Calin Silaghi, Ihsan Hussien, Ryan Stansifer,
and Yi Yang. "Stacking the deck" attack on software updates: Solution
by distributed recommendation of testers. In IAT, pages 293–300. IEEE
Computer Society, 2013. ISBN 978-1-4799-2902-3.

[2] Florian Buchholz. The structure of a pkzip file. https://users.cs.jmu.edu/
buchhofp/forensics/formats/pkzip.html, 2015.

[3] Allan Godding and Edward Duong. Jar identification and duplication de-
tection. https://comp4104a2.googlecode.com/svn/COMP4900/paper.pdf.
Date accessed: May 2015.

[4] Paul Lindner. Zip: Registration of a new mime content-type/subtype.
http://www.iana.org/assignments/media-types/application/zip, 2015.

[5] Microsoft. Standard data and time format strings. https://msdn.microsoft.
com/en-us/library/az4se3k1\%28v=vs.110\%29.aspx, 2015.

[6] Oracle. Packaging programs in jar files. https://docs.oracle.com/javase/
tutorial/deployment/jar/, 2015a.

[7] Oracle. Jar file specification. http://docs.oracle.com/javase/8/docs/
technotes/guides/jar/jar.html, 2015b.

[8] Oracle. jarsigner. https://docs.oracle.com/javase/8/docs/technotes/tools/
unix/jarsigner.html, 2015c.

[9] Oracle. Using predefined formats. https://docs.oracle.com/javase/
tutorial/i18n/format/dateFormat.html, 2015.

[10] Muhammad Shafique and Dwight Deugo. finGAD: A jar file fingerprint
generator and detector. In Hamid R. Arabnia and Hassan Reza,
editors, Proceedings of the 2009 International Conference on Software
Engineering Research & Practice, SERP 2009, July 13-16, 2009, Las
Vegas, Nevada, USA, 2 Volumes, pages 70–76. CSREA Press, 2009.
ISBN 1-60132-129-5.

