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Abstract

In this study, we introduce a new peer-to-peer (P2P) approach
to instant messaging systems based on a fully decentralized
network, and where each human owning a peer can control
the traffic supported by her system. The control may be based
on criteria such as: (a) her desire to help the endpoints of the
communication, e.g., based on friendship, (b) her desire to
help a cause, e.g., based on the content/topic of the commu-
nication, (c) reputation, or (d) the utility brought to her by
the handled data. Peers need help to communicate when they
are behind NATs. Unlike the P2P chat system used in Skype,
no centralized servers are involved (no central redirect server,
login server or web server).

Providing intrinsic motivation such that peers help with traffic
is important in order to eventually make an open source P2P
chat system viable. In current non-incentive P2P systems like
Skype, availability of open source versions can potentially
starve the system of supernodes (since users can disable the
resource consuming supernode-function).

In our approach, each peer has equal privileges to any other
peer. Nodes register their address with other peers of their
choice, which can then act as directories on their behalf. Each
peer with sufficient resources can voluntarily play the role of
directory for her friends or of forwarding incoming messages
to peers behind NATs.

This paper analyzes key functions of the solution such as in-
centive management, NAT and firewall traversal, connection
establishment and message transfer under different network
setups.

Introduction

Instant messaging has been one of the most successful ap-
plications on the Internet, starting with talk and IRC to
Twitter and Facebook. One of the most currently used
such systems, Skype, is a peer-to-peer (P2P) application.
The P2P architecture offers Skype significant robustness and
scalability, as well as efficiency, particularly from the per-
spective of a low latency.

Besides depending on a centralized set of login servers
that could be used to eventually bring down the whole sys-
tem, Skype is a closed source software, and it is known to
use computational resources of unsuspecting users.

While efforts to build open source clients have failed due
to secret changes in protocols (Baset & Schulzrinne 2004;
2006; Guha, Daswani, & Jain 2006), it is questionable

whether they could in fact survive when the protocol would
be open. The issue is that, with open source software, the
users can get versions that disable expensive super-node
functions that exploit the resources of the nodes. This miss-
ing property is called faithfulness (Shneidman, Parkes, &
Massoulié 2004). In the closed source chat systems, the
only incentive to act as supernode is the fact that binaries
do not allow users to disable that function selectively. Since
current protocols have no intrinsic incentives to voluntarily
act as a supernode, availability of an open source agent can
starve the network of super-nodes and lead to the demise of
the service.

We propose an approach to P2P supernodes that can si-
multaneously offer advantages similar to Skype, while be-
ing fully decentralized, open source, allowing customization
and control of one’s resources. Users may thereby enforce
that their resources are used only for causes that they want
to support.

Providing intrinsic incentives for peers to help with traffic
flow in P2P network applications is important in order to
overcome the most common problems with the open-source
P2P paradigm: Free-riding and tragedy of the commons (Ma
et al. 2003). Incentives are intrinsic to an application if the
participant loses by not performing the actions expected of
her due to those actions, and not due to benefits provided
separately (e.g., bundled in a pre-compiled software).

Incentives To encourage peers to support the chat commu-
nication of others, the proposed protocol enables incentives,
such as:

• Ability to control the traffic passing by her system:

– helping the endpoints of the communication (e.g.,
based on friendship or subject).

– rejecting the endpoints of the communication (e.g.,
based on disagreement).

• Getting information concerning who talks to whom and
what are they talking about (for research, marketing data
or pure curiosity).

• Supporting open source P2P chat systems, thereby sup-
porting the freedom of customization.

• Opportunity to insert advertisements into the stream.



• Ability to offer paid services for supporting the commu-
nication.

The characteristics of our P2P approach is: network ad-
dress translation (NAT) piercing ability, democracy, no out-
side control, full decentralization. In the next section we
discuss differences with related work. After introducing
the main concepts, section Protocol describes in detail the
mechanism used by peers for incentive chat.

Background

Skype (Baset & Schulzrinne 2004) is a P2P application
based on the Kazaa architecture for voice over IP (VoIP)
and instant messaging (IM). It offers multiple services, such
as: (a) VoIP allows two Skype users to establish two-way
audio streams with each other and supports conferences of
multiple users, (b) IM allows two or more Skype users to ex-
change small text messages in real-time, and (c) file-transfer
allows a Skype user to send a file to another Skype user.

The implementation used by Skype is not open source
and its protocol is not publicly disclosed. In addition, it is
not fully decentralized, relying on a set of pre-established
nodes for login authentication and as last solution to search
users registered or logged into the Skype network (Baset
& Schulzrinne 2004). Skype lacks faithfulness (Shneid-
man, Parkes, & Massoulié 2004), in the sense that users
will benefit by disabling their super-node functions, thereby
bringing down the system. A node should have a pub-
lic IP address in order to become a supernode. Skype
has solved the problem of unreachable nodes behind NATs
or firewalls by implementing a version of the STUN and
TURN protocols in each node (Rosenberg et al. 2008;
Mahy, Matthews, & Rosenberg 2010; Rosenberg 2003). If
one client is behind a NAT, Skype uses connection reversal
whereby the node behind the NAT initiates the TCP/UDP
media session regardless of which end requested the VoIP
or file-transfer session. If both clients are behind NATs,
Skype uses a STUN-like NAT traversal to establish the di-
rect connection. In the event that the direct connection fails,
Skype falls back to a TURNlike approach where the media
session is relayed by a publicly reachable supernode (Guha,
Daswani, & Jain 2006).

A P2P Java platform called JXTA was released in
2001 and is widely used for a variety of P2P applica-
tions (Gradecki 2002). It can be relatively easily config-
ured for communication within groups defines as subsets of
a unique group structure in charge of managing their iden-
tifiers. It also provides the needed NAT support. Various
flavors of P2P platforms for social networks are provided as
both open source and close source applications: Bittorrent,
PeerSon (Buchegger et al. 2009; Cohen 2003).

Concepts

A NAT is a mechanism to share a network connection with a
unique IP from several machines on a intranet. Each socket
on a machine on the intranet is viewed from the outside as
having the same IP, but potentially a different port than the
one actually used on its own machine.

Figure 1: Providing incentives for relaying messages

There are several types of NATs. With NATs, when both
peers are found behind NATs and one of the NATs is sym-
metric, then all the communication has to be performed us-
ing an external server (e.g., with the TURN protocol). With
full-cone NATs, two devices found both behind such NATs
can communicate directly if their communication is initial-
ized by an external server (e.g., with the STUN protocol).

Definition 1 (Supernode) A supernode is an agent that is
not found behind a NAT or firewall, and has a public IP.

Definition 2 (Willing Forwarding) A supernode is will-
ingly forwarding a chat request if the owner of the supern-
ode has specifically agreed with the corresponding action.

Definition 3 (Directory Server) An agent that accepts to
keep track of the IP of a peer and to relay its current ad-
dress when queried.

An agent can simultaneously be a directory server and a su-
pernode. Unlike DNS, in our case we do not assume direc-
tory servers to be organized hierarchically, and the mecha-
nism peers learn one’s directory servers is outside the scope
of this report.

Definition 4 (Address Container) An address container is
an object (e.g., a file) that contains information about a peer,
such as:

• the name of the peer

• the certificate of the peer, usable to verify its identity on
connection

• a list of common socket addresses (IP and port) where the
peer can be usually contacted

• a list of directory servers supporting this peer with con-
nections when he is not at one of the common socket ad-
dresses

Provided incentives

Our study assumes rational behavior, where users of differ-
ent types can have utilities that depend on various incentives.



The incenteves we address are categorized into the following
types:

1. Curiosity: e.g. getting information about who talks what
to whom.

2. Commercial perspective: e.g. opportunity for paid ser-
vices or inserting advertisements.

3. Altruism: e.g. supporting unknown or known others to
freely communicate.

For Full-Cone NATs, once the communication is
launched, the supernode can be bypassed as soon as the
peers can exchange their Internet addresses. In this case the
incentive that a supernode can get consists of its ability to
learn that users do communicate. To reduce the chance that
it provides support to a cause it opposes, or just for gather-
ing data, the supernode can request a declared topic for each
connection request. E.g., if the declared topic matches items
on a black-list, the requesting user can be denied.

With Symmetric NATs all the communication has to pass
via a relaying supernode (Figure 1). The load of this supern-
ode is significant since it has to transmit the whole data. An
incentive automatically available to a supernode based on
open source is that it can learn the amount of communica-
tion between peers, knowledge that can provide motivation
to some researchers, marketing departments, etc. Other su-
pernodes put other conditions (other than payments):

• being allowed to insert ads in the stream of data. While
peers may insert digital signatures on blocks of data to be
able to automatically remove such ads, supernodes may
request dynamic interaction to verify that peers have read
the ads (such as CAPTCHA: ask receivers to answer a
question based on the ads they were supposed to see).

• being given access to communication in plaintext (a re-
quest that data not be encrypted). While some people
may still exchange secret data used using steganography,
supernodes can use public data in the communication for
marketing, studies, curiosity, etc.

Terms The parameter terms sent with negotia-
tion messages consists of a structure of the type
OR(term1, term2, ...), i.e., a disjunction of choices,
where each termi is a pair of the form (type, requests)
where type specifies the communication mechanism pos-
sible with the requested peer (direct, forwarded: see the
four cases in the next section), while requests is a tuple
〈topic, plaintext, ads, payment〉, each of these elements
being a Boolean specifying whether the corresponding
feature is requested or not.

Protocols

In this section we introduce the protocol followed by each
participant. First we give the perspective of the user. A user
follows the sequence of interactions below:

1. Download container of address from destination web-
site/email into her agent. This has to be done only once in
the lifetime of the relation between the two peers.

2. For an existing address, try direct connections first, if
available. If they work, go to step 5.

3. Send request message (Help) to supernodes, in parallel.
Available supernodes answer with negotiation messages
(Welcome).

4. Choose supernode S with best terms and send agree mes-
sage (Confirmation).

5. Send data message based on the obtained procedure.

In the scheme above, at the first step the agent will save
the address in the local storage for potential further usage.

The protocol of a supernode is given in Algorithm 1.
The supernode uses as data structure a hashtable channel
with names as keys and addresses as values. Supern-
odes handle the request messages with the procedure For-
wardRequest. The agree messages are handled with the pro-
cedure AgreeForwarding, and the data messages are han-
dled with the procedure ForwardingData. Note that these
procedures enable communication behind symmetric NATs,
but this is sufficient to start any other type of communica-
tion possible, once peers can communicate with each other
and if their communication is not censored. Nevertheless,
for direct communication from behind two full-cone NATs
they additionally need the cooperation of the supernode in
providing them with their external addresses.

when ForwardRequest(src IP, source, destination)
authenticate(src IP, source);
if not willingly forwarding(source, destination) then

return;
terms → myterms[source];
send negotiation(terms) to src IP;

when AgreeForwarding(src IP, source, destination, terms)
check terms ;
if NAT opening(terms) then

send (src IP) to destination;
else

open channel[destination] adding source to set of
its tags;
open channel[source] adding source to set of its
tags;

when (ForwardingData(source, destination, message))
if (!check forwarding(source, destination) then

return
send data message to channel[destination];

Algorithm 1: Supernode protocol

In order to understand the communication initialization
between peers, we illustrate four cases that could appear
when a peer tries to connect to another peer (which mir-
rors related cases of the STUN protocol, enriched with han-
dling of incentives). For clarity, we first present the four
cases with a potentially inefficient version of the initializa-
tion, which increases the latency by one round-trip. Subse-
quently we show that the latency of this initialization can be
reduced in certain circumstances to the latency for the case
without incentives (STUN):



Figure 2: [Case 1] Peer A can reach peer B but does not
know the IP of peer C

Figure 3: [Case 2] Peer A and B are behind full-cone NATs.
They can reach peer B but they cannot reach each other

Case Roaming Peer (No NAT) In this case peer A is be-
hind NAT and she wants to send a message to peer C, but
peer A does not have the current address of peer C (see
Figure 2). On the other hand, peer B has peer C’s ad-
dress stored in its directory server. Therefore, peer A needs
peer B’s help in order to communicate with peer C. Both
peer B and peer C have public IP addresses.

1. Peer A sends a help request to peer B. The request has
two parameters (1) destination information in this case
it is peer C public identification (PID) and optionally (2)
topic information (why does peer A want to communicate
with peer C).

2. Then, peer B sends a welcome message to peer A includ-
ing, peer B’s terms to help. As aforementioned, terms
include: access to plaintext messages, insertion of ads,
forward only (address of peer is not offered due to sym-
metric NAT or to preclude bypassing).

3. Peer A sends an acceptance confirmation message to
peer B.

4. Peer B sends a message to peer A containing the contact
information of peer C (IP address and port).

5. Finally, peer A can connect to peer C.

Case Full-Cone NATs In this case both peer A and C are
behind a full-cone NATs (see Figure 3). They can reach

Figure 4: [Case 3] Peer A and C are behind NATs, at least
one of the NATs being symmetric. They can reach peer B
but they cannot reach each other

Figure 5: [Case 4] Peer C is behind the NAT. Peer A can
reach peer B but cannot reach peer C

peer B but they cannot reach each other. Peer B has a com-
munication channel with peer C. Therefore, peer A needs
peer B’s help in order to communicate with Peer C.

1. Peer A sends a help request to peer B.

2. Then, peer B sends a welcome message to peer A includ-
ing, peer B’s terms for help.

3. Peer A sends an acceptance confirmation message to
peer B.

4. Peer B sends a contact message to peer C containing the
contact request information of peer A (IP address and
port).

5. Peer B sends an address message to peer A containing the
contact information of peer C (IP address and port).

6. Peer A and peer C pierce their NATs.

7. Finally, peer A and peer C have a communication chan-
nel to exchange messages.

Case Symmetric NAT In case both peer A and peer C are
behind a NAT and one of the two NATs is symmetric (pic-
tured at peer C in Figure 4), then forwarding between them
cannot be avoided.

1. Peer A sends the help request to peer B.



Figure 6: Reducing latency

2. Peer B sends a welcome message to peer A including,
peer B’s terms to help.

3. Peer A sends an acceptance confirmation message to
peer B.

4. Peer A sends a message to peer B containing a message.

5. Peer B forwards the message to peer C with the data
of the sender and potentially with additional processing
(adds insertion, extra negotiation with peer C).

6. Answers from peer C follow the same scheme.

Case NAT at Destination The case when the initiator
peer A is not behind a NAT but peer C is in this situation
and has a communication channel open with peer B, then
the procedure is similar to the one at the first case.

1. Peer A sends a help request to peer B.

2. Peer B sends a welcome message to peer A including,
peer B’s terms to help.

3. Peer A sends an acceptance confirmation message to
peer B.

4. Peer B sends a message to peer C containing the contact
information of peer A (IP address and port).

5. Finally, peer C can connect to peer A.

Reducing Latency of Initialization The previously de-
scribed simplified handshake mechanism has a higher la-
tency than STUN due to the extra round-trip used to agree
on the terms for service.

This handshake can be brought to the latency of STUN
whenever the client accepts to proactively offer the services
that the supernode requests. The Help message is allowed
to optionally contain the list of terms that the client is
ready to accept (willing to do list). Instead of exchanging
three messages between peers for terms agreement: Help,
Welcome and Confirmation, the client only needs to
send a single message: Help. In case the supernode finds
acceptable terms among the terms offered by the client,
then it returns the most preferred among them, term to
peer A using an Accept message. The example in Fig-
ure 6 details the scenario of full-cone NATs, but it applies
identically to the other discussed cases. If the list of terms
does not match its acceptable terms then it can reply with a

RejectRequest message specifying its terms. The client
can eventually retry the communication request including
some of the requested terms.

The peer is configured by a user with a list of
acceptable terms tagged with a preference value:
〈(term1, p1), (term2, p2), ...〉. First the software agent may
try to negotiate the terms term1 with the highest preference
p1 using known supernodes serving peer C. If that fails then
it can try terms2 with the lower preference value p2, until
it exhausts its acceptable terms. The user is presented with
the terms suggested by supernodes in their rejection replies.
Users can change their default terms for certain supernodes,
based on answers to their past requests, to reduce the latency
of subsequent connections. The agent can automatically
infer based on recent past answers whether a query will fail
and optimize query of supernodes.

Addressed attacks

• Fake service claim: The expected behavior of a supernode
is to provide communication services to registered peers
based on a settled terms agreement. However, some su-
pernodes may take advantage of this function in different
ways. Some attacker may claim to provide the supern-
ode function (forwarding messages, proving addresses or
startup communication) just for gathering start-up data,
without actually providing services. It is up to the peer
using it as a directory to detect and protect herself from
these attacks, and a recommendation system can be build
to evaluate supernodes.

• False identity declarations: A mechanism to verify the
identity of a user in DDP2P is described in (Qin et al.
2013; Silaghi et al. 2013). Intuitively, some identities
are verified directly using a protocol based on SMS and
previously-known email addresses of friends (Silaghi et
al. 2013). Remaining identities are verified indirectly us-
ing witness stances in a authoritarian or bottom-up census
process (Qin et al. 2013).

• Supernode evasion: a user could indeed ask the address of
an intermediary as a way of hiding the final destination.
This approach is similar to the attack mentioned in the
article where the peers use steganography for exchanging
text privately over a supervised channel. These techniques
are common even now with existing email infrastructures
(see anonymous remailers), and we expect that they will
happen with our system, too. It already impacts trust in
claims of NGOs as to the real purpose of their activities,
but it does not lead to a lack of survivability of NGOs.
This potential attacks somewhat reduce the incentives of
type one (curiosity), and somewhat more the incentives of
type three (serving selectively certain causes). They have
less impact on incentives of type two.

Conclusions

We address the problem of providing incentives for users to
let their systems serve as supernodes (helpers for initiating
or forwarding communication) in an open source P2P chat



protocol. We remark that one of the common P2P applica-
tions for chat, Skype, does not provide faithfulness. Namely,
the only reason for which certain users allow their Skype
agent to relay messages is that they cannot turn it off (given
that it is a close source software).

The research question addressed here is how to provide
intrinsic incentives for volunteers to serve as supernodes,
in a way that would make an open source chat protocol vi-
able. The observation is that human volunteers have several
ways in which they can benefit from helping with establish-
ing connections between others. Some benefits come from
common characteristics of humans.

A human benefit for volunteering to send data is the good
feeling of serving a noble cause. While some volunteers
would simply offer their resources for the cause of open
source, others may want to learn a declared topic of the
discussion, or to even request access to the whole commu-
nication (in plaintext), to guarantee that they are happy to
support the cause of the given connection. This may be ac-
ceptable to certain users and for certain communications.

Another human characteristic that can motivate a volun-
teer is curiosity of who talks to whom, of how much they
talk and, if public, on what topics. This is data that people
often offer willingly or unwillingly to close software appli-
cations, but in our case users themselves gain by knowing
how much information they actually give away.

A third intrinsic benefit of the supernodes can be commer-
cial. The collected data can be used for marketing, studies,
etc. Supernode users can also get credit for a quid pro quo
help if in the future they will be behind a NAT. Moreover,
in some models (e.g., with symmetric NATs) the supernodes
that have to forward the whole data can be enabled to insert
advertisements into the stream of data. Just as in the previ-
ous cases, the same information is currently leaked to closed
source software, while the advantage of open source is to let
the user know exactly what privacy they are losing. Based
on volunteer supernodes we now establish an incentive fully
decentralized open source system for chat.
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